
Abstract

Management of Large Amounts of Data in
Interactive Building Walkthroughs

Thomas A. Funkhouser, Carlo H. !Zquin and Seth J. Teller
University of California at Berkeley*

We describe techniques for managing large amounts of data
during an interactive walkthrough of an architectural model.
These techniques are based on a spatial subdivision, visibility
analysis, and a display database containing objects described
at multiple levels of detail. In each frame of the walkthrough,
we compute a set of objects to render, i.e. those potentially
visible from the observer’s viewpoint, and a set of objects to
swap into memory, i.e. those that might become visible in
the near future. We choose an appropriate level of detail at
which to store and to render each object, possibly using very
simple representations for objects that appear small to the
observer, thereby saving space and time. Using these tech-
niques, we cull away large portions of the model that are ir-
relevant from the observer’s viewpoint, and thereby achieve
interactive frame rates.

CR Categories and Subject Descriptors:
[Information Systems]: H.2.8 Database Applications.
[Computer Graphics]: 1.3.5 Computational Geometry and
Object Modeling - geometric algorithms. languages. and
systems; 1.3.7 Three-Dimensional Graphics and Realism -
visible linelsurface algorithms.

Additional Key Words and Phrases: architectural sim-
ulation, virtual reality.

iComputer Science Department. Berkeley. CA 94720

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
@ 1992 ACM 0-89791-471-6/92/0003/0011...$1.50

1 Introduction

Interactive computer programs that simulate the experience
of “walking” through a building interior are useful for vi-
sualization and evaluation of building models before they
are constructed. However, realistic-looking building mod-
els with furniture may consist of tens of millions of polygons
and require gigabytes of data - far more than today’s worksta-
tions can render at interactive frame rates or fit into memory
simultaneously. In order to achieve interactive walkthroughs
of such large building models, a system must store in mem-
ory and render only a small portion of the model in each
frame; that is, the portion seen by the observer. As the ob-
server “walks” through the model, some parts of the model
become visible and others become invisible; some objects
appear larger and others appear smaller. The challenge is to
identify the relevant portions of the model, swap them into
memory and render them at interactive frame rates (at least
ten frames per second) as the observer’s viewpoint is moved
under user control.

Using the design of Soda Hall, a planned computer sci-
ence building at UC Berkeley, as a test object, we have com-
pleted the first version of a system that supports interactive
walkthroughs of large, fully furnished building models. Our
system builds upon pioneering work by Airey and Brooks
[1,2,5] and uses conceptual ideas going back to Jones [8] and
Clark [6]. The special features of our system are 1) a hier-
archical display database that describes the building model
as a set of objects represented at multiple levels of detail;
2) a spatial subdivision and visibility analysis in which the
building model is divided into cells, and cell-to-cell and cell-
to-object visibility information is computed; 3) a real-time
memory management algorithm for swapping objects in and
out of memory as the observer moves through the model; and
4) a real-time refresh algorithm for choosing which objects
to render at which levels of detail in each frame.

1.1 System Overview

Our system is divided into three distinct phases as shown in
Figure 1. First, during the modeling phase, we construct the

11

building model from AutoCAD floor plans and elevations,
and populate the model with furniture. Next, during thepre-
computation phase, we perform a spatial subdivision and
observer-independent lightingand visibility calculations. Fi-
nally, during the walkthroughphase, we simulate an observer
moving through the building model under user control with
the mouse, rendering the model as seen from the observer’s
viewpoint in each frame. The display database is the link
between these three phases. It stores the complete building
model, along with the results of the precomputation phase,
for use during the walkthrough phase.

Modelina Phase

Precomputation Phase
I-----------

Walkthrough Phase

r-----------
I
I

Figure 1: System overview.

2 Modeling Phase

Our walkthrough system requires a detailed 3D model of a
building, complete with furniture and realistic material and
lighting information.

