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Abstract 
A system for controlling the behaviors of an interac- 

tive human-like agent, and executing them in real-time, 
is presented. It relies on an underlying model of contin- 
uous behavior, as well as a discrete scheduling mecha- 
nism for changing behavior over time. A multiprocess- 
ing framework executes the behaviors and renders the 
motion of the agents in real-time. Finally we discuss 
the current state of our implementation and some areas 
of future work. 

1 Introduction 
As rich and complex interactive 3D virtual environ- 

ments become practical for a variety of applications, 
from engineering design evaluation to hazard simula- 
tion, there is a need to represent their inhabitants as 
purposeful, interactive, human-like agents. 

It is not a great leap of the imagination to think 
of a product designer creating a virtual prototype of a 
piece of equipment, placing that equipment in a virtual 
workspace, then populating the workspace with virtual 
human operators who will perform their assigned tasks 
(operating or maintaining) on the equipment. The de- 
signer will need to instruct and guide the agents in the 
execution of their tasks, as well as evaluate their per- 
formance within his design. He may then change the 
design based on the agents’ interactions with it. 

Although this scenario is possible today, using only 
one or two simulated humans and scripted task anima- 
tions [3], the techniques employed do not scale well to 
tens or hundreds of humans. Scripts also limit any abil- 
ity to have the human agents react to user input as well 
as each other during the execution of a task simulation. 
We wish to build a system capable of simulating many 
agents, performing moderately complex tasks, and able 
to react to external (either from user-generated or dis- 
tributed simulation) stimuli and events, which will oper- 
ate in near real-time. To that end, we have put together 
a system which has the beginnings of these attributes, 
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and are in the process of investigating the limits of our 
approach. We describe below our architect,ure, which 
employs a variety of known and previously published 
techniques! combined together in a new way to achieve 
near real-time behavior on current workstations. 

We first describe the machinery employed for behav- 
ioral control. This portion includes perceptual, control, 
and motor components. We then describe the multipro- 
cessing framework built to run the behavioral system in 
near real-time. We conclude with some internal details 
of the execution environment. For illustrative purposes, 
our example scenario is a pedestrian agent, with the 
ability to locomote, walk down a sidewalk, and cross 
the street at an intersection while obeying stop lights 
and pedestrian crossing lights. 

2 Behavioral Control 
The behavioral controller, previously developed in [4] 

and [5], is designed to allow the operation of paral- 
lel., continuous behaviors each attempting to accom- 
plish some function relevant to the agent and each con- 
necting sensors to effecters. Our behavioral controller 
is based on both potential-field reactive control from 
robotics [l, 10 and behavioral simulation from gra h- 
its, such as Wi 1 helms and Skinner’s implementation 201 B 
of Braitenberg’s Vehicles [T]. Our system is structured 
in order to allow the apphcation of optimization learn- 
ing [6], however, as one of the primary difficulties with 
behavioral and reactive techniques is the complexity of 
assigning weights or arbitration schemes to the various 
behaviors in order to achieve a desired observed behav- 
ior 15, 61. 

Behaviors are embedded in a network of behavioral 
nodes, with fixed connectivity by links across which only 
floating-point messages can travel. On each simulation 
step the network is updated synchronously and with- 
out order dependence by using separate load and emit 
phases using a simulation technique adapted from [14]. 
Because there is no order dependence, each node in the 
network could be on a separate processor, so the net- 
work could be easily parallelized. 

Each functional behavior is implemented as a sub- 
network of behavioral nodes defining a path from the 
geometry database of the system to calls for changes 
in the database. Because behaviors are imDlemented 
as networks of simpler processing units, the representa- 
tion is more explicit than in behavioral controllers where 
entire behaviors are implemented procedurally. Wher- 
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ever possible, values that could be used to parameterize 
the behavior nodes are made accessible, making the en- 
tire controller accessible to machine learning techniques 
which can tune components of a behavior that may be 
too complex for a designer to manage. The entire net,- 
work comprising the various sub-behaviors acts as the 
controller for the agent, and is referred t.o here as the 
behavior wt. 

