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Abstract 

This paper introduces an efficient object-precision 
shadow generation algorithm for static polygonal 
environments directly illuminated by convex area light 
sources. Penumbra and umbra regions are calculated 
analytically and represented as a pair of BSP trees for each 
light source. As the trees are built, convex scene polygons are 
filtered down the trees, and split into fragments that are wholly 
lit, in penumbra, or in umbra. The illumination due to the light 
source is calculated at selected points within the wholly lit and 
penumbra regions by contour integration with the visible parts 
of the light source. We use a fast analytic algorithm to 
compute the fragments of the area light source visible from a 
point in penumbra. Rendering is done using hardware- 
supported linear interpblated shading on a 3D graphics 
workstation. 

Because the scene itself is represented as a BSP tree, 
visible-surface determination may be performed by using 
either workstation-supported hardware (e.g., a z-buffer) or 
software BSP-tree traversal. We provide sample images 
created by our implementation, including timings and polygon 
counts. 
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Introduction 

Shadow generation is a classic problem in 3D computer 
graphics that has been addressed by a wide variety of 
algorithms [ 13,221. Point light-source shadow algorithms 
essentially compute the visibility of parts of the environment 
from a point at the light source; therefore any point in the 
environment is either fully in or out of shadow. In contrast, in 
an environment lit by area light sources, a point in the 
environment may be either visible to the entirety of the light 
source, visible to no part of the light source (i.e., in the light 
source’s umbra), or visible to only a portion of the light source 
(i.e., in the light source’s penumbra). In this latter case, to 
compute the point’s illumination, it is also necessary to 
determine which portions of the area light source are visible 
from the point. Since real light sources are not points and 
therefore cast both umbrae and penumbrae, an area light- 
source shadow algorithm can be used to create pictures that 
are more photorealistic in appearance than those created with a 
point light-source shadow algorithm. 

Shadows from area light sources have been computed 
using radios@ approaches [9,6], by summing the 
contributions of an approximating set of point light sources 
[5], by ray tracing shadow cones from points in a scene to 
spherical light sources [ 11, by distributed ray-tracing [lo], and 
by an object-precision algorithm developed by Nishita and 
Nakamae [ 171. With the exception of this single object- 
precision algorithm, all the other algorithms approximate the 
shadow boundaries on the objects in the scene. FOT each pair 
of a light source and a polyhedral object, Nishita and Nakamae 
compute the volume that the object fully shadows from the 
light source (its umbra volume) and the volume that the object 
partially shadows from the light source (its penumbra volume). 
The intersections of these volumes with the other objects in 
the environment are computed and guide the calculation of the 
illumination at selected points on the objects. For example, a 
point is fully shadowed if it is included in at least one umbra 
volume. 

The algorithm that we describe here is inspired in part by 
this work; unlike Nishita and Nakamae, however, we build a 
single merged umbra volume and penumbra volume for each 
light source. Furthermore, these volumes are represented as 
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BSP trees [14,15,21, 161 using an efficient extension of the 
earlier BSP-tree-based shadow algorithm for point light 
sources [7]. Although subdivision is always done along exact 
shadow boundaries, further subdivision may be necessary to 
compute illumination more accurately. We have used both 
regular gridding and adaptive subdivision of fragments in the 
penumbra and wholly lit regions to compute the illumination 
at additional points. 

Background 

The binary space-partitioning (BSP) tree visible-surface 
algorithm was developed by Fuchs, Kedem, and Naylor [ 141, 
based in part on the work of Schumacker [ 19,201. A BSP tree 
defines a recursive partitioning of space by planes that embed 
the polygons in the scene. The tree’s root is a polygon chosen 
from those in the scene. This polygon’s plane partitions space 
into two half-spaces: the “positive” half-space contains all 
other polygons in front of the root’s plane (on the side into 
which its normal points); the “negative” half-space contains all 
polygons behind the root’s plane. If a polygon straddles the 
root’s plane, it is cut by it and each of its pieces is assigned to 
the appropriate half-space. One polygon’each from the 
positive and negative half-spaces are then selected to become 
the root’s children. Each child is then recursively used to 
divide the remaining children in its half-space in the same 
way. The tree is complete when each leaf node contains a 
single polygon whose half-spaces are both empty. The BSP 
tree visible-surface algorithm is a modified inorder traversal of 
the scene’s BSP tree, guided by a simple comparison of the 
eyepoint with each polygon’s plane; this determines in O(n) 
time a back-to-front ordering of the polygons for any eyepoint. 

