
Behavioral Control for Real-Time Simulated Human Agents

John P. Granieri, Welton Be&et,
Barry D. R.eich, Jonathan Crabtree, Norman I. Badler

Center for Human Modeling and Simulation
University of Pennsylvania

Philadelphia, Pennsylvania 19104-6389
granieri/becket/reich/crabtree/badler(0graphics.cis.upeM.edu

Abstract
A system for controlling the behaviors of an interac-

tive human-like agent, and executing them in real-time,
is presented. It relies on an underlying model of contin-
uous behavior, as well as a discrete scheduling mecha-
nism for changing behavior over time. A multiprocess-
ing framework executes the behaviors and renders the
motion of the agents in real-time. Finally we discuss
the current state of our implementation and some areas
of future work.

1 Introduction
As rich and complex interactive 3D virtual environ-

ments become practical for a variety of applications,
from engineering design evaluation to hazard simula-
tion, there is a need to represent their inhabitants as
purposeful, interactive, human-like agents.

It is not a great leap of the imagination to think
of a product designer creating a virtual prototype of a
piece of equipment, placing that equipment in a virtual
workspace, then populating the workspace with virtual
human operators who will perform their assigned tasks
(operating or maintaining) on the equipment. The de-
signer will need to instruct and guide the agents in the
execution of their tasks, as well as evaluate their per-
formance within his design. He may then change the
design based on the agents’ interactions with it.

Although this scenario is possible today, using only
one or two simulated humans and scripted task anima-
tions [3], the techniques employed do not scale well to
tens or hundreds of humans. Scripts also limit any abil-
ity to have the human agents react to user input as well
as each other during the execution of a task simulation.
We wish to build a system capable of simulating many
agents, performing moderately complex tasks, and able
to react to external (either from user-generated or dis-
tributed simulation) stimuli and events, which will oper-
ate in near real-time. To that end, we have put together
a system which has the beginnings of these attributes,

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and Its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
1995 Symposium on Interactive 3D Graphics, Monterey CA USA
(D 1995 ACM O-89791 -736-7/95/0004...$3.50

and are in the process of investigating the limits of our
approach. We describe below our architect,ure, which
employs a variety of known and previously published
techniques! combined together in a new way to achieve
near real-time behavior on current workstations.

We first describe the machinery employed for behav-
ioral control. This portion includes perceptual, control,
and motor components. We then describe the multipro-
cessing framework built to run the behavioral system in
near real-time. We conclude with some internal details
of the execution environment. For illustrative purposes,
our example scenario is a pedestrian agent, with the
ability to locomote, walk down a sidewalk, and cross
the street at an intersection while obeying stop lights
and pedestrian crossing lights.

2 Behavioral Control
The behavioral controller, previously developed in [4]

and [5], is designed to allow the operation of paral-
lel., continuous behaviors each attempting to accom-
plish some function relevant to the agent and each con-
necting sensors to effecters. Our behavioral controller
is based on both potential-field reactive control from
robotics [l, 10 and behavioral simulation from gra h-
its, such as Wi 1 helms and Skinner’s implementation 201 B
of Braitenberg’s Vehicles [T]. Our system is structured
in order to allow the apphcation of optimization learn-
ing [6], however, as one of the primary difficulties with
behavioral and reactive techniques is the complexity of
assigning weights or arbitration schemes to the various
behaviors in order to achieve a desired observed behav-
ior 15, 61.

Behaviors are embedded in a network of behavioral
nodes, with fixed connectivity by links across which only
floating-point messages can travel. On each simulation
step the network is updated synchronously and with-
out order dependence by using separate load and emit
phases using a simulation technique adapted from [14].
Because there is no order dependence, each node in the
network could be on a separate processor, so the net-
work could be easily parallelized.