We first convert the raw 2iD model received from the ar-
chitects in AutoCAD DXF format [33 into a consistent 3D
representation in Berkeley UNIGRAFIX format [lo]. Un-
fortunately, the raw architectural models that we received
were not true three-dimensional models and contained non-
planar faces, coincident coplanar faces, improper face inter-
sections, and inconsistent face orientations. During conver-
sion, our programs [9] detect and automatically correct many
of these anomalies. Any remaining modeling errors are cor-
rected manually using interactive tools.

We then populate the architectural model with stairs, fumi-
ture and other objects that a user would expect to find in a typ-
ical building. We have generated highlydetaileddescriptions
for several pieces of fumitureusing interactive modeling pro-
grams, and received others from Greg Ward of Lawrence
Berkeley Laboratories. We place instances of these objects
into the building model using both automatic and interac-
tive placement programs. We have written several programs
that automatically place objects into specific types of rooms

based on sets of parameters. For instance, the “conference
room generator” places a rectangular or elliptical table in the
middle of a room, chairs all around it, a blackboard on one
wall, a transparency projector on the table, and so on. The
“office generator” places a desk against one wall, a chair in
front of the desk, some bookshelves against the walls, and so
on. Numerous parameters are available for the user to control
the size, number and placement of objects with each of these
programs. We have also written a program for interactively
placing objects into a three-dimensional model. It allows a
user to add, delete, or move object instances with real-time
visual feedback.

Gradually, we load the walls and furniture of the build-
ing model into the walkthrough display database. The dis-
play database represents the building model as a set of ob-
jeers (e.g. walls, desks, chairs, telephones, pencils, etc.),
each of which can be described at multiple levels of detail
[6]. We construct less detailed representations of objects
from the highly detailed originals using an interactive de-
sign tool that allows a user to simplify 3D objects by deleting
and merging vertices and faces. For instance, we construct
five representations of a desk: 1) a highly detailed desk with
faces subdivided along gradients of radiosity, 2) a slightly
less-detailed desk with simple handles and larger faces, 3)
an even less-detailed desk without any handles at all, 4) a
coarsely detailed desk with only legs and drawers, and 5) a
simple box. These object abstraction hierarchies are adjusted
interactively so that transitions between levels are barely no-
ticeable as one zooms closer to an object and detail is refined.
Levels of detail are chosen dynamically during the interac-
tive walkthrough phase to improve refresh rates and memory
utilization.

So far, we have built a completely furnished model of the
sixth floor of Soda Hall, the planned computer science build-
ing at UC. Berkeley. This floor model has a total of 2,320
objects, represented at up to five levels of detail, and contains
over 400,000 faces, requiring 68MB of storage. Color Plate
I shows a top-view of the model.

3 The Precomputation Phase

After the complete building model has been loaded into the
display database, we distribute the model into a spatial sub-
division and perform a visibility analysis of the model cells
and objects. The resulting information is stored in the display
database for use by the display and memory management al-
gorithms during the walkthrough phase.

3.1 Spatial Subdivision

We subdivide the model using a variant of the k-D tree
data structure [43. Splitting planes are introduced along
the major opaque elements in the model, namely the walls,
door frames, floors, and ceilings (details are given in [ll]).

12

The subdivision terminates when all sufficiently large, ax-
ial opaque elements in the model are coplanar with an axial
boundary plane of at least one subdivision leaf cell.

After subdivision, cell portals (i.e., the transparent por-
tions of shared boundaries) are identified and stored with
each leaf cell, along with an identifier for the neighboring cell
to which the portal leads (Figure 2). Enumerating the portals
in this way amounts to constructing an adjacency graph over
the leaf cells of the subdivision; two leaves (nodes) are adja-
cent (share an edge) if and only if there is a portal connecting
them. All the visibility computations to be described exploit
the adjacency graph data structure.