There are three conceptual categories of behavioral 
nodes employed by behavioral paths in a behavior net: 

perceptual nodes that output more abstract. results 
of perception than what raw sensors would emit. 
Note that in a simulation t.hat has access to a COIII- 

plete database of the simulated world, the job of 
the perceptual nodes will be t.o realistically limit 
perception, which is perhaps opposit,e to the func- 
tion of perception in real robots. 

motor nodes that communicate with some form of mo- 
t,or control for the simulated agent. Some motor 
nodes enact changes directly on the environment. 
More complex motor behaviors, however, suc.h as 
the walk motor node described below, schedule a 
motion (a step) that is managed by a separate, 
asynchronous execution module. 

control nodes which map perceptual nodes to motor 
nodes usually using some form of negative feed- 
back. 

This partitioning is similar to Firby’s partitioning of 
cont,inuous behavior into active sensing and behavior 
control routines [lo], except that motor control is con- 
sidered s:eparate from negative feedback control. 
2.1 Perceptual Nodes 

The perceptual nodes rely on simulated sensors to 
perform the perceptual part of a behavior. The sensors 
access the environment database, evaluat,e and output 
the distance and angle to the target or targets. A sam- 
pling of different sensors currently used in our system is 
described below. The sensors differ only in the types of 
things they are capable of detecting. 

Object: An object sensor detects a single object. This 
detection is global; there are no restrictions such 
as visibility limitations. As a result, care must 
be taken when using this sensor: for example, the 
pedestrian may walk through walls or other objects 
without t.he proper avoidances, and apparent real- 
ism may be compromised by an attraction to an 
object which is not visible. It should be noted that 
an object sensor always senses the object’s current 
location, even if the object moves. Therefore, fol- 
lowing or pursuing behaviors are possible. 

Location: A location sensor is almost identical to an 
object sensor. The difference is t.hat the location 
is a unchangeable point in space which need not 
correspond to any object. 

Proximity: A proximity sensor detects objects of a 
specific type. This detection is local: the sensor can 
detect only objects which intersect a sector-shaped 
region roughly corresponding to the field-of-view of 
the pedestrian. 

Line: A line sensor detects a specific line segment. 

Terrain: A terrain sensor, described in [17], senses the 
navig.sbility of the local terrain. For example, the 
pedestrian can distinguish undesirable terrailk such 
as street or puddles from terrain easier or rnore de- 
sirable to negotiate such as sidewalk. 

Field-of-View: A field-of-view sensor, described 
in [17], determines whether a human agent is visi- 
ble to any of a set of agents. The sensor output is 
proportional to the number of agents’ fields-of-view 
it is in, and inversely proportional to the dist,ances 
to t,hese agents. 

2.2 Control Nodes 
Control nodes typically implement some form of neg- 

ative feedback, generating outputs that will reduc,e per- 
ceived error in input relative to some desired value or 
limit. This is the center of the reactivity of the be- 
havioral controller, and as suggested in [9], the use of 
negative feedback will effectively handle noise and un- 
certainty. 

Two control nodes have been implemented as de- 
scribed in [4] and [5], attract and avoid. These loosely 
model various forms of taxis found in real animals 117, 111 
and are analogous to proportional servos from control 
theory. Their output is in the form of a recommended 
new velocity in polar coordinates: 

Attract A.11 attract control node is linked to 0 and d 
values, typically derived from perceptual nodes, 
and has angular and distance thresholds. te and 
td. The attract behavior emits A6 and Ad values 
scaled by linear weights that suggest an update 
that would bring d and 0 closer to the threshold 
values. Given weights ks and /,?d : 

ae= 
if -te 5 e 5 te 
if0 > te 
otherwise 

ifd<td 
otherwise. 