Each functional behavior is implemented as a sub-
network of behavioral nodes defining a path from the
geometry database of the system to calls for changes
in the database. Because behaviors are imDlemented
as networks of simpler processing units, the representa-
tion is more explicit than in behavioral controllers where
entire behaviors are implemented procedurally. Wher-

173

ever possible, values that could be used to parameterize
the behavior nodes are made accessible, making the en-
tire controller accessible to machine learning techniques
which can tune components of a behavior that may be
too complex for a designer to manage. The entire net,-
work comprising the various sub-behaviors acts as the
controller for the agent, and is referred t.o here as the
behavior wt.

There are three conceptual categories of behavioral
nodes employed by behavioral paths in a behavior net:

perceptual nodes that output more abstract. results
of perception than what raw sensors would emit.
Note that in a simulation t.hat has access to a COIII-

plete database of the simulated world, the job of
the perceptual nodes will be t.o realistically limit
perception, which is perhaps opposit,e to the func-
tion of perception in real robots.

motor nodes that communicate with some form of mo-
t,or control for the simulated agent. Some motor
nodes enact changes directly on the environment.
More complex motor behaviors, however, suc.h as
the walk motor node described below, schedule a
motion (a step) that is managed by a separate,
asynchronous execution module.

control nodes which map perceptual nodes to motor
nodes usually using some form of negative feed-
back.

This partitioning is similar to Firby’s partitioning of
cont,inuous behavior into active sensing and behavior
control routines [lo], except that motor control is con-
sidered s:eparate from negative feedback control.
2.1 Perceptual Nodes

The perceptual nodes rely on simulated sensors to
perform the perceptual part of a behavior. The sensors
access the environment database, evaluat,e and output
the distance and angle to the target or targets. A sam-
pling of different sensors currently used in our system is
described below. The sensors differ only in the types of
things they are capable of detecting.

Object: An object sensor detects a single object. This
detection is global; there are no restrictions such
as visibility limitations. As a result, care must
be taken when using this sensor: for example, the
pedestrian may walk through walls or other objects
without t.he proper avoidances, and apparent real-
ism may be compromised by an attraction to an
object which is not visible. It should be noted that
an object sensor always senses the object’s current
location, even if the object moves. Therefore, fol-
lowing or pursuing behaviors are possible.

Location: A location sensor is almost identical to an
object sensor. The difference is t.hat the location
is a unchangeable point in space which need not
correspond to any object.

Proximity: A proximity sensor detects objects of a
specific type. This detection is local: the sensor can
detect only objects which intersect a sector-shaped
region roughly corresponding to the field-of-view of
the pedestrian.

Line: A line sensor detects a specific line segment.

Terrain: A terrain sensor, described in [17], senses the
navig.sbility of the local terrain. For example, the
pedestrian can distinguish undesirable terrailk such
as street or puddles from terrain easier or rnore de-
sirable to negotiate such as sidewalk.

Field-of-View: A field-of-view sensor, described
in [17], determines whether a human agent is visi-
ble to any of a set of agents. The sensor output is
proportional to the number of agents’ fields-of-view
it is in, and inversely proportional to the dist,ances
to t,hese agents.

2.2 Control Nodes
Control nodes typically implement some form of neg-

ative feedback, generating outputs that will reduc,e per-
ceived error in input relative to some desired value or
limit. This is the center of the reactivity of the be-
havioral controller, and as suggested in [9], the use of
negative feedback will effectively handle noise and un-
certainty.

Two control nodes have been implemented as de-
scribed in [4] and [5], attract and avoid. These loosely
model various forms of taxis found in real animals 117, 111
and are analogous to proportional servos from control
theory. Their output is in the form of a recommended
new velocity in polar coordinates:

Attract A.11 attract control node is linked to 0 and d
values, typically derived from perceptual nodes,
and has angular and distance thresholds. te and
td. The attract behavior emits A6 and Ad values
scaled by linear weights that suggest an update
that would bring d and 0 closer to the threshold
values. Given weights ks and /,?d :

ae=
if -te 5 e 5 te
if0 > te
otherwise

ifd<td
otherwise.

Avoid The avoid node is not, just the opposite of at-
fmct. Typically in attract, both 0 and d should
be within the t,hresholds. With avoid, however,
the intended behavior is usually to have d outside
the threshold distance, using 0 only for steering
away. The resulting avoid formulation has n.o an-
gular threshold:

A.e = if d 5 td and e 2 0

ifd>td
kd(td - d) otherwise.