Thibault and Naylor [21] showed that BSP trees can be 
used to represent polyhedral solids. Each of the empty regions 
at the leaves is associated with a value of either “in” or “out”. 
Assuming that each polygon that bounds a polyhedron has a ’ 
normal that points out of the polyhedron, then an “in” region is 
bounded in part by the polygon’s negative (back) half-space 
and an “out” region is bounded in part by the polygon’s 
positive (front) half-space. The BSP tree’s leaf nodes 
tessellate space into a set of convex polyhedral regions, a 
subset of which (the “in” regions) represent the solid. 

The point light-source shadow algorithm described in [7, 
81 uses BSP trees to model the polyhedral shadow volumes 
[ 1 l] cast by convex polygons. We call the BSP tree 
representation of the shadow volume the SVBSP (Shadow 
Volume BSP) tree. A regular BSP tree is first constructed for 
all polygons in the scene. (Note that if the scene is modified, 
then the scene BSP tree must be recalculated.) The scene BSP 
tree allows the shadow algorithm to obtain all scene polygons 
efficiently in front-to-back order relative to an arbitrary point 
light source. Only scene polygons that face the light are 
selected. The point light source and the first scene polygon 
chosen define together a shadow volume that is a semi-infinite 
pyramid. Each of the pyramid’s faces is embedded in a plane 
defined by the light source and an edge of the scene polygon. 
A point will be in shadow if it lies within the pyramid and in 
the scene polygon’s negative half-space. The scene polygon is 
itself fully lit. 

Because of the front-to-back order imposed by the BSP 
tree qaversal, each new scene polygon processed is guaranteed 

not to block any of the previously selected scene polygons 
from the light. It may be wholly or partially in shadow itself, 
however. To determine which parts of the new polygon are 
visible from the light source, we must partition the polygon 
into parts that are inside and outside the current SVBSP-tree 
shadow volume. Note that there is no need to compare the 
new polygon with the planes that embed the previous scene 
polygons, since the BSP-tree: traversal order ensures that the 
new polygon does not lie between the light source and the 
preceding scene polygons. Those parts of the new polygon 
that are inside the shadow volume are in shadow; those parts 
that are outside it are lit. Furthermore, any parts that are 
outside define additional shadow volumes that must be added 
to the SVBSP tree. The point light-source algorithm 
efficiently combines these two steps of classifying polygon 
fragments and enlarging the SVBSP tree by using a simplified 
version of the Boolean set union operation algorithm presented 
in [21]. Each remaining polygon is processed in this fashion 
to determine which of its parts are shadowed. 

Like the BSP-tree point light-source shadow algorithm, 
our BSP-tree convex area light-source algorithm supports 
multiple light sources. The area light-source algorithm 
extends the point light-source algorithm by classifying 
polygons into fragments that are wholly lit, in penumbra 
(partially blocked from the light source), or in umbra (wholly 
blocked from the light source). To do this, we must fist 
define the umbra and penumbra volumes of an area light 
source. 

Constructing Penumbra and Umbra 
Volumes 

In environments composed of convex polygons 
illuminated by convex light sources, the penumbra and umbra 
volumes associated with a single scene polygon can be 
constructed entirely from three kinds of planes: 

l scene polygon planes, a single one of which is 
defined by the scene polygon itself. 

l light-source vertex planes, defined by a vertex of 
the light source and an edge of a scene polygon, 
oriented so that the scene polygon is entirely in 
the plane’s negative half-space or on the plane. 

l light-source edge planes, defined by an edge of 
the light source and a vertex of a scene polygon, 
oriented so that the scene polygon is entirely in 
the plane’s negative half-space or on the plane. 