Avoid The avoid node is not, just the opposite of at- 
fmct. Typically in attract, both 0 and d should 
be within the t,hresholds. With avoid, however, 
the intended behavior is usually to have d outside 
the threshold distance, using 0 only for steering 
away. The resulting avoid formulation has n.o an- 
gular threshold: 

A.e = if d 5 td and e 2 0 

ifd>td 
kd(td - d) otherwise. 
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Figure 1: Sawtooth path due to potential field discon- 
tinuities 

2.3 Motor Nodes 
Motor nodes for controlling non-linked agents are im- 

plemented by interpreting the Ad and A0 values emit- 
ted from control behaviors as linear and angular ad- 
justments, where the magnitude of the implied velocity 
vector gives some notion of the urgency of traveling in 
that direction. If this velocity vector is attached di- 
rectly to a figure so that requested velocity is mapped 
directly to a change in the object’s position, the result- 
ing agent appears jet-powered and slides around with 
infinite damping as in Wilhelms and Skinner’s environ- 
ment [20]. 

2.3.1 Walking by sampling potential fields 

When controlling agents that walk, however, the mo- 
tor node mapping the velocity vector implied by the 
outputs of the control behaviors to actual motion in 
the agent needs to be more sophisticated. In a walking 
agent the motor node of the behavior net sch.edules a 
step for an agent by indicating the position and orien- 
tation of the next footstep, where this decision about 
where to step next happens at the end of every step 
rather than continuously along with motion of the agent. 
The velocity vector resulting from the blended output 
of all control nodes could be used to determine the next 
footstep; however, doing so results in severe instability 
around threshold boundaries. This occurs because we 
allow thresholds in our sensor and control nodes and as 
a result the potential field space is not continuous. Tak- 
ing a discrete st,ep based on instantaneous information 
may step across a discontinuity in field space. Consider 
the situation in Fig. 1 where the agent is attracted to a 
goal on the opposite side of a wall and avoids the wall 
up to some threshold distance. If the first step is sched- 
uled at position pr , the agent will choose to step directly 
toward the goal and will end up at pz. The agent is then 
well within the threshold distance for walls and will step 
away from the wall and end up at ~3, which is outside 
the threshold. This process then repeats until the wall 

Agent Agent 

Length 

Figure 2: The fan of potential foot locations and orien- 
tations 

Goal Sensor bd I 

Figure 3: An example behavior net for walking 

is cleared, producing an extremely unrealistic sawtooth 
path about the true gradient in the potential field. 

To eliminate the sawto0t.h path effect, we sample the 
value of t,he potential field implied by the sensor and 
control nodes in the space in front of the agent and step 
on the location yielding the minimum sampled ‘energy’ 
value. We sample points that would be the agent’s new 
location if the agent were to step on points in a number 
of arcs within a fan in front of the agent’s forward foot. 
This fa.n, shown in Fig. 2, represents the geometrically 
valid foot locations for the next step position under our 
walking model. This sampled step space could be ex- 
tended to allow side-st,epping or t,urning around which 
the agent can do [3], though this is not currently ac- 
cessed from the behavior system described in t.his pa- 
per. For each sampled step location, the potential field 
value is computed at the agent’s new locat,ion, defined 
as the average location and orientat,ion of the two feet. 
2.4 An example behavior net 

The example behavior net in Fig. 3 specifies an over- 
all behavior for walking agents that head toward a par- 
ticular goal object while avoiding obstacles (cylinders in 
this case) and each other. The entire graph is the behav- 
ior net, and each path from perception to mot,or output 
is considered a beh.uuior. In this example there are three 
behaviors: one connecting a goal sensor to an at,traction 
controller and then to the walk node (a goal-attraction 
behavior), another connecting a sensor detecting prox- 
imity of other walking agents to an avoidance controller 
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and then to the walk node (a walker-avoidance behav- 
ior), and a final behavior connecting a cylinder prox- 
imity sensor to an avoidance behavior and then to the 
walk nod.e (a cylinder-avoidance behavior). 

Each node has a number of parameters that deter- 
mine its behavior. For example, the walker sensor and 
the cylin.der sensor nodes have parameters that indi- 
cate how they will average all perceived objects within 
their field of view and sensing distance into a single ab- 
stract object.. The Attract and Avoid nodes have scaling 
weights that determine how much output to generate as 
a function of current input and the desired target values. 