174

P3

Pl

,<. .

q. . . .

,

Wall

cl Goal

Figure 1: Sawtooth path due to potential field discon-
tinuities

2.3 Motor Nodes
Motor nodes for controlling non-linked agents are im-

plemented by interpreting the Ad and A0 values emit-
ted from control behaviors as linear and angular ad-
justments, where the magnitude of the implied velocity
vector gives some notion of the urgency of traveling in
that direction. If this velocity vector is attached di-
rectly to a figure so that requested velocity is mapped
directly to a change in the object’s position, the result-
ing agent appears jet-powered and slides around with
infinite damping as in Wilhelms and Skinner’s environ-
ment [20].

2.3.1 Walking by sampling potential fields

When controlling agents that walk, however, the mo-
tor node mapping the velocity vector implied by the
outputs of the control behaviors to actual motion in
the agent needs to be more sophisticated. In a walking
agent the motor node of the behavior net sch.edules a
step for an agent by indicating the position and orien-
tation of the next footstep, where this decision about
where to step next happens at the end of every step
rather than continuously along with motion of the agent.
The velocity vector resulting from the blended output
of all control nodes could be used to determine the next
footstep; however, doing so results in severe instability
around threshold boundaries. This occurs because we
allow thresholds in our sensor and control nodes and as
a result the potential field space is not continuous. Tak-
ing a discrete st,ep based on instantaneous information
may step across a discontinuity in field space. Consider
the situation in Fig. 1 where the agent is attracted to a
goal on the opposite side of a wall and avoids the wall
up to some threshold distance. If the first step is sched-
uled at position pr , the agent will choose to step directly
toward the goal and will end up at pz. The agent is then
well within the threshold distance for walls and will step
away from the wall and end up at ~3, which is outside
the threshold. This process then repeats until the wall

Agent Agent

Length

Figure 2: The fan of potential foot locations and orien-
tations

Goal Sensor bd I

Figure 3: An example behavior net for walking

is cleared, producing an extremely unrealistic sawtooth
path about the true gradient in the potential field.

To eliminate the sawto0t.h path effect, we sample the
value of t,he potential field implied by the sensor and
control nodes in the space in front of the agent and step
on the location yielding the minimum sampled ‘energy’
value. We sample points that would be the agent’s new
location if the agent were to step on points in a number
of arcs within a fan in front of the agent’s forward foot.
This fa.n, shown in Fig. 2, represents the geometrically
valid foot locations for the next step position under our
walking model. This sampled step space could be ex-
tended to allow side-st,epping or t,urning around which
the agent can do [3], though this is not currently ac-
cessed from the behavior system described in t.his pa-
per. For each sampled step location, the potential field
value is computed at the agent’s new locat,ion, defined
as the average location and orientat,ion of the two feet.
2.4 An example behavior net

The example behavior net in Fig. 3 specifies an over-
all behavior for walking agents that head toward a par-
ticular goal object while avoiding obstacles (cylinders in
this case) and each other. The entire graph is the behav-
ior net, and each path from perception to mot,or output
is considered a beh.uuior. In this example there are three
behaviors: one connecting a goal sensor to an at,traction
controller and then to the walk node (a goal-attraction
behavior), another connecting a sensor detecting prox-
imity of other walking agents to an avoidance controller

175

and then to the walk node (a walker-avoidance behav-
ior), and a final behavior connecting a cylinder prox-
imity sensor to an avoidance behavior and then to the
walk nod.e (a cylinder-avoidance behavior).

Each node has a number of parameters that deter-
mine its behavior. For example, the walker sensor and
the cylin.der sensor nodes have parameters that indi-
cate how they will average all perceived objects within
their field of view and sensing distance into a single ab-
stract object.. The Attract and Avoid nodes have scaling
weights that determine how much output to generate as
a function of current input and the desired target values.