We use Nishita and Nakamae’s criteria for determining 
those planes that define the penumbra and umbra volumes of a 
scene polygon. The penumbra volume is the intersection of 
the scene polygon’s negative half-space with the negative half- 
spaces of certain light-source vertex planes and light-source 
edge planes. These light-source vertex planes and light-source 
edge planes are those for which the vertices of the light source 
are entirely in the plane’s positive half-space or on the plane. 
(The penumbra volume actually encloses points in umbra, as 
well as those in penumbra.) 

Figure 1 shows the penumbra cast on a large polygon by a 
triangle light source illuminating a quadrilateral scene 
polygon. Dashed lines passing from each light source vertex to 



Figure 1: Penumbra of area light source, with light- 
source vertex planes and light-source edge 
planes. 

Figure 2: Penumbra and umbra, with light-source vertex 
planes and light-source edge planes. 

all scene polygon vertices defme the light-source vertex planes 
and light-source edge planes. (The additional fragmentation 
surrounding the penumbra outline is caused by the algorithm’s 
classification process, which we describe later.) Note that the 
planes that bound the penumbra volume are those that have the 
light source in their positive half-space and the scene polygon 
in their negative half-space. Thus, any point in the positive 
half-space of such a plane cannot be blocked from any part of 
the light source by the scene polygon. 

The umbra volume, which is contained entirely within the 
penumbra volume, is the intersection of the scene polygon’s 
negative half-space with the negative half-spaces of certain 
light-source vertex planes. These light-source vertex planes 
are those for which the vertices of the light source are entirely 
in the plane’s negative half-space or on the plane. No light- 
source edge planes contribute to the umbra volume. 

Figure 3: Shadows cast by 3 point light sources at the 
vertices of an area light source. 

Figure 2 shows the same scene as Figure 1 with the umbra 
included Note that the dashed lines that lie in the planes that 
define the uxbra outline do not always pass through the umbra 
outline’s vertices. 

Figure 3 shows an alternative, but exactly equivalent, way 
to define the umbra and penumbra volumes. They can be 
derived from the shadow volumes generated when the convex 
scene polygon is illuminated by point light sources at the 
convex area light source’s vertices. (The additional 
fragmentation of the ground plane is caused by the BSP-tree 
point light-source shadow algorithm used to create this figure.) 
The area light source’s umbra volume contains those points 
that are blocked from all of the area light source’s vertices. 
This corresponds to the intersection of the point light-source 
shadow volumes, which is defined by the set of light-source 
vertex planes specified previously. 

The union of the point light-source shadow volumes 
encloses all points that are blocked from one or more vertices 
of the area light source. This is only a subset of the light 
source’s penumbra volume, however, since it does not include 
those points that are visible from all the area light source’s 
vertices, but are blocked from part of the area light source’s 
interior. It can be shown that to enclose these points the 
penumbra volume must be the convex hull of the point light- 
source shadow volumes. The convex hull is defined by the set 
of light-source vertex planes and light-source edge planes 
specified previously. 

Overview 

Instead of the single SVBSP tree required by the point 
light-source shadow algorithm, we use two BSP trees: a 
penumbra free and an umbra tree [8]. Each BSP-tree internal 
node is defined by a light-source vertex plane or light-source 
edge plane. 

Much like the point light-source shadow algorithm, two 
steps must be performed for each scene polygon: 
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l Classifying the polygon into wholly lit, penumbra, 
and umbra fragments. 

l Enlarging the penumbra and umbra trees with 
light-source vertex planes and light-source edge 
planes defined by the polygon. 

The classified fragments must then be illuminated and 
scan-converted. 

Algorithm 

Preprocess. An obvious approach to classification would 
be to compare each scene polygon with the shadow volume of 
every other scene polygon. However, polygons that are not in 
the same half-space of a polygon as the light source cannot 
cast shadows on that polygon or any other polygon in the light 
source’s half-space. Therefore, as in the point light-source 
shadow algorithm, we first compute a BSP tree for the entire 
scene. This allows us to perform a modified inorder traversal 
of the tree to process scene polygons in front-to-back order 
relative to the light source. 