The walk motor behavior manages the sampling of 
t.he potential field by running data t,hrough the percep- 
tual and control nodes with the agent pretending to be 
in each of the sampled step locations. The walk node 
then schedules the next step by passing the step location 
and orientation to the execution module. 

Note t.hat this example has no feedback, cross-talk, 
or inhibition within the controller, though the behav- 
ioral controller specification supp0rt.s these features [5]. 
Although. this example controller itself is a feed-forward 
network, it operates as a closed-loop controller when at- 
tached to the agent because the walk node’s scheduling 
of steps affect#s the input to the perceptual nodes. 

Our use of attract and avoid behaviors to control 
groups o-f walking agents may appear on the surface 
like Ridsdale’s use of hot and cold tendencies to control 
agents in his Director’s Apprentice system [18]. How- 
ever, his system was not reactive and on-line as our 
behavioral controller is, it did not limit perception of 
agents, it had no structured facilities for tuning behav- 
ior parameters, and it did not take advantage of devel- 
opments in reactive control and behavioral simulation. 
His system focused on the use of an expert, system to 
schedule human activity conforming to stage principles 
and used hot and cold tendencies to manage complex 
human beha.vior and interaction. We limit the use of 
behaviors to reactive navigation and path-planning, us- 
ing parallel transition networks rather t#han one large 
expert system to schedule events, and we look t#o sym- 
bolic planning systems based on results in cognitive sci- 
ence, suc:h as [3, 8, 161, to automate high-level human 
behavior and complex human interactions. 

3 Parallel Automata 
Parallel Transition Networks (PaT-Nets) are transi- 

tion networks that run in parallel with the behavior 
net, monitor it, and edit it over time [8]. They are 
a mechanism for scheduling arbitrary actions and in- 
troducing decision-making into the agent architecture. 
They monitor the behavior net (which may be thought 
of as modeling low level instinctive or reflexive behavior) 
and make decisions in special circumstances. For exam- 
ple, the agent may get caught in a dead-end or other 
local minimum. PaT-Nets recognize situations such as 
these, override the “instinctive” behavior simulation by 
reconfiguring connectivity and modifying weights in the 
behavior net, and then return to a monitoring state. 

In our pedestrian example we combine object and 
loc.ation sensors (in perceptual nodes) with attract con- 
trol nodes, and proximity and line sensors (in percep- 
tual nodes) with avoid control nodes. Pedestrians are 
att,racted to street corners and doors, and they avoid 
each other, light poles, buildings, and the street except 
at, crosswalks. 

Figure 4: North-net: A sample ped-net shown graph- 
ically 

Figure 5: A pedestrian crossing the street 

We use PaT-Nets in several different ways. 
Li ht-nets control traffic lights and ped-nets co.ntrol 
pe 8 estrians. Light-nets cycle t.hrough the states of the 
traffic light and the walk and don’t walk signs. 

Fig. 4 is a simple ped-net , a north-net, which moves 
a pedestria:n north along the eastern sidewalk through 
the intersection. Initially, avoidances are bound to the 
pedestrian so that it will not walk into walls, the street, 
poles, or other pedestrians. The avoidances are always 
active even as other behaviors are bound and unbound. 
In State 1 an attraction to the southeast corner of the 
intersection is bound to the pedestrian. The pedes!;rian 
immediately begins to walk toward the corner avoiding 
obstacles along the way. When it arrives the attraction 
is unbound, the action for State 1 is complete. Not,hing 
further happens until the appropriate walk light is lit. 
When it is lit, the t.ransition to State 2 is made and ac- 
tion Cross to NE Corner is executed. The agent crosses 
the street. Finally, the agent heads north. 