The walk motor behavior manages the sampling of
t.he potential field by running data t,hrough the percep-
tual and control nodes with the agent pretending to be
in each of the sampled step locations. The walk node
then schedules the next step by passing the step location
and orientation to the execution module.

Note t.hat this example has no feedback, cross-talk,
or inhibition within the controller, though the behav-
ioral controller specification supp0rt.s these features [5].
Although. this example controller itself is a feed-forward
network, it operates as a closed-loop controller when at-
tached to the agent because the walk node’s scheduling
of steps affect#s the input to the perceptual nodes.

Our use of attract and avoid behaviors to control
groups o-f walking agents may appear on the surface
like Ridsdale’s use of hot and cold tendencies to control
agents in his Director’s Apprentice system [18]. How-
ever, his system was not reactive and on-line as our
behavioral controller is, it did not limit perception of
agents, it had no structured facilities for tuning behav-
ior parameters, and it did not take advantage of devel-
opments in reactive control and behavioral simulation.
His system focused on the use of an expert, system to
schedule human activity conforming to stage principles
and used hot and cold tendencies to manage complex
human beha.vior and interaction. We limit the use of
behaviors to reactive navigation and path-planning, us-
ing parallel transition networks rather t#han one large
expert system to schedule events, and we look t#o sym-
bolic planning systems based on results in cognitive sci-
ence, suc:h as [3, 8, 161, to automate high-level human
behavior and complex human interactions.

3 Parallel Automata
Parallel Transition Networks (PaT-Nets) are transi-

tion networks that run in parallel with the behavior
net, monitor it, and edit it over time [8]. They are
a mechanism for scheduling arbitrary actions and in-
troducing decision-making into the agent architecture.
They monitor the behavior net (which may be thought
of as modeling low level instinctive or reflexive behavior)
and make decisions in special circumstances. For exam-
ple, the agent may get caught in a dead-end or other
local minimum. PaT-Nets recognize situations such as
these, override the “instinctive” behavior simulation by
reconfiguring connectivity and modifying weights in the
behavior net, and then return to a monitoring state.

In our pedestrian example we combine object and
loc.ation sensors (in perceptual nodes) with attract con-
trol nodes, and proximity and line sensors (in percep-
tual nodes) with avoid control nodes. Pedestrians are
att,racted to street corners and doors, and they avoid
each other, light poles, buildings, and the street except
at, crosswalks.

Figure 4: North-net: A sample ped-net shown graph-
ically

Figure 5: A pedestrian crossing the street

We use PaT-Nets in several different ways.
Li ht-nets control traffic lights and ped-nets co.ntrol
pe 8 estrians. Light-nets cycle t.hrough the states of the
traffic light and the walk and don’t walk signs.

Fig. 4 is a simple ped-net , a north-net, which moves
a pedestria:n north along the eastern sidewalk through
the intersection. Initially, avoidances are bound to the
pedestrian so that it will not walk into walls, the street,
poles, or other pedestrians. The avoidances are always
active even as other behaviors are bound and unbound.
In State 1 an attraction to the southeast corner of the
intersection is bound to the pedestrian. The pedes!;rian
immediately begins to walk toward the corner avoiding
obstacles along the way. When it arrives the attraction
is unbound, the action for State 1 is complete. Not,hing
further happens until the appropriate walk light is lit.
When it is lit, the t.ransition to State 2 is made and ac-
tion Cross to NE Corner is executed. The agent crosses
the street. Finally, the agent heads north.

Fig. 5 shows a pedestrian controlled by a north-net.
The transition to State 2 was just made so the pedes-
trian is crossing the street at the crosswalk.

176

4 Real-Time Simulation Environment
The run-time simulation system is implemented as a

group of related processes, which communicate through
shared memory. The system is broken into a minimum
of 5 processes, as shown in Fig. 6. The system relies
on IRIS Performer [19] for the general multiprocessing
framework. Synchronization of all processes, via spin
locks and video clock routines, is performed in the CON-
TROL process. It is also the only process which performs
the edits and updates to the run-time visual database.
The CULL and DRAW processes form a software render-
ing pipeline, as described in [19]. The pipeline improves
overall rendering throughput while increasing latency,
although the two frame latency bet.ween CONTROL and
DRAW is not significant for our application. Our CON-
TROL process is equivalent to the APP process in the
Performer framework. We have used this framework to
animate multiple real-time human figures [12].

