
Fast Object-Precision Shadow Generation for
Area Light Sources Using BSP Trees

Norman Chin
Steven Weiner

Department of Computer Science
Columbia University

New York, New York 10027

nc@cs.columbia.edu
feiner@cs.columbia.edu

Abstract

This paper introduces an efficient object-precision
shadow generation algorithm for static polygonal
environments directly illuminated by convex area light
sources. Penumbra and umbra regions are calculated
analytically and represented as a pair of BSP trees for each
light source. As the trees are built, convex scene polygons are
filtered down the trees, and split into fragments that are wholly
lit, in penumbra, or in umbra. The illumination due to the light
source is calculated at selected points within the wholly lit and
penumbra regions by contour integration with the visible parts
of the light source. We use a fast analytic algorithm to
compute the fragments of the area light source visible from a
point in penumbra. Rendering is done using hardware-
supported linear interpblated shading on a 3D graphics
workstation.

Because the scene itself is represented as a BSP tree,
visible-surface determination may be performed by using
either workstation-supported hardware (e.g., a z-buffer) or
software BSP-tree traversal. We provide sample images
created by our implementation, including timings and polygon
counts.

CR Categories and Subject Descriptors: 1.3.3 [Computer
Graphics]: Picture/Image Generation-Display algorithms;
1.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling--Constructive solid geometry (CSG); 1.3.7
IComputer Graphics]: Three-Dimensional Graphics and
Realism---Color, shading, shadowing, and texture

General Terms: Algorithms

Additional Keywords and Phrases: shadow volume, area
light source, BSP tree, penumbra, umbra

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
@ 1992 ACM 0-89791-471-6/92/0003/0021 . ..$I .50

Introduction

Shadow generation is a classic problem in 3D computer
graphics that has been addressed by a wide variety of
algorithms [13,221. Point light-source shadow algorithms
essentially compute the visibility of parts of the environment
from a point at the light source; therefore any point in the
environment is either fully in or out of shadow. In contrast, in
an environment lit by area light sources, a point in the
environment may be either visible to the entirety of the light
source, visible to no part of the light source (i.e., in the light
source’s umbra), or visible to only a portion of the light source
(i.e., in the light source’s penumbra). In this latter case, to
compute the point’s illumination, it is also necessary to
determine which portions of the area light source are visible
from the point. Since real light sources are not points and
therefore cast both umbrae and penumbrae, an area light-
source shadow algorithm can be used to create pictures that
are more photorealistic in appearance than those created with a
point light-source shadow algorithm.

Shadows from area light sources have been computed
using radios@ approaches [9,6], by summing the
contributions of an approximating set of point light sources
[5], by ray tracing shadow cones from points in a scene to
spherical light sources [11, by distributed ray-tracing [lo], and
by an object-precision algorithm developed by Nishita and
Nakamae [171. With the exception of this single object-
precision algorithm, all the other algorithms approximate the
shadow boundaries on the objects in the scene. FOT each pair
of a light source and a polyhedral object, Nishita and Nakamae
compute the volume that the object fully shadows from the
light source (its umbra volume) and the volume that the object
partially shadows from the light source (its penumbra volume).
The intersections of these volumes with the other objects in
the environment are computed and guide the calculation of the
illumination at selected points on the objects. For example, a
point is fully shadowed if it is included in at least one umbra
volume.

The algorithm that we describe here is inspired in part by
this work; unlike Nishita and Nakamae, however, we build a
single merged umbra volume and penumbra volume for each
light source. Furthermore, these volumes are represented as

21

BSP trees [14,15,21, 161 using an efficient extension of the
earlier BSP-tree-based shadow algorithm for point light
sources [7]. Although subdivision is always done along exact
shadow boundaries, further subdivision may be necessary to
compute illumination more accurately. We have used both
regular gridding and adaptive subdivision of fragments in the
penumbra and wholly lit regions to compute the illumination
at additional points.

Background

The binary space-partitioning (BSP) tree visible-surface
algorithm was developed by Fuchs, Kedem, and Naylor [141,
based in part on the work of Schumacker [19,201. A BSP tree
defines a recursive partitioning of space by planes that embed
the polygons in the scene. The tree’s root is a polygon chosen
from those in the scene. This polygon’s plane partitions space
into two half-spaces: the “positive” half-space contains all
other polygons in front of the root’s plane (on the side into
which its normal points); the “negative” half-space contains all
polygons behind the root’s plane. If a polygon straddles the
root’s plane, it is cut by it and each of its pieces is assigned to
the appropriate half-space. One polygon’each from the
positive and negative half-spaces are then selected to become
the root’s children. Each child is then recursively used to
divide the remaining children in its half-space in the same
way. The tree is complete when each leaf node contains a
single polygon whose half-spaces are both empty. The BSP
tree visible-surface algorithm is a modified inorder traversal of
the scene’s BSP tree, guided by a simple comparison of the
eyepoint with each polygon’s plane; this determines in O(n)
time a back-to-front ordering of the polygons for any eyepoint.