This procedure can be applied quickly. At the cost of per-
forming an initial O(n lg n) sort, the split dimension and ab-
scissa can be determined in time O(f) at each split, where f
is the number of faces stored with the node. We have found
that these subdivisioncriteria yield a tree whose cell structure
reflects the “rooms” of our architectural model. For our floor
model with 1920 split faces, the subdivision created 1280
cells and 3600 portals in 23 seconds,

3.2 Cell-to-Cell Visibility

Once the spatial subdivision has been constructed, we com-
pute and store cell-to-cell visibility for each leaf cell, i.e. the
set of cells visible to an observer able to look in all direc-
tions from any position within the cell. The cell-to-cell vis-
ibility for a cell C contains exactly those cells to which an
unobstructed sightline leads from C. Such a sightline must
be disjoint from any opaque elements and must intersect, or
stub, a portal in order to pass from one cell to the next (Fig-
ure 2). Sightlines connecting cells that are not immediate
neighbors must traverse a portal sequence, each member of
which lies on the boundary of an intervening cell. We have
implemented a procedure that finds sightlines through axial
portal sequences, or determines that no such sightline exists,
in O(n lg n) time, where n is the number of portals in the
sequence [7].

Figure 2: Stabbing an axial portal sequence in three dimen-
sions.

We compute the cell-to-cell visibility by constructing a
stab tree for each leaf cell C of the subdivision [1 I] as shown
in Figure 3. Each node of the stab tree corresponds to a cell

visible from C; each edge of the stab tree corresponds to a
portal stabbed as part of a portal sequence originating on a
boundary of C. The stab tree is constructed incrementally us-
ing a constrained depth-first search on the adjacency graph.
As each celI is encountered by the depth first search, it is
effectively marked “visible” by its inclusion into the source
cell’s stab tree. For any source cell C, we say that a cell R is
reached if R is in C’s cell-to-cell visibility set.

3.3 Cell-to-Object Visibility

Cells that are immediate neighbors of the source cell are en-
tirely visible to it, since the eyepoint can be placed on the
shared portal. Cells farther away from the source, however,
are in general only partially visible to an observer in the
source cell. This is due to the fact that, as the length of a
portal sequence increases, the collection of lines stabbing the
entire sequence typically narrows.

Casting the sightline search as a graph traversal yields a
simple method for computing the partially visible portion of
each reached cell. First, the traversal orients each portal en-
countered, since the portal is traversed in a known direction.
Thus each portal contributes a “lefthand” and a “righthand”
constraint to the set of sightlines stabbing the sequence. The
result, after stepping through n portals in the plane, is a
bowtie-shaped bundle of lines that stabs every portal of the
sequence, and which “fans out” beyond the final portal into
an infinite wedge. This wedge can then be clipped to the
boundary of the reached cell. In our three dimensional mod-
els, all portals are axial rectangles, so any portal sequence
can generate at most three pairs of bowtie constraints (one
from each collection of portal edges parallel to the z, y, and
.z axes). Color Plate II depicts the clipped polyhedral wedges
for a source cell in three dimensions.

We define cell-to-object visibility as the set of objects that
can be seen by an observer constrained to a given source cell
C (but, again, free to move anywhere in C and look in any
direction). For each reached cell R, we compute a superset
of C’s cell-to-object visibility in R by assembling a set of
halfspaces bounding the portion of R visible from C. We
then store with C those objects in R that are completely or
partially inside the assembled halfspaces. One special case
exists: all objects in C’s neighbor cells are tagged as visible
from C without any bowtie computations.

Figure 5 depicts this process in two dimensions, using a
simplified floorplan of our three-dimensional test model. The
objects found potentially visible from the source (the filled
squares in Figure 5) are associated with the source ccl and
reached cell in a compacted representation of the stab tree.
Later, in the interactive walkthrough phase, this object list
will be retrieved and culled dynamically based on the ob-
server’s position and view direction.

13

Figure 3: Cell-to-cell visibility and stab tree.

I I

Figure 4: In general, only a fraction of the reached cell is
visible to the source.

Figure 5: Computing cell-to-object visibility; the filled
squares are marked visible.