4.1 CONTROL Process
The CONTROL process runs the main simulation loop

for each agent. This process runs the PaT-Nets, and un-
derlying behavior net for each agent. While each agent
has only one behavior net, they may have several PaT-
Nets running, which sequence the parameters and con-
nectivity of the nodes in the behavior net over time (as
shown in Fig. 6).

By far the costliest computation in the CONTROL pro-
cess, for the behaviors modeled in this example applica-
tion., is the evaluation of the Walk motor node in the be-
havior net, and specifically the selection of the next foot
position. Since this computation is done only once for
every footfall, it usually runs only every 15 frames or so
(the average step time being about l/2 second, and av-
erage frame rate 30Hz). If the CONTROL process starts
running over its allotted frame time, the Walk nodes
will start reducing the number of points sampled for the
next foot position, thereby reducing computation time.
The only danger here is described in Section 2.3.1, the
potential for a sawt,ooth path. If many agents are walk-
ing at similar velocities, they can all end up computing
their next-step locations at the same frame-time, creat-
ing a large computation spike which causes the whole
simulation to hiccup. (It is visually manifested by the
feet landing in one frame, then the swing foot suddenly
appearing in mid-stride on the next frame.) We attempt
to even out the computational load for the Walk motor
node evaluation by staggering the start times for each
agent, and thereby distributing the computation over
about l/2 second for all agents.

Another computational load in the CONTROL process
comes from the evaluation of the conditional expressions
in the Pat-Nets, which may occur on every frame of the
simulation. They are currently implemented via LISP
expressions, so evaluating a condition involves parse and
eval steps. In practice, this is fairly fast as we pre-
compile the LISP, but as the PaT-Nets increase in com-
plexity it will be necessary to replace LISP with a higher
performance language (i.e. compiled C code). This may
remove some of the generality and expressive power en-
joyed with LISP.

Another technique employed to improve perfor-
mane ,, when evaluating a large number of Pat-Nets and
behavior nets, is to have the CONTROL process spawn
copies of itself, with each copy running the behavior of
a subset of the agents. This works as long as updates
to the visual database are exclusive to each CONTROL

process. (In practice this is the case, since the current
behavior net for one agent will not edit any parameters
for another agent in the visual database.) Of course, the
assumption in spawning more processes is that there are
available CPUs to run them.

The CONTROL process also provides the outputs of
the motor nodes in the behavior net to the MOTION
process. These outputs, in the case of the walking be-
havior, are the position and orientation of the agent’s
next foot fall. It also evaluates the motion data (joint
angles) coming from the MOTION process, and performs
the necessary updates to the articulation matrices of the
human agent in the visual database.

4.2 SENSE Process
The SENSE process controls and evaluat#es the sim-

ulated sensors modeled in the perceptual nodes of the
behavior net. It provides the outputs of the percep-
tual nodes to the CONTROL process, which uses them
for the inputs to the control nodes of the behavior
net. The main computational mechanism the sensors
employ are intersections of simple geometric shapes (a
set of points, lines, frustums or cones) with the visual
database, as well as distance computations. This pro-
cess corresponds to an ISECT process in the Performer
framework.
’ The major performance parameters of this process
are the total number of sensors as well as the complex-
ity and organization of the visual database. Since it
needs read-only access to the visual database, several
SENSE processes may be spawned to balance the load
between the number of sensors being computed, and the
time needed to evaluate them. (These extra processes
are represented by the dotted SENSE process in Fig. 6.)
There is a one frame latency between the outputs of the
perceptual nodes and the inputs to the control nodes
in the behavior net (which are run in the CONTROL
process), but this is not a significant problem for our
application.