Thibault and Naylor [21] showed that BSP trees can be
used to represent polyhedral solids. Each of the empty regions
at the leaves is associated with a value of either “in” or “out”.
Assuming that each polygon that bounds a polyhedron has a ’
normal that points out of the polyhedron, then an “in” region is
bounded in part by the polygon’s negative (back) half-space
and an “out” region is bounded in part by the polygon’s
positive (front) half-space. The BSP tree’s leaf nodes
tessellate space into a set of convex polyhedral regions, a
subset of which (the “in” regions) represent the solid.

The point light-source shadow algorithm described in [7,
81 uses BSP trees to model the polyhedral shadow volumes
[1 l] cast by convex polygons. We call the BSP tree
representation of the shadow volume the SVBSP (Shadow
Volume BSP) tree. A regular BSP tree is first constructed for
all polygons in the scene. (Note that if the scene is modified,
then the scene BSP tree must be recalculated.) The scene BSP
tree allows the shadow algorithm to obtain all scene polygons
efficiently in front-to-back order relative to an arbitrary point
light source. Only scene polygons that face the light are
selected. The point light source and the first scene polygon
chosen define together a shadow volume that is a semi-infinite
pyramid. Each of the pyramid’s faces is embedded in a plane
defined by the light source and an edge of the scene polygon.
A point will be in shadow if it lies within the pyramid and in
the scene polygon’s negative half-space. The scene polygon is
itself fully lit.

Because of the front-to-back order imposed by the BSP
tree qaversal, each new scene polygon processed is guaranteed

not to block any of the previously selected scene polygons
from the light. It may be wholly or partially in shadow itself,
however. To determine which parts of the new polygon are
visible from the light source, we must partition the polygon
into parts that are inside and outside the current SVBSP-tree
shadow volume. Note that there is no need to compare the
new polygon with the planes that embed the previous scene
polygons, since the BSP-tree: traversal order ensures that the
new polygon does not lie between the light source and the
preceding scene polygons. Those parts of the new polygon
that are inside the shadow volume are in shadow; those parts
that are outside it are lit. Furthermore, any parts that are
outside define additional shadow volumes that must be added
to the SVBSP tree. The point light-source algorithm
efficiently combines these two steps of classifying polygon
fragments and enlarging the SVBSP tree by using a simplified
version of the Boolean set union operation algorithm presented
in [21]. Each remaining polygon is processed in this fashion
to determine which of its parts are shadowed.

Like the BSP-tree point light-source shadow algorithm,
our BSP-tree convex area light-source algorithm supports
multiple light sources. The area light-source algorithm
extends the point light-source algorithm by classifying
polygons into fragments that are wholly lit, in penumbra
(partially blocked from the light source), or in umbra (wholly
blocked from the light source). To do this, we must fist
define the umbra and penumbra volumes of an area light
source.

Constructing Penumbra and Umbra
Volumes

In environments composed of convex polygons
illuminated by convex light sources, the penumbra and umbra
volumes associated with a single scene polygon can be
constructed entirely from three kinds of planes:

l scene polygon planes, a single one of which is
defined by the scene polygon itself.

l light-source vertex planes, defined by a vertex of
the light source and an edge of a scene polygon,
oriented so that the scene polygon is entirely in
the plane’s negative half-space or on the plane.

l light-source edge planes, defined by an edge of
the light source and a vertex of a scene polygon,
oriented so that the scene polygon is entirely in
the plane’s negative half-space or on the plane.

We use Nishita and Nakamae’s criteria for determining
those planes that define the penumbra and umbra volumes of a
scene polygon. The penumbra volume is the intersection of
the scene polygon’s negative half-space with the negative half-
spaces of certain light-source vertex planes and light-source
edge planes. These light-source vertex planes and light-source
edge planes are those for which the vertices of the light source
are entirely in the plane’s positive half-space or on the plane.
(The penumbra volume actually encloses points in umbra, as
well as those in penumbra.)

Figure 1 shows the penumbra cast on a large polygon by a
triangle light source illuminating a quadrilateral scene
polygon. Dashed lines passing from each light source vertex to

Figure 1: Penumbra of area light source, with light-
source vertex planes and light-source edge
planes.