Unlike a point light source, an area light source may not 
lie entirely in a single half-space of a scene polygon. If this 
occurs, choosing different points on the area light source will 
generate different BSP-tree traversal orders. To obtain a 
unique order, we first split each area light source by those 
scene polygons that intersect it and that are in the lit half-space 
of the light source’s plane. Since each of the resulting light 
sources is wholly on one side of each scene polygon, any point 
within the light source will generate the same front-to-back 
ordering of the scene polygons. For convenience, we pick the 
centroid of each resulting area light source as the point from 
which to compute the ordering. We must also ensure that each 
scene polygon that straddles a light source plane is split by the 
plane. 

Clussification. Classification and tree enlargement are 
interleaved as they are performed incrementally for each scene 
polygon in front-to-back order. Therefore, the two shadow 
trees represent the merged penumbra and umbra volumes of all 
the scene polygons processed thus far. Classification occurs 
by filtering each polygon down one or both shadow trees. 
This process is applied recursively until all of a polygon’s 
fragments reach the “in” and “out” leaves. 

A polygon is first filtered down the penumbra tree. Any 
fragment that reaches an “out” cell is marked as wholly lit and 
will not be compared with the umbra tree. (Recall that the 
umbra volume is wholly contained within the penumbra 
volume, so any fragment outside the penumbra volume cannot 
be in umbra.) Any fragment that reaches an “in” cell is at least 
in penumbra and may be in umbra. Each such fragment must 
then be filtered down the umbra tree. Any fragment that 
reaches an umbra tree “out” cell is in penumbra, whereas any 
fragment that reaches an umbra tree “in” cell is in umbra. The 
penumbra and umbra BSP trees are enlarged by unioning them 
with the penumbra volume and umbra volume, respectively, 
defined by the full scene polygon. We trivially classify as in 
umbra any polygon that is in the back half-space of a light 
source, without any need for filtering. In addition, if we 
assume that polygons are “one-sided” and that they bound 
closed polyhedra, we can also trivially classify as in umbra all 
polygons that are back-facing relative to the light source. 

As in the earlier point light-source algorithm, multiple 
area light sources are supported by pipelining. The fragments 
classified relative to one light source must be used as input to 
the algorithm when processing the next light source. Thus, 
when all light sources have been processed, each of the output 
fragments is uniquely classified relative to each of the light 
sources. (See the pseudocode for the algorithm in the 
appendix.) 

Example. Figure 4 shows how the algorithm handles a 
simple example, For ease of explanation, the figure is drawn 
in 2D and thus shows umbra and penumbra areas cast by a 
linear light source on lines in the plane. (In 2D, only light- 
source vertex edges are needed, but the definitions are the 
same otherwise.) 

Initially, both shadow trees are null ((‘out”), as shown in 
Figure 4(a). Polygon 1 is fist filtered down the penumbra tree 
and is trivially classified as fully lit. Because no part of the 
polygon was classified as in penumbra, no classification is 
done using the umbra tree. Next, as shown in Figure 4(b), 
polygon l’s penumbra is used to enlarge the penumbra tree. 
Rather than using the many lit fragments that may have been 
identified, the original polygon is used instead. In 2D, this 
results in a union with polygon 1 and light-source vertex 
planes a and b, which define polygon l’s penumbra volume. 
Although polygon 1 was not classified using the umbra tree, it 
must be used to enlarge the umbra tree and results in a union 
with volume defined by polygon 1 and the light-source planes 
u and v. 

Next, polygon 2 is classified, as shown in Figure 4(c). 
Much like polygon 1, polygon 2 is classified as wholly lit 
relative to the penumbra tree and is not classified using the 
umbra tree. The penumbra tree is then enlarged with polygon 
2 and planes c and d, and the umbra tree is enlarged using 
polygon 2 and planes w and x. (Figure 4d). Unlike polygon 1, 
however, polygon 2’s addition to the merged umbra volume is 
not semi-infinite. 