4 The Display Database

The results of the modeling and precomputation phases are
stored in a display database designed specifically to identify
and swap relevant objects into memory quickly as the ob-
server moves through the model during the interactive walk-
through phase. The structure of thedisplay database is shown
in Figure 6.

r I
Geometry I

I Polygons
I

Figure 6: A structural diagram of the display database show-
ing entities (boxes) and relationships (diamonds).

4.1 Segments

All entities (e.g. cells, portals, objects, etc.) are stored in
segments in the display database. A segment is simply an
abstraction for a variable-sized contiguous group of bytes
in a display database file that can be read and released as
a unit. Each segment is represented by its size, a byte offset
into a file, and a pointer into memory, as shown in Figure 7.
The arrangement of bytes in a segment is identical in mem-
ory and on disk so that only pointers within a segment must
be updated when a segment is read (requiring one addition
per pointer); there is no need to allocate extra memory or to
move or copy bytes. With these properties, segments can be
swapped quickly in and out of memory.

All relationships (e.g. adjacent, incident, visible, etc.) are
stored in segment references in the display database. A seg-
ment reference can be represented by either an integer seg-
ment ID (if it has not yet been read into memory) or a pointer
to a segment’s data in memory. At any time, a segment ref-
erence may be read (converted from an ID to a pointer) or re-
leased (converted from a pointer to an ID). A reference count

14

is stored with each segment so that segments can be read and
released through multiple segment references quickly and
transparently.

aemory .

Segment Index

id
type
size
file offset
memory pointer -btN;L
reference count
ditty bit

id
type
size
file offset
memory pointer -- i
reference count
dirty bit

File ..a

Segment Index

reference count

Id
type
Size

file offset

t

m6mory polnter
reference count
dirty bit

Figure 7: The implementation of display database segments.

4.2 Layout

Since the latency overhead of each read operation is rela-
tively large, we group the segments for all objects incident
upon the same cell contiguously in the display database file.
This layout allows us to utilize the cell-to-cell visibility in-
formation from the precomputation phase to load groups of
objects (those likely to become visible at the same time) into
memory in a single IO operation. If an object is incident upon
more than one cell (i.e. straddles a cell boundary), then we
store it redundantly. once for each cell.

Furthermore, we store descriptions of all objects incident
upon the same cell at the same level of detail contiguously in
the display database, as shown in Figure 8. Within a single
cell, the object headers appear first, followed by descriptions
of the objects at increasing levels of detail. As a result, all
objects incident upon a cell at or up to any level of detail
may be read at once in a single read operation during the
interactive walkthrough phase.

5 The Walkthrough Phase

During the walkthrough phase, we simulate an observer
moving through the architectural model under user control.
The goal is to render the model as seen from the observer’s

Object Headers

Objects at Level #l

Objects at Level #2

Figure 8: The layout of objects incident upon the same cell
in the display database.

viewpoint in a window on the workstation display at interac-
tive frame rates as the user moves the observer’s viewpoint
through the model.

The primary problem is that building models are very large
and so 1) do not fit into memory, and 2) cannot be rendered
completely in an interactive frame time. Thus we must iden-
tify a small, but relevant, portion of the model to store in
memory and to render in each frame. We use the results of the
visibility precomputation along with the object hierarchy of
the display database and dynamic culling algorithms to iden-
tify which objects are visible to the observer, and choose an
appropriate level of detail for each one. We load into mem-
ory and render only relevant levels of detail for potentially
visible objects.

5.1 Display Management

We use two techniques to reduce the amount of data rendered
in each frame: 1) we compute the subset of objects visible to
the observer using a real-time visibility analysis based on the
results of the precomputation phase, and 2) we choose an ap-
propriate level of detail at which to render each visible object
from the object hierarchy constructed during the modeling
phase. Using these techniques, we are able to cull away large
portions of the model that are irrelevant from the observer’s
viewpoint, and therefore achieve much shorter refresh times.
Moreover, computations are done in parallel with the display
of the previous frame and do not increase the effective frame
time.