Figure 2: Penumbra and umbra, with light-source vertex
planes and light-source edge planes.

all scene polygon vertices defme the light-source vertex planes
and light-source edge planes. (The additional fragmentation
surrounding the penumbra outline is caused by the algorithm’s
classification process, which we describe later.) Note that the
planes that bound the penumbra volume are those that have the
light source in their positive half-space and the scene polygon
in their negative half-space. Thus, any point in the positive
half-space of such a plane cannot be blocked from any part of
the light source by the scene polygon.

The umbra volume, which is contained entirely within the
penumbra volume, is the intersection of the scene polygon’s
negative half-space with the negative half-spaces of certain
light-source vertex planes. These light-source vertex planes
are those for which the vertices of the light source are entirely
in the plane’s negative half-space or on the plane. No light-
source edge planes contribute to the umbra volume.

Figure 3: Shadows cast by 3 point light sources at the
vertices of an area light source.

Figure 2 shows the same scene as Figure 1 with the umbra
included Note that the dashed lines that lie in the planes that
define the uxbra outline do not always pass through the umbra
outline’s vertices.

Figure 3 shows an alternative, but exactly equivalent, way
to define the umbra and penumbra volumes. They can be
derived from the shadow volumes generated when the convex
scene polygon is illuminated by point light sources at the
convex area light source’s vertices. (The additional
fragmentation of the ground plane is caused by the BSP-tree
point light-source shadow algorithm used to create this figure.)
The area light source’s umbra volume contains those points
that are blocked from all of the area light source’s vertices.
This corresponds to the intersection of the point light-source
shadow volumes, which is defined by the set of light-source
vertex planes specified previously.

The union of the point light-source shadow volumes
encloses all points that are blocked from one or more vertices
of the area light source. This is only a subset of the light
source’s penumbra volume, however, since it does not include
those points that are visible from all the area light source’s
vertices, but are blocked from part of the area light source’s
interior. It can be shown that to enclose these points the
penumbra volume must be the convex hull of the point light-
source shadow volumes. The convex hull is defined by the set
of light-source vertex planes and light-source edge planes
specified previously.

Overview

Instead of the single SVBSP tree required by the point
light-source shadow algorithm, we use two BSP trees: a
penumbra free and an umbra tree [8]. Each BSP-tree internal
node is defined by a light-source vertex plane or light-source
edge plane.

Much like the point light-source shadow algorithm, two
steps must be performed for each scene polygon:

23

l Classifying the polygon into wholly lit, penumbra,
and umbra fragments.

l Enlarging the penumbra and umbra trees with
light-source vertex planes and light-source edge
planes defined by the polygon.

The classified fragments must then be illuminated and
scan-converted.

Algorithm

Preprocess. An obvious approach to classification would
be to compare each scene polygon with the shadow volume of
every other scene polygon. However, polygons that are not in
the same half-space of a polygon as the light source cannot
cast shadows on that polygon or any other polygon in the light
source’s half-space. Therefore, as in the point light-source
shadow algorithm, we first compute a BSP tree for the entire
scene. This allows us to perform a modified inorder traversal
of the tree to process scene polygons in front-to-back order
relative to the light source.

Unlike a point light source, an area light source may not
lie entirely in a single half-space of a scene polygon. If this
occurs, choosing different points on the area light source will
generate different BSP-tree traversal orders. To obtain a
unique order, we first split each area light source by those
scene polygons that intersect it and that are in the lit half-space
of the light source’s plane. Since each of the resulting light
sources is wholly on one side of each scene polygon, any point
within the light source will generate the same front-to-back
ordering of the scene polygons. For convenience, we pick the
centroid of each resulting area light source as the point from
which to compute the ordering. We must also ensure that each
scene polygon that straddles a light source plane is split by the
plane.

Clussification. Classification and tree enlargement are
interleaved as they are performed incrementally for each scene
polygon in front-to-back order. Therefore, the two shadow
trees represent the merged penumbra and umbra volumes of all
the scene polygons processed thus far. Classification occurs
by filtering each polygon down one or both shadow trees.
This process is applied recursively until all of a polygon’s
fragments reach the “in” and “out” leaves.