Polygon 3 is more interesting. When it is classified 
against the penumbra tree, as shown in Figure 4(e), it is split 
by face a into fragments 3.1 and 3.2. Fragment 3.1 is 
classified as “out” (i.e., wholly lit), while fragment 3.2 is 
classified as “in” (i.e., in some combination of penumbra and 
umbra). Therefore, only fragment 3.2 must be filtered down 
the umbra tree. When this is accomplished, the umbra tree’s v 
plane further subdivides fragment 3.2 into fragments 3.2.1 (in 
penumbra) and 3.2.2 (in umbra). At this point, both shadow 
trees are enlarged using the original polygon 3, as shown in 
Figure 4(f). This results (in 2D) in the polygon fragment 3.1 
and plane e being added to the penumbra BSP tree and a 
volume defined by planes y and z and 3*, the fraction of 
polygon 3 not in umbra, being added to the umbra BSP tree. 

Illumination 

After cIassifying all fragments by all light sources, we 
need to illuminate them. We, use an analytic direct diffuse 
illumination model [ 171 based on contour integration, which is 
evaluated at polygon vertices within the penumbra and wholly 
lit regions. Unlike full global illumination algorithms, 
interreflections are not computed Points in umbra are lit by 
an ambient light component alone. In our implementation, 
interpolated shading is performed using 3D graphics hardware. 
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Figure 4: Classifying polygons and enlarging the penumbra and umbra BSP trees. Parts (a-f) show penumbra and umbra 
volumes (areas) and their trees during the classification of three polygons (lines). 

Although the classification process divides polygons 
along precise shadow boundaries, large polygons may remain 
that are homogeneously lit or in penumbra. While direct 
illumination should vary continuously across these surfaces, 
linear interpolation does not adequately represent these 
changes and does not allow any polygon interior pixel to be 
brighter than the polygon’s vertices. Therefore, illumination 
must be computed at additional points within the scene. In the 
pictures included here, we subdivide wholly lit and penumbra 
regions using regular grids of user-specified granularity. We 
generally use a finer grid in the penumbra region, since the 
intensity typically changes more quickly than in an equivalent 
wholly lit region. The umbra region is not subdivided because 
it receives only constant ambient illumination. Subdivision is 
performed after classification, since it has no effect on the 
precision at which classification occurs and would increase the 
classification overhead if performed first. BSP-tree 
subdivision can often generate thin sliver polygons that can 
cause shading anomalies. Better results would be obtained 
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with an adaptive subdivision algorithm that attempted to 
generate well-shaped fragments from these potentially 
problematic fragments [3]. 

Difise illumination equation. To determine the 
illumination at a point that is wholly lit, we perform contour 
integration with the light source from the point being lit, as 
described in [ 171. The diffuse illumination at point p due to 
the light-source is computed as 

where I1 is the light source intensity, n is the number of 
vertices of the light source, IX,, is the angle between the vector 
from p to light-source vertex v and the vector from p to light- 
source vertex v+l, and p,, is the angle between the plane 
defined by the two vectors used to compute CL and the plane on 
which p lies. (The cosine of p,, may be computed as the dot 
product of the normalized surface normal at p with the cross 
product of the normalized vectors used to define a,.) 



Figure 5: Penumbra volume of a single polygon. 

Analytic visibiliry for penumbra vertices. For points in 
penumbra, we must determine the fragments of the light 
source that are visible from the point. We accomplish this 
with a simplified version of the earlier point light-source 
shadow algorithm. By traversing the scene BSP tree, we can 
obtain all polygons between the point whose illumination is 
being computed and the plane of the light source. (Whether 
the traversal order is back-to-front or front-to-back is 
unimportant.) As before, we consider only those scene 
polygons that are front-facing relative to the light source (i.e., 
back-facing relative to the point being illuminated). 

For each scene polygon, we clip the light-source polygon 
by the point light-source shadow volume defined by the point 
in penumbra and the edges of the scene polygon. The portion 
of the light source that is inside this volume is discarded and 
the portions that are outside are retained for comparison with 
the next scene polygon’s volume. (Since the original light- 
source polygon bounds any light-source fragments produced, 
it can be used to do an extent check if desired.) The fragments 
remaining when the BSP-tree traversal encounters the light- 
source polygon are those that are visible from the point in 
penumbra and we sum the illumination contributed by each 
light-source fragment. 