Visibility Analysis

To compute the set of objects to render for a given observer
viewpoint, we first identify the cell containing the observer’s
position and fetch its cell-to-object visibility from the display
database. Since the cell-to-object visibility contains all ob-
jects visible from any viewpoint in a given cell, it is always
a superset of the objects actually visible to a particular ob-
server in that cell. It is typically a small subset of the entire
model.

15

Since the observer is at a known point and has vision lim-
ited to a view cone emanating from this point, we can cull
the set of visible objects even further. We define the eye-to-
cell visibility as the set of all objects incident upon any cell
partially or completely visible to the observer (the light stip-
pled regions in Figure 9). Clearly, the eye-to-cell visibility
is also a superset of the objects actually visible to the ob-
server. The visible area in any cell is always the intersection
of that (convex) cell with one or more (convex) wedges em-
anating through portals from the eyepoint. To compute the
eye-to-cell visibility, we initialize the visible area wedge to
the interior of the view cone, and the eye-to-cell visibility to
the source cell. Next, we perform a constrained depth-first-
search (DFS) of the stab tree, starting at the source cell, and
propagating outward. Upon encountering a portal, the wedge
is suitably narrowed, and the newly reached cell is added to
the eye-to-cell visibility set, If the wedge is disjoint from the
portal, the active branch of the DFS is terminated.

Finally, we estimate the eye-to-object visibility, a nar-
rower superset of the objects actually visible to the observer,
by generating the intersection of the cell-to-object and eye-
to-cell sets. For example, consider the observer viewpoint
shown in Figure 9. The eye-to-object visibility set (filled
squares) contains all objects in the intersection between the
cell-to-object (all squares) and eye-to-cell (gray regions)
sets. It is a small subset of all objects in the model, but still
an over-estimate of the actual visibility of the observer. In
Figure 9, only one square lies in a cell visible to the observer
and can be seen from some point inside the cell containing
the observer, but is not visible from the observer’s current
viewpoint. Color Plate III depicts the eye-to-object visibility
set for this observer viewpoint in three dimensions.

Object Hierarchy

After we have culled away portions of the model that are in-
visible from the observer’s viewpoint, we can further reduce
the number of faces rendered in each frame by choosing an
appropriate level of detail at which to render each visible ob-
ject. Since the image must ultimately be displayed in pixels,
it is useless to render very detailed descriptions of objects that
are very small or far away from the observer and which map
to just a few pixels on the display (Figure 10). Likewise, it is
wasteful to render details in objects that are moving quickly
across the screen and which appear blurred or can be seen
for only a short amount of time (Figure 11). Instead, we can
achieve the same visual effect by rendering simpler represen-
tations of these objects, consisting of just a few faces with
appropriate colors. This is a technique used by commercial
flight simulators, however little has been published on these
systems [12].

Figure 10: Perceptible detail is related to apparent size.

Figure 9: Eye-to-object visibility. Shown are only the po-
tentially visible objects, i.e. the black objects from Figure 5.

View Plane
#l

View Plane
#2

Figure 11: Perceptible detail is related to apparent speed.

Rather than rendering all objects at the highest level of
detail in every frame, we choose a level of detail at which to
render each object based on its apparent size and speed from
the point of view of the observer. For each level of detail, we
estimate the size of an average face in pixels, and the speed
of an average face in pixels per frame. We render an object

at the lowest level of detail for which the average size of a
face is greater than some threshold, and the size of an average
face divided by its speed is greater than another threshold. If
either of these values is less than the corresponding threshold
for all available levels of detail of an object, we render the
object at its lowest level of detail.

As the observer moves through the model, an object may
be rendered at different levels of detail in successive frames.
Rather than abruptly snapping from one level of detail to the
next, we blend successive levels of detail using partial trans-
parency. Since the complexity of any level is typically small
compared to the one of the next higher higher level (by more
than a factor of two), the extra time spent blending the two
levels during transition does not constitute an undue over-
head, considering the small fraction of objects making a tran-
sition at the same time.