Fig. 5 shows a pedestrian controlled by a north-net. 
The transition to State 2 was just made so the pedes- 
trian is crossing the street at the crosswalk. 
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4 Real-Time Simulation Environment 
The run-time simulation system is implemented as a 

group of related processes, which communicate through 
shared memory. The system is broken into a minimum 
of 5 processes, as shown in Fig. 6. The system relies 
on IRIS Performer [19] for the general multiprocessing 
framework. Synchronization of all processes, via spin 
locks and video clock routines, is performed in the CON- 
TROL process. It is also the only process which performs 
the edits and updates to the run-time visual database. 
The CULL and DRAW processes form a software render- 
ing pipeline, as described in [19]. The pipeline improves 
overall rendering throughput while increasing latency, 
although the two frame latency bet.ween CONTROL and 
DRAW is not significant for our application. Our CON- 
TROL process is equivalent to the APP process in the 
Performer framework. We have used this framework to 
animate multiple real-time human figures [12]. 

4.1 CONTROL Process 
The CONTROL process runs the main simulation loop 

for each agent. This process runs the PaT-Nets, and un- 
derlying behavior net for each agent. While each agent 
has only one behavior net, they may have several PaT- 
Nets running, which sequence the parameters and con- 
nectivity of the nodes in the behavior net over time (as 
shown in Fig. 6). 

By far the costliest computation in the CONTROL pro- 
cess, for the behaviors modeled in this example applica- 
tion., is the evaluation of the Walk motor node in the be- 
havior net, and specifically the selection of the next foot 
position. Since this computation is done only once for 
every footfall, it usually runs only every 15 frames or so 
(the average step time being about l/2 second, and av- 
erage frame rate 30Hz). If the CONTROL process starts 
running over its allotted frame time, the Walk nodes 
will start reducing the number of points sampled for the 
next foot position, thereby reducing computation time. 
The only danger here is described in Section 2.3.1, the 
potential for a sawt,ooth path. If many agents are walk- 
ing at similar velocities, they can all end up computing 
their next-step locations at the same frame-time, creat- 
ing a large computation spike which causes the whole 
simulation to hiccup. (It is visually manifested by the 
feet landing in one frame, then the swing foot suddenly 
appearing in mid-stride on the next frame.) We attempt 
to even out the computational load for the Walk motor 
node evaluation by staggering the start times for each 
agent, and thereby distributing the computation over 
about l/2 second for all agents. 

Another computational load in the CONTROL process 
comes from the evaluation of the conditional expressions 
in the Pat-Nets, which may occur on every frame of the 
simulation. They are currently implemented via LISP 
expressions, so evaluating a condition involves parse and 
eval steps. In practice, this is fairly fast as we pre- 
compile the LISP, but as the PaT-Nets increase in com- 
plexity it will be necessary to replace LISP with a higher 
performance language (i.e. compiled C code). This may 
remove some of the generality and expressive power en- 
joyed with LISP. 

Another technique employed to improve perfor- 
mane ,, when evaluating a large number of Pat-Nets and 
behavior nets, is to have the CONTROL process spawn 
copies of itself, with each copy running the behavior of 
a subset of the agents. This works as long as updates 
to the visual database are exclusive to each CONTROL 

process. (In practice this is the case, since the current 
behavior net for one agent will not edit any parameters 
for another agent in the visual database.) Of course, the 
assumption in spawning more processes is that there are 
available CPUs to run them. 

The CONTROL process also provides the outputs of 
the motor nodes in the behavior net to the MOTION 
process. These outputs, in the case of the walking be- 
havior, are the position and orientation of the agent’s 
next foot fall. It also evaluates the motion data (joint 
angles) coming from the MOTION process, and performs 
the necessary updates to the articulation matrices of the 
human agent in the visual database. 