Discussion and Implementation 

In the BSP-tree point light-source algorithm, the SVBSP 
tree was enlarged to reflect a polygon’s contribution to the 
shadow volume by using a simplified version of the set union 
algorithm described in [21]. This simplification ignored any 
part of a polygon that fell within the existing volume. It used 
only planes determined by those fragments of the polygon that 
were wholly lit. For a point light source, the volume 
determined by these planes is guaranteed not to intersect the 
existing shadow volume. (In other words, no fragment lit by a 
point light source casts a shadow that falls within the shadow 
cast by any other lit fragment.) This is not the case for 
penumbra volumes, however. The penumbra volume cast by 
one polygon may intersect the volume cast by another. 
Therefore, a regular BSP-tree set union operation [21] must be 

Figure 6: Incorrect merged penumbra volume of two 
polygons. 

/l-----l 
-- 

Figure 7: Correct merged penumbra volume of two 
polygons. 

performed. 
Figure 5 shows the penumbra volume defined by a single 

scene polygon. Figure 6 shows the incorrect results that occur 
if a second scene polygon is added and the planes defining its 
penumbra volume are not continued into the penumbra volume 
of the original polygon. In this case, the penumbra volume of 
the second polygon considered by itself is similar to that of the 
first polygon and overlaps the fast polygon’s penumbra 
volume. This new penumbra volume crosses over the leftmost 
light-source vertex plane bounding the first polygon’s 
penumbra volume. Part of the second polygon’s contribution 
to the merged penumbra volume is ignored, resulting in the 
penumbra gap shown at the bottom of the figure. Figure 7 
shows the correct merged penumbra volume that results when 
the original volume is enlarged properly by unioning the 
second polygon’s penumbra volume with the current 
penumbra BSP tree, taking into account the possibility of 
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# input shadow grid illum total output actual 
Plate lights polygons time (set) time (set) time (set) time (set) polygons vertices 

illuminated 
vertices 

132 1 14 0.3 0.6 2.2 3.1 747 1341,1668,231 494,437,6 1 
394 1 149 13.4 5.3 105.4 124.1 3348 3125,8556,3043 1576,2512,839 
5 2 70 8.6 10.2 30.8,37.9 87.5 4085 6768,4627,5791 2211,1140,1823 

7969,5847,3370 2608, 1429, 1132 
6 2 151 35.8 23.2 178.1, 247.2 484.3 9344 10821,14938,13458 3904,3839,4008 

12599, 16594,10024 4352,4424,2944 

Figure 8: Statistics for color plates. All timings are given in elapsed wall-clock seconds for an HP 9000 380 (22 MIPS, 2.6 
MFLOPS). Input polygon count takes into account splits caused by building the scene BSP tree. Shadow time is 
the time to classify the input polygons. Grid time is the time to subdivide the wholly lit and penumbra regions to 
produce the output polygons. Illumination time is the time to determine illumination values for the output vertices. 
Actual vertices lists the numbers of wholly lit, penumbra, and umbra vertices. Illuminated vertices lists the 
numbers of wholly lit, penumbra, and umbra calculations performed, which is lower than the actual vertex count 
because of vertex sharing. (Figures 5 and 6 have one illumination time for each light source, and one set of vertex 
statistics for each light source. Note that the sum of the actual wholly lit, penumbra, and umbra vertices is the same 
for each light source in these figures.) 

overlapping volumes. 
If the penumbra volume were incomplete, fragments that 

were contained in the volume’s missing parts would be 
marked as wholly lit and would be incorrectly illuminated. 
Therefore, it is essential that the entirety of the actual 
penumbra volume be represented. In contrast, since the umbra 
volume is contained within the penumbra volume, if the umbra 
volume were incomplete, fragments that were contained in the 
umbra volume’s missing parts would be marked as being in 
penumbra. Since the illumination algorithm correctly 
determines that these fragments are wholly blocked from the 
light, they will be correctly (albeit expensively) illuminated 

It is interesting to note that unioning each polygon’s 
umbra volume with the existing umbra volume does not create 
the complete set of all points that are fully blocked from the 
light source. Instead, it creates the set of all points p such that 
there is at least one polygon that fully blocks p from the light 
source. That is, the union of the individual polygon umbra 
volumes does not contain those points that are fully blocked 
from the light source only because of the contributions of 
multiple blocking polygons. An example of this OCCUTS in 
Figure 4(f). Points in the gap between planes v and y at the 
bottom of the volume are fully blocked from the light source 
because of the combined effect of polygons 1 and 3, yet do not 
lie in the merged umbra volume. 