5.2 Memory Management

Since the entire model cannot be stored in memory at once,
we must choose a subset of objects to store in memory for
each frame, and swap objects in and out of memory in real-
time as the observer moves through the model. As a min-
imum, we must store in memory all objects to be rendered
in the next frame. However, since it takes a relatively large
amount of time to swap data from disk into memory, we must
also predict which objects might be rendered in future frames
and begin swapping them into memory in advance. Other-
wise, frame updates might be delayed, waiting for objects to
be read from disk before they can be rendered.

As described in Section 4.2, we group each level of detail
for all objects incident upon the same cell contiguously in the
display database. To take advantage of the relative efficiency
of large IO operations, we always load all objects incident
upon the same cell into memory together at the same level of
detail. Thus, our memory management algorithm must com-
pute for each frame which cell contents to store in memory
at which levels of detail.

In general, we store in memory the contents of the cells
containing the objects most likely to be rendered in upcom-
ing frames. Specifically, we determine which cells are most
likely to contain the observer in upcoming frames, and store
in memory all objects incident upon cells visible from any of
these cells. Each time the observer steps across a cell bound-
ary, we traverse the cell adjacency graph, considering cells
in order of the minimum amount of time before the cell can
possibly contain the observer using a shortest path algorithm.
The user interface also enforces some limits on the size of
a step or turn that the observer may take in a single frame.
For each cell C, visited in the search, we mark and claim
memory for the contents of all cells visible from C in the
direction of the observer’s frustum up to the precomputed
maximum level of detail at which any object incident upon
the cell might be rendered for an observer in C. Our search
terminates when all available memory has been claimed or
when we have considered all possible observer viewpoints

more than some maximum amount of time in the future. We
then read the contents of all newly marked cells into memory,
possibly replacing the contents of unmarked cells.

For instance, consider the observer viewpoint shown in
Figure 12. Cells are labeled by the minimum amount of time
(in seconds) before they can possibly become visible to the
observer; and shaded by the level at which their contents are
stored in memory - darker shades represent higher levels.
The cells surrounded by the thick-dashed line represent the
cells visited during the search, i.e. the range of observer po-
sitions for which we store visible objects in memory.

Figure 12: Cells labeled by the number of seconds before
they can possibly become visible to the observer, and shaded
by level of detail stored in memory (a darker shade repre-
sents a higher level of detail). White cells are not loaded into
memory.

6 Results and Discussion

In this section we present and analyze test results collected
during real interactive walkthroughs performed with our sys-
tem. During these tests, we logged statistics regarding the
performance of our display and memory management algo-
rithms in real time as a user walked through the building
model.

We present results for one observer viewpoint used as an
example in the previous discussion (marked by an ‘A’ in Fig-
ure 13), as well as for a full sequence of observer viewpoints
generated during an actual walkthrough along the path shown
in Figure 13). The path is about 300 feet long, and a real-
istic physical walk along it should take approximately one
minute. All tests were performed on a VGX 320 Silicon
Graphics workstation with two 33 MHz processors and 64
MB of memory.

17

Figure 13: Test path through the building model.

Display Management

As discussed in Section 5.1, we compute the set ofpotentially
visible objects by generating successively smaller super-sets,
culling away objects invisible to the observer. The sizes of
these sets, and the times (in seconds) required to render them
are shown for viewpoint ‘A’ in Table 1 and averaged over the
test walkthrough path in Table 2. On average, we are able to
cull away 94% of the model and reduce rendering time by
a factor of 17 by rendering only objects in the eye-to-object
visibility set rather than the entire building model.

Faces

242,668
109,227
40,475
30,265
18,927

Table 1: Visibility cull results for viewpoint ‘A’.

Culling
Method
Entire model
Cell-to-cell
Cell-to-object
Eye-to-cell
Eye-to-object

Table 2: Average visibility cull results for test walkthrough.