4.2 SENSE Process 
The SENSE process controls and evaluat#es the sim- 

ulated sensors modeled in the perceptual nodes of the 
behavior net. It provides the outputs of the percep- 
tual nodes to the CONTROL process, which uses them 
for the inputs to the control nodes of the behavior 
net. The main computational mechanism the sensors 
employ are intersections of simple geometric shapes (a 
set of points, lines, frustums or cones) with the visual 
database, as well as distance computations. This pro- 
cess corresponds to an ISECT process in the Performer 
framework. 
’ The major performance parameters of this process 
are the total number of sensors as well as the complex- 
ity and organization of the visual database. Since it 
needs read-only access to the visual database, several 
SENSE processes may be spawned to balance the load 
between the number of sensors being computed, and the 
time needed to evaluate them. (These extra processes 
are represented by the dotted SENSE process in Fig. 6.) 
There is a one frame latency between the outputs of the 
perceptual nodes and the inputs to the control nodes 
in the behavior net (which are run in the CONTROL 
process), but this is not a significant problem for our 
application. 

4.3 MOTION Process 
Once the agent has sensed its environment and de- 

cided on on appropriate action to take, its motion is 
rendered via real-time motion generators, using a mo- 
tion system that mixes pre-recorded playback and fast 
motion generation techniques. 

We use an off-line motion authoring tool [2, 131 to 
create and record motions for our human figures. The 
off-line system organizes motion sequences into posture 
graphs (directed, cyclic graphs). Real-time motion play- 
back is simply a traversal of the graph in time. This 
makes the run-time motion generation free from frame- 
rate variations. The off-line system also records mo- 
tions for several levels-of-detail (LOD) models of the 
human figure. (Both the bounding geometry of the fig- 
ure, as well as the articulation hierarchy (joints) are 
represented at several levels of detail.) The three levels- 
of-detail we are using for the human figure are: 

1. A 73 joint, 130 DOF, 2000 polygon model, which 
has articulated fingers and flexible torso, for use in 
close-up rendering, and fine motor tasks (Jack@), 

2. A 17 joint, 50 DOF, 500 polygon model, used for 
the bulk of rendering; it has no fingers, and the 
flexible torso has been replaced by two joints, 
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Figure 6: The multiprocessing framework for the real-time behavior execution environment 

3. An 11 joint, 21 DOF, 120 polygon model used when 
the human agent is at a large distance from the 
camera. 

This process produces a frame of motion for each 
agent, then sleeps until the next frame boundary (the 
earliest any new motion could be needed). It provides 
the correct motion frame for the currently active LOD 
rnodel in the visual database. For certain types of sen- 
sors modeled in the perceptual nodes, this process will 
also be requested to provide a full (highest LOD) update 
to the visual database, in the case where a lower LOD 
is currently being used, but a sensor needs to interact 
wit.h the highest LOD model. 

The motion database consists of one copy of the pos- 
ture graphs and associated motion between nodes of the 
posture graph. Each transition is stored at a rate of 
60HZ, on each LOD model of the human agent. This 
database is shared by all agents. Only a small amount of 
private state information is maintained for each agent. 

The MOTION process can effectively handle about lo- 
12 agents at update rates of 30Hz (on a 1OOMHz MIPS 
H4000 processor). Since the process only has read-only 
access to the motion dababase, we can spawn more MO- 
TION processes if needed for more agents. 
4.4 Walking as an example 

A MOTION process animates the behaviors specified 
by an agent’s motor nodes by playing back what are 
essentially pre-recorded chunks of motion. As a time- 
space tradeoff, this technique provides faster and less 
variable run-time execution at the cost of additional 
storage requirements and reduced generality. The in- 
teresting :issues arise in how we choose a mapping from 

motor node outputs to this discrete representation; it 
plays a significant role in determining how realistic the 
animated agents will be. 

The primary motor behavior to be executed is walk- 
ing. Our full walking algorithm combines kinematics 
with dynamic balance control and is capable of gener- 
ating arbitrary curved-path locomotion [15]. In cmrder 
to reduce comput,ational costs, however, we have not 
incorporated the algorithm directly into our run-time 
system. Instead, as implied by the preceding discussion, 
we record canonical “left” and “right” steps generated 
by the algo:rithm (which is a component of our off-line 
motion authoring system) and then play them back in 
an alternating fashion to produce a continuous walking 
motion. 