As with most analytic algorithms, care must be taken to 
contend with finite floating-point precision. To avoid 
problems, as polygons are split, the plane equations are 
copied, not recomputed. A similar method can be used to 
guarantee that split edges remain truly collinear. When a 
polygon edge is split, we also insert the new vertex in any 
other polygon that shares the edge. This prevents the shading 
discontinuities that would be caused by a “T” vertex. The 
vertex at which a split occurs is also shared among the 
polygon’s fragments. This allows each vertex’s illumination 
computation to be performed only once. It also makes it easy 
to determine the kinds of fragments that share a given vertex. 
If a vertex is shared by a wholly lit fragment and a penumbra 
fragment, we treat the vertex as wholly lit for both, eliminating 
the need for the light-source visibility test. If a vertex is 
shared by a wholly lit fragment and an umbra fragment, it is 
treated differently in each to preserve the boundary. We 

currently do not promote vertices shared by both penumbra 
and umbra fragments to umbra vertices. This avoids the 
possibility of smearing a full umbra shadow into a penumbra 
fragment when the umbra fragment is blocked by an object 
that does not block the penumbra fragment. This is similar to 
the problem of “light leaks” [6], in which a polygon is 
straddled by a partition that blocks light from some of its 
vertices, even though illumination leaks under the partition 
through interpolated shading. 

Another possible optimization that would reduce 
fragmentation is to merge fragments together when both 
subtrees were classified as “in” or or as “out” [S]. Since a 
penumbra volume extends infinitely far past the object that 
casts it, we have also considered some approaches to 
restricting its extent, similar to Bergeron’s use of end caps on 
shadow volumes to eliminate the need to perform shadow 
computations outside of a light’s “sphere of influence.” [4]. 

The area light-source algorithm has been implemented in 
C on an HP 9000 380 TurboSRX workstation, and the results 
are displayed interactively using hardware interpolated 
shading. Because the scene polygons are represented as a BSP 
tree, either the hardware z-buffer or a software BSP-tree 
visible-surface algorithm can be used to render the scene. 

Pictures. Color Plate 1 shows two objects floating in air 
and one triangle light source with their penumbra and umbra 
regions. The light grey and dark grey fragments are in 
penumbra and umbra respectively, while the colored 
fragments are wholly lit. The wholly lit and penumbra 
fragments have been gridded after classification. Note the 
band of penumbra separating the umbra regions of both 
objects. As described above, this strip should be in umbra, but 
will be properly illuminated because the illumination 
computation determines that its vertices are unlit. The same 
scene after illumination and interpolated shading is shown in 
Color Plate 2. 

Color Plate 3 shows a room with one quadrilateral area 
light source and gray fragments to represent the regions 
identified as being in penumbra and umbra. Color Plate 4 
shows the room as it appears after illumination and shading. 
Color Plate 5 shows a different view of a simpler version of 
the room without the playpen, illuminated by two quadrilateral 
light sources. Color Plate 6 shows the same scene as Color 
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Figure 9: Room scene classified, 2 lights. 

Plate 4, illuminated by both light sources. Figure 8 provides 
statistics for the color plates. Figure 9 shows the room 
depicted in Color Plate 6, prior to illumination, with the 
fragments produced by classification with both light sources 
and gridding. 

Note that the most expensive part of the algorithm is the 
illumination phase, which need not be accomplished if the user 
is interested only in classifying objects according to their 
visibility, which is necessary in a number of applications in 
areas such as computer vision and graphics [ 121. 