4.3 MOTION Process
Once the agent has sensed its environment and de-

cided on on appropriate action to take, its motion is
rendered via real-time motion generators, using a mo-
tion system that mixes pre-recorded playback and fast
motion generation techniques.

We use an off-line motion authoring tool [2, 131 to
create and record motions for our human figures. The
off-line system organizes motion sequences into posture
graphs (directed, cyclic graphs). Real-time motion play-
back is simply a traversal of the graph in time. This
makes the run-time motion generation free from frame-
rate variations. The off-line system also records mo-
tions for several levels-of-detail (LOD) models of the
human figure. (Both the bounding geometry of the fig-
ure, as well as the articulation hierarchy (joints) are
represented at several levels of detail.) The three levels-
of-detail we are using for the human figure are:

1. A 73 joint, 130 DOF, 2000 polygon model, which
has articulated fingers and flexible torso, for use in
close-up rendering, and fine motor tasks (Jack@),

2. A 17 joint, 50 DOF, 500 polygon model, used for
the bulk of rendering; it has no fingers, and the
flexible torso has been replaced by two joints,

177

PaT-Nets

1: perceptual nodes 2: control nodes 3: motor control nodes - = data flow . - - - - 4 = control flow

: SENSE : -7 II
:. process ; f---y

output of
perceptual
nodes

output of
motor control
nodes

Figure 6: The multiprocessing framework for the real-time behavior execution environment

3. An 11 joint, 21 DOF, 120 polygon model used when
the human agent is at a large distance from the
camera.

This process produces a frame of motion for each
agent, then sleeps until the next frame boundary (the
earliest any new motion could be needed). It provides
the correct motion frame for the currently active LOD
rnodel in the visual database. For certain types of sen-
sors modeled in the perceptual nodes, this process will
also be requested to provide a full (highest LOD) update
to the visual database, in the case where a lower LOD
is currently being used, but a sensor needs to interact
wit.h the highest LOD model.

The motion database consists of one copy of the pos-
ture graphs and associated motion between nodes of the
posture graph. Each transition is stored at a rate of
60HZ, on each LOD model of the human agent. This
database is shared by all agents. Only a small amount of
private state information is maintained for each agent.

The MOTION process can effectively handle about lo-
12 agents at update rates of 30Hz (on a 1OOMHz MIPS
H4000 processor). Since the process only has read-only
access to the motion dababase, we can spawn more MO-
TION processes if needed for more agents.
4.4 Walking as an example

A MOTION process animates the behaviors specified
by an agent’s motor nodes by playing back what are
essentially pre-recorded chunks of motion. As a time-
space tradeoff, this technique provides faster and less
variable run-time execution at the cost of additional
storage requirements and reduced generality. The in-
teresting :issues arise in how we choose a mapping from

motor node outputs to this discrete representation; it
plays a significant role in determining how realistic the
animated agents will be.

The primary motor behavior to be executed is walk-
ing. Our full walking algorithm combines kinematics
with dynamic balance control and is capable of gener-
ating arbitrary curved-path locomotion [15]. In cmrder
to reduce comput,ational costs, however, we have not
incorporated the algorithm directly into our run-time
system. Instead, as implied by the preceding discussion,
we record canonical “left” and “right” steps generated
by the algo:rithm (which is a component of our off-line
motion authoring system) and then play them back in
an alternating fashion to produce a continuous walking
motion.

The input to the appropriate MOTION process’s walk-
ing subsystem consists of the specification of the desired
next foot position and orientation (for the swing foot).
This input is itself already discretized, as the motor
node responsible (the Walk motor node) for evaluat-
ing how desirable it, is for the agent to be at partic.ular
positions only computes the desirability criteria at a set
number of points (in Fig. 2). However, even given that
there are only n possibilities for the placement of the
swing foot on the next step, this would still require us
to record order nz possible steps, since the planted foot
could be in any one of the n different positions at the
start of the step (determined by the last step ta.ken)
and any one: of the n at the end.