We further reduce the number of faces rendered at each As described in Section 5.2, the memory manager tries to
frame by choosing an appropriate level of detail at which store in memory the objects incident upon the cells that are

to render each potentially visible object based on its appar-
ent size and speed to the observer. Statistics regarding the
number of faces and the time required to render each frame
using different pixels-per-face thresholds for viewpoint ‘A
and averaged over the test path are shown in Tables 3 and 4,
respectively. Usable rendering modes for which little or no
degradation in image quality is perceptible (2 256 pixels per
face), are shown in bold typeface.

Color Plates IV, V and VI show the difference between a
static image produced using the highest level of detail for all
objects (Plate IV) and one generated with reduced levels of
detail for objects with fewer than 256 pixels per face (Plate
V). Plate IV has 23,468 faces and took 0.34 seconds to ren-
der, whereas Plate V has 7,555 faces and took 0.17 seconds.
These images were rendered without interpolated shading or
antialiasing in order to accentuate differences - notice the
reduced tessellation of the chairs further from the observer.
Plate VI shows which level of detail was used for each object
in Plate V (a darker shade represents a higher level of detail).

Overall, after computing the set of potentially visible ob-
jects and choosing an appropriate level of detail for each ob-
ject, we are able to cull away an average of 97% of the build-
ing model and reduce rendering time by an average factor of
39 in each frame.

Min. Pixels #
Per Face Objs.

0 165
64 165
128 165
256 165
532 165
1024 165

Draw
Faces Time
18,927 0.33
11,763 0.26

t

8,861 0.22
6,204 0.17
3,889 0.13
2.871 0.12

% of
Model
7.8%
4.8%
3.6%
2.6%
1.6%
1.2%

Table 3: Average detail cull results for viewpoint ‘A’.

Min. Pixels #
Per Face Objs.

0 141
64 141
128 141
256 141
512 141
1024 141

Draw % of
Faces Time Model
13,701 0.23 5.6%
9,700 0.18 4.0%
7,979 0.16 3.3%
6,176 0.14 2.5%
4,745 0.12 2.0%
3,427 0.10 1.4%

Table 4: Average detail cull results for test walkthrough.

Memory Management

18

most likely to be visible to the observer in upcoming frames
in order of decreasing urgency. One of the two processors of
the VGX is used for pre-fetching data concurrently with the
rendering of the current frame. The results presented here
were gathered from a walk along the test path shown in Fig-
ure 13. Since the current floor model is not very large com-
pared to the memory capacity of our machine, we impose an
artificial 8MB limit on the amount of object data that can be
stored in memory at any one time. As the observer, “walks”
along the path, we swap data in and out of memory, never ex-
ceeding the 8MB limit. We are still experimenting with tech-
niques to control the interaction between our memory man-
agement algorithm and the paging of the operating system.
Thus the data below must be regarded as tentative and rather
preliminary. More reliable data will be gathered once the
fully furnished model of the whole building becomes avail-
able.

Figure 14 shows a plot of the number of bytes that must
be in memory in order to render the visible parts of the scene
(lower curve): superimposed is a plot of the number of bytes
our algorithm loads into memory in preparation for possible
near-term observer moves. As expected, these amounts of
data fluctuate strongly depending on whether the observer is
in a relatively simple part of the model with rather confined
views, or whether the visible cells stretch out to great depth
along several directions. In all, we read 52MB during the
261 frames.

Figure 14: Comparison of the amounts of data fetched from
disk (top curve) and actually needed for rendering (bottom
curve) while following the walkthrough test path; marked
spots correspond to the labels shown in Figure 13.

In general, we are able to pre-fetch objects before they are
rendered, and so the observer can move smoothly through the
model. However, there are a few cases in which the mem-
ory manager is not able to predict which objects are going
to become visible to the observer far enough in advance to
pre-fetch them, and so the user may have to wait while they
are read into memory. As the observer turns a comer in a

corridor, the visible set of objects can change dramatically
This prompts a request for a large amount of new data to
be loaded into memory. For the worst-case comers (labels
‘B’ and ‘C’), the coprocessor is busy for about 8 seconds to
prefetch on the order of 2 MB of data that might be used in
the near future. However, the amount of data needed irnme-
diately for the rendering of the next frame is much smaller;
because of parallel processing, resulting observable delays
are on the order of a couple of seconds for a worst-case sit-
uation in our model. We are developing more sophisticated
pre-fetching techniques that use a better prediction of the ob-
server’s motion.