Conclusions and Future Work 

The algorithm described here analytically generates 
penumbra and a subset of the umbra for static convex 
polygonal environments illuminated by convex area light 
sources. It is relatively simple to implement, places no 
restrictions on the location of objects and light sources, and 
runs efficiently for small scenes on modern workstations with 
hardware 3D graphics support. To generate further points at 
which illumination is sampled, we have implemented both 
regular gridding and simple adaptive subdivision of those 
fragments that are wholly lit or in penumbra. 

We believe that an efficient analytic shadow algorithm 
would be useful in multiple passes of a radiosity approach (not 
just for the initial light-source calculations, as implemented in 
[ 181). If selected radiators were treated as area light sources, 
object-precision shadow boundaries could be determined, 
instead of the relatively coarse boundaries obtained with 
current adaptive meshing techniques. This may make it 
possible to create more accurate images, with the illumination 
contour integral used to calculate analytic form factors [2] that 
properly take into account obstructions, guided by the shadow 
(i.e., visibility) classification phase. 
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Appendix: Pseudocode 

procedure generateshadows (ALSlist, BSPtree) 

for each node n in BSPtree ; scene BSP tree 
copy n.scenePolygon into n.fragmentList 

endfor 

for each als in ALSlist 
centroid := centroid of als 

pBSP := OUT-CELL ; penumbra BSP tree 
uBSP := OUT-CELL ; umbra BSP tree 

for each node n in BSPtree in front-to-back order 
relative to centroid 

; move n.fragmentList to fragmentList 
; so that n.fragmentList can be recreated 
; with fully classified and subdivided fragments 
fragmentList := n.fragmentList 
n.fragmentList := NULL 

for each fragment f in fragmentList 
if f not facing centroid OR als not facing f 

mark f in umbra 
n.fragmentList := append(n.fragmentList,f) 

else 
; split f into wholly lit & shadowed fragments 
; by filtering down pBSP 

tempFragmentList := NULL 
classifyWhollyLitOrShadowed 

(als,pBSP,f,&tempFragmentList) 

; partition shadowed fragments into penumbra 
; and umbra 

for each fragment t in tempFragmentList 
if t is shadowed 

classifyPenumbraOrUmbra 
(als,uBSP,t,&n.fragmentList) 

else 
n.fragmentList := 

append(n.fragmentList,t) 
endif 

endfor 

; enlarge pBSP and uBSP trees 

pv := 
constructPolygonPenumbra(als,n.scenePolygon) 

pBSP := union(pBSP,pv) ; see [21] 
uv := 

constructPolygonUmbra(als,n.scenePolygon) 
uBSP := union(uBSP,uv) 

endif 
endfor ; fragment 

endfor ; node 

discard pBSP and uBSP 

endfor ; als 
endproc 
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procedure classifyWhollyLitOrShadowed 
(als,pBSP,f,fragmentList) 

if (pBSP is a leaf) 
if (pBSP == OUT-CELL) 

mark f as wholly lit 
else 

mark f as shadowed 
endif 
fragmentlist := append(fragmentList,f) 

else 
splitPolygon(pBSP.plane,f,&negPart,&posPart) 
if (negPart != NULL) 

classifyWhollyLitOrShadowed(als,pBSP.negChild, 
negPart,&fragmentList) 

endif 
if (posPart != NULL) 

classifyWhollyLitOrShadowed(als,pBSP.posChild, 
posPart,&fragmentList) 

endif 
endif 

procedure classifyPenumbraOrUmbra 
(als,uBSP,f,fragmentList) 

if (uBSP is a leaf) 
if (uBSP == OUT-CELL) 

mark f as penumbra 
else 

mark f as umbra 
endif 
fragmentList := append(fragmentList,f) 

else 
splitPolygon(uBSP.plane,f,&negPart,&posPart) 
if (negPart != NULL) 

classifyPenumbraOrUmbra(als,uBSP.negChild, 
negPart,&fragmentList) 

endif 
if (posPart != NULL) 

classifyPenumbraOrUmbra(als,uBSP.posChild, 
posPart,&fragmentList) 

endif 
endif 

endproc endproc 
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