Without recording all n2 distinct steps it is neces-
sary to choose the best match among those that we do
record. One of the most important criteria in obt,aining
realistic resu1t.s is t.0 minimize foot slippage relative to

178

0 Swing foot

a Planted foot
(w.r.t. next step)

Figure 7: Posture graph for variable step length walking
(3 step sizes)

the ground; foot slippage occurs when the pre-recorded
movement (in particular its amount and direction) does
not match that specified by the walk motor node at
run time. On the basis that translational foot slippage
is far more evident than rotational slippage (at least
from our informal observations), we currently adopt an
approach in which we record three types of step: short,
medium, and long. Turning is accomplished by rotating
the agent around his planted foot smoothly throughout
the step. Having three step sizes significantly increases
the chances of being able to find a close match to the
desired step size, and, in fact, the walk motor node
can be constrained to only consider the three arcs of
the next foot location fan (see Fig. 2) that correspond
exactly to our recorded step sizes. Doing so eliminates
translational slippage, but has the sawtooth hazard.

The posture graph for all possible step-to-step tran-
sitions is sllowrl in Fig. 4.4. Notice that even with only
three kinds of straight-line walking there are many pos-
sible transitions, and hence numerous motion segments
to be recorded. However, allowing for variable step
length is very important. For instance, an attract con-
trol node can be set to drive the agent to move within
a certain distance of a goal location; were t,here only a
single step size, the agent might be unable to get suf-
ficiently close to the goal without overshooting it each
time, resulting in degenerate behavior (and possible vir-
tual injury).

One thmg worthy of mention with respect to the
number of different walking steps required to reproduce
arbitrary curved-path locomotion is that while there are
theoretically order n? of them, the similarities are sig-

nifica.nt. It is thus possible that it will prove feasible to
store a single full set of steps along with a little more in-
formation to represent how those steps can be modified
slightly to realistically turn the agent left or right, and
make It sufficiently fast for our real-time applications.

5 Conclusions and Future Work
We have designed a multiprocessing system for the

real-time execution of behaviors and motions for sim-
ulated human-like agents. We have used only toy ex-
amples to date, and are eager to push the limits of the
system t,o model more complex environments and inter-
actions amongst the agents.

Although our agents currently have limited abilities

6
locomotion and simple posture changes), we will be
eveloping the skills for interactive agents to perform

maintenance tasks, handle a variety of tools, negotiate
terrain, and perform tasks in cramped spaces. Our goal
is a system which does not provide for all possible be-
haviors of a human agent, but allows for new behaviors
and control techniques to be added and blended with
the behaviors and skills the agent already possesses.

We have used a coarse grain parallelism to achieve
interactive frame rates. The behavior net lends itself
to finer grain parallelism, as one could achieve using a
threaded approach. Our system now is manually tuned
and balanced (between the number of agents, the num-
ber of sensors per agent, and the complexity of the vi-
sual dat,abase . A fruitful area of research is in the au-
t.omatic load b alancing of the MOTION and SENSE pro-
cesses, spawning and killing copies of these processes,
and doling out agents and sensors, as agents come and
go in the virtual environment. Results in real-time sys-
tem scheduling and approximation algorithms will be
applicable here.

6 Acknowledgments
This research is partially supported by AR0 DAALOS-
89-C-0031 including U.S. Army Research Laboratory;
Naval Training Systems Center N61339-93-M-0843;
Sandia Labs AG-6076; ARPA AASERT DAAH04-94-G-
0362; DMSO DAAH04-94-G-0402; ARPA DAMDl’i-94-
J-4486; U.S. Air Force DEPTH through Hughes Missile
Systems F33615-91-C-0001; DMSO through the Univer-
sity of Iowa; and NSF CISE CDA88-22719.

References
PI

PI

131

PI

Ronald C. Arkin. Integrating behavioral, percep-
tual, and world knowledge in reactive navigation.
In Pattie Maes, edit#or, Designing Autonomous
Agents, pages 105-122. MIT Press, 1990.

Norman I. Badler, Rama Bindiganavale, John
Granieri, Susanna Wei, and Xinmin Zhao. Posture
interpolation wit.h collision avoidance. In Proceed-
ings of Com.puter Animation ‘$4, Geneva, Switzer-
land, May 1994. IEEE Computer Society Press.