7 Conclusion

Our paper describes a system for interactive walkthroughs
of very large architectural models. It builds a hierarchical
display database containing objects represented at multiple
levels of detail during the modeling phase, performs a spa-
tial subdivision and visibility analysis during a precomputa-
tion phase, and uses real-time display and memory manage-
ment algorithms during a walkthrough phase to judiciously
select a relevant subset of data for rendering. We have im-
plemented a first version of this system, and tested it in real
walkthroughs of a completely furnished model of the sixth
floor of the planned Computer Science building at UC Berke-
ley, Our initial results show that these display and memory
management techniques are effective at culling away sub-
stantial portions of the model, and make interactive frame
rates possible even for very large models.

8 AcknowIedgements

We are grateful to Delnaz Khorramabadi for her efforts con-
structing the building model, and to Paul Haeberli for his help
in producing the color plates. Silicon Graphics, Inc., donated
a 320 VGX workstation to this project as part of a grant from
the Microelectronics Innovation and Computer Research Op-
portunities (MICRO) program of the State of California.

References

[l] Airey, John M. Increasing Update Rates in the Building
Walkthrough System with Automatic Model-Space Sub-
division and Potentially Visible Set Calculations. Ph.D.
thesis, UNC Chapel Hill, 1990.

[2] Airey, John M., Rohlf, John H., and Brooks, Jr., Fred-
erick P. Towards image realism with interactive update
rates in complex virtual building environments. ACM
SIGGRAPH Special Issue on 1990 Symposium on In-
teractive 30 Graphics, 24,2 (1990). 41-50.

[3] AutocadReference Manual, Release 10, Autodesk Inc.,
1990.

19

[4] Bentley, J.L. Multidimensional Binary Search Trees
Used for Associative Searching. Communications of
the ACM, 18 (1975), 509-517.

[5] Brooks, Jr., Frederick P. Walkthrough - A Dynamic
Graphics System for Simulating Virtual Buildings. Pro-
ceedings of the 1986 Workshop on Interactive 30
Graphics.

[6] Clark, James H. Hierarchical Geometric Models for
Visible Surface Algorithms. Communications of the
ACM, 19,lO (October 1976), 547-554.

[7] Hohmeyer. Michael E., and Teller, Seth J. Stabbing Iso-
thetic Rectangles and Boxes in O(n lg n) Time. Tech-
nical Report UCB/CSD 9 l/634, Computer Science De-
partment, U.C. Berkeley, 1991. Also to appear in Com-
putational Geometry: Theory and Applications, 1992.

[S] Jones, C.B. A New Approach to the ‘Hidden Line’
Problem. The Computer Journal, 14,3 (August 1971),
232-237.

[9] Khorramabadi, Delnaz. A Walk through the Planned
CS Building. Masters Thesis UCB/CSD 91/652, Com-
puter Science Department, U.C. Berkeley, 1991.

[lo] Sequin, Carlo H. Introduction to the Berkeley UN-
IGRAFIX Tools (Version 3.0). Technical Report
UCB/CSD 91/606, Computer Science Department,
UCBerkeley, 1991.

[ll] Teller, Seth J., and %quin, Carlo H. Visibility Pre-
processing for Interactive Walkthroughs. Computer
Graphics (Proc. SIGGRAPH ‘91), 25,4 (August 1991),
61-69.

[12] Zyda. Michael J. Course Notes, Book Number 10,
Graphics Video Laboratory, Department of Computer
Science, Naval Postgraduate School, Monterey, Cali-
fornia, November 199 1.

20