The input to the appropriate MOTION process’s walk- 
ing subsystem consists of the specification of the desired 
next foot position and orientation (for the swing foot). 
This input is itself already discretized, as the motor 
node responsible (the Walk motor node) for evaluat- 
ing how desirable it, is for the agent to be at partic.ular 
positions only computes the desirability criteria at a set 
number of points (in Fig. 2). However, even given that 
there are only n possibilities for the placement of the 
swing foot on the next step, this would still require us 
to record order nz possible steps, since the planted foot 
could be in any one of the n different positions at the 
start of the step (determined by the last step ta.ken) 
and any one: of the n at the end. 

Without recording all n2 distinct steps it is neces- 
sary to choose the best match among those that we do 
record. One of the most important criteria in obt,aining 
realistic resu1t.s is t.0 minimize foot slippage relative to 
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0 Swing foot 

a Planted foot 
(w.r.t. next step) 

Figure 7: Posture graph for variable step length walking 
(3 step sizes) 

the ground; foot slippage occurs when the pre-recorded 
movement (in particular its amount and direction) does 
not match that specified by the walk motor node at 
run time. On the basis that translational foot slippage 
is far more evident than rotational slippage (at least 
from our informal observations), we currently adopt an 
approach in which we record three types of step: short, 
medium, and long. Turning is accomplished by rotating 
the agent around his planted foot smoothly throughout 
the step. Having three step sizes significantly increases 
the chances of being able to find a close match to the 
desired step size, and, in fact, the walk motor node 
can be constrained to only consider the three arcs of 
the next foot location fan (see Fig. 2) that correspond 
exactly to our recorded step sizes. Doing so eliminates 
translational slippage, but has the sawtooth hazard. 

The posture graph for all possible step-to-step tran- 
sitions is sllowrl in Fig. 4.4. Notice that even with only 
three kinds of straight-line walking there are many pos- 
sible transitions, and hence numerous motion segments 
to be recorded. However, allowing for variable step 
length is very important. For instance, an attract con- 
trol node can be set to drive the agent to move within 
a certain distance of a goal location; were t,here only a 
single step size, the agent might be unable to get suf- 
ficiently close to the goal without overshooting it each 
time, resulting in degenerate behavior (and possible vir- 
tual injury). 

One thmg worthy of mention with respect to the 
number of different walking steps required to reproduce 
arbitrary curved-path locomotion is that while there are 
theoretically order n? of them, the similarities are sig- 

nifica.nt. It is thus possible that it will prove feasible to 
store a single full set of steps along with a little more in- 
formation to represent how those steps can be modified 
slightly to realistically turn the agent left or right, and 
make It sufficiently fast for our real-time applications. 

5 Conclusions and Future Work 
We have designed a multiprocessing system for the 

real-time execution of behaviors and motions for sim- 
ulated human-like agents. We have used only toy ex- 
amples to date, and are eager to push the limits of the 
system t,o model more complex environments and inter- 
actions amongst the agents. 

Although our agents currently have limited abilities 
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locomotion and simple posture changes), we will be 
eveloping the skills for interactive agents to perform 

maintenance tasks, handle a variety of tools, negotiate 
terrain, and perform tasks in cramped spaces. Our goal 
is a system which does not provide for all possible be- 
haviors of a human agent, but allows for new behaviors 
and control techniques to be added and blended with 
the behaviors and skills the agent already possesses. 

We have used a coarse grain parallelism to achieve 
interactive frame rates. The behavior net lends itself 
to finer grain parallelism, as one could achieve using a 
threaded approach. Our system now is manually tuned 
and balanced (between the number of agents, the num- 
ber of sensors per agent, and the complexity of the vi- 
sual dat,abase . A fruitful area of research is in the au- 
t.omatic load b alancing of the MOTION and SENSE pro- 
cesses, spawning and killing copies of these processes, 
and doling out agents and sensors, as agents come and 
go in the virtual environment. Results in real-time sys- 
tem scheduling and approximation algorithms will be 
applicable here. 
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