Norman I. Badler,, Cary B. Phillips, and Bonnie L.
Webber. Simulatzng Humans: Computer Graphics,
Animation? and Control. Oxford University Press,
June 1993.

Welton Becket. Simulating Humans: Computer
Graphics, Animation, and Controlz chapter Con-
trolling forward simulation with societies of behav-
iors.

179

[5] Welton Becket and Norman I. Badler. Integrated
behavioral agent architecture. In The Third Con-
ference on Computer Gen.erated Forces and Behav-
ior Representation, Orlando, Florida, March 1993.

[6] Welton M. Becket. Optimization and Policy
Learn.ing for Behavioral Control of Simulated Au-
tonomous Agents. PhD thesis, University of Penn-
sylvania, 1995. In preparation.

[i] Valentine Braitenberg. Vehicles: Experiments in
Synthetic Psychology. The MIT Press, 1984.

[8] J. Cassell, C. Pelachaud, N. Badler, M. Steedman,
B. Achorn, W. Becket, B. Douville, S. Prevost, and
M. St,one. Animated conversation: rule-based gen-
eration of facial expression, gesture and spoken in-
tonation for multiple conversational agents. In Pro-
ceedin.gs of SIGGRAPH ‘94. In Com.puter Graph-
ics, p;tges 413-420, 1994.

[9] Thomas L. Dean and Michael P. Wellman. Plan-
ning and Control. Morgan Kaufmann Publishers,
Inc.. 1991.

[lo] R. James Firby. Building symbolic primitives with
cont,inuous cont,rol routines. In Artificial Intelli-
gence Planning Systems, 1992.

[ll] C. R. Gallistel. Th.e Organization of Action: A New
Synthesis. Lawrence Elerbaum Associates, Publish-
ers, Hillsdale, New Jersey, 1980. Distributed by the
Halsted Press division of John Wiley & Sons.

[12] John P. Granieri and Norman I. Badler. In Ray
Earnshaw, John Vince, and Huw Jones, edit,ors,
Applications of Virtual Reality, chapter Simulating
Huma.ns in VR. Academic Press, 1995. To appear.

[13] John P. C Tranieri, Johnathan Crabtree, and Nor-
man I. Badler. Off-line production and real-time
playback of human figure mot#ion for 3d virtual en-
vironments. In IEEE Virtual Reality An.nual Inter-
national Symposium, Research Triangle Park, NC,
March 1995. To appear.

[14] David R. H aumann and Richard E. Parent. The
behavioral test-bed: obtaining complex behavior
from :simple rules. The Visual Computer, 4:332-
337, 1988.

[15] Hyeongseok Ko. Iiinematic and Dynamic Tech-
nzques for An.alyzin.g, Predicting, an.d Animating
Human. Locomotion. PhD thesis, IJniversit,y of
Pennsylvania, 1994.

[16] Micheal B. Moore, Christopher W. Geib, and
Barry D. Reich. Planning and terrain reasoning.
In Workin.g Notes - 1995 AAAI Spring Symposium
on In.i!egrated Planning Applications., 1995. to ap-
pear.

[17] Barry D. Reich, Hyeongseok Ko, Welton Becket,
and Norman I. Badler. Terrain reasoning for hu-
man locomotion. In Proceedings of Computer Ani-
mation ‘!?4, Geneva, Switzerland, May 1994. IEEE
Computer Society Press.

[18] Gary Ridsdale. The Director’s Apprentice; .4n-
imating Figures in a Constrained Environm,ent.
PhD th.esis, Simon Fraser University, School of
Computing Science, 1987.

[19] John Rohlf and James Helman. IRIS Performer:
A High Performance Multiprocessing Toolkit for
Real-Time 3D Graphics. Com.puter Graph.ics,
pages 38-394, 1994.

[20] Jane Wilhelms and Robert Skinner. A ‘noti.on’
for interactive behavioral animation control. IEEE
Computer Graphics an.d Applications, 10(3):14--22,
May 19!30.

180