A polygon is first filtered down the penumbra tree. Any
fragment that reaches an “out” cell is marked as wholly lit and
will not be compared with the umbra tree. (Recall that the
umbra volume is wholly contained within the penumbra
volume, so any fragment outside the penumbra volume cannot
be in umbra.) Any fragment that reaches an “in” cell is at least
in penumbra and may be in umbra. Each such fragment must
then be filtered down the umbra tree. Any fragment that
reaches an umbra tree “out” cell is in penumbra, whereas any
fragment that reaches an umbra tree “in” cell is in umbra. The
penumbra and umbra BSP trees are enlarged by unioning them
with the penumbra volume and umbra volume, respectively,
defined by the full scene polygon. We trivially classify as in
umbra any polygon that is in the back half-space of a light
source, without any need for filtering. In addition, if we
assume that polygons are “one-sided” and that they bound
closed polyhedra, we can also trivially classify as in umbra all
polygons that are back-facing relative to the light source.

As in the earlier point light-source algorithm, multiple
area light sources are supported by pipelining. The fragments
classified relative to one light source must be used as input to
the algorithm when processing the next light source. Thus,
when all light sources have been processed, each of the output
fragments is uniquely classified relative to each of the light
sources. (See the pseudocode for the algorithm in the
appendix.)

Example. Figure 4 shows how the algorithm handles a
simple example, For ease of explanation, the figure is drawn
in 2D and thus shows umbra and penumbra areas cast by a
linear light source on lines in the plane. (In 2D, only light-
source vertex edges are needed, but the definitions are the
same otherwise.)

Initially, both shadow trees are null ((‘out”), as shown in
Figure 4(a). Polygon 1 is fist filtered down the penumbra tree
and is trivially classified as fully lit. Because no part of the
polygon was classified as in penumbra, no classification is
done using the umbra tree. Next, as shown in Figure 4(b),
polygon l’s penumbra is used to enlarge the penumbra tree.
Rather than using the many lit fragments that may have been
identified, the original polygon is used instead. In 2D, this
results in a union with polygon 1 and light-source vertex
planes a and b, which define polygon l’s penumbra volume.
Although polygon 1 was not classified using the umbra tree, it
must be used to enlarge the umbra tree and results in a union
with volume defined by polygon 1 and the light-source planes
u and v.

Next, polygon 2 is classified, as shown in Figure 4(c).
Much like polygon 1, polygon 2 is classified as wholly lit
relative to the penumbra tree and is not classified using the
umbra tree. The penumbra tree is then enlarged with polygon
2 and planes c and d, and the umbra tree is enlarged using
polygon 2 and planes w and x. (Figure 4d). Unlike polygon 1,
however, polygon 2’s addition to the merged umbra volume is
not semi-infinite.

Polygon 3 is more interesting. When it is classified
against the penumbra tree, as shown in Figure 4(e), it is split
by face a into fragments 3.1 and 3.2. Fragment 3.1 is
classified as “out” (i.e., wholly lit), while fragment 3.2 is
classified as “in” (i.e., in some combination of penumbra and
umbra). Therefore, only fragment 3.2 must be filtered down
the umbra tree. When this is accomplished, the umbra tree’s v
plane further subdivides fragment 3.2 into fragments 3.2.1 (in
penumbra) and 3.2.2 (in umbra). At this point, both shadow
trees are enlarged using the original polygon 3, as shown in
Figure 4(f). This results (in 2D) in the polygon fragment 3.1
and plane e being added to the penumbra BSP tree and a
volume defined by planes y and z and 3*, the fraction of
polygon 3 not in umbra, being added to the umbra BSP tree.

Illumination

After cIassifying all fragments by all light sources, we
need to illuminate them. We, use an analytic direct diffuse
illumination model [171 based on contour integration, which is
evaluated at polygon vertices within the penumbra and wholly
lit regions. Unlike full global illumination algorithms,
interreflections are not computed Points in umbra are lit by
an ambient light component alone. In our implementation,
interpolated shading is performed using 3D graphics hardware.

24

ats

Penumbra
Tree

1

Umbra Nothing
Tree classified

Penumbra
Tree

Umbra
Tree

(a) Classify 1

out

I7
/“‘out /‘\

1
A

OUI

in out
u v

(b) Union 1

2
W

X

41
(d) Union 2

in?ut

/u\ /‘\ W

V OUI
1’

,*t LA

in out x out

I\
in out

Nothing
classified

(c) Classify 2

in out

*

/“-----
/I\

A Out
in Y

3' = A
,3' out

z

W

,2’, Al

xKu’
in out

I \
(e) Classify 3

I
9

’ iht

(f) Union 3

Figure 4: Classifying polygons and enlarging the penumbra and umbra BSP trees. Parts (a-f) show penumbra and umbra
volumes (areas) and their trees during the classification of three polygons (lines).

Although the classification process divides polygons
along precise shadow boundaries, large polygons may remain
that are homogeneously lit or in penumbra. While direct
illumination should vary continuously across these surfaces,
linear interpolation does not adequately represent these
changes and does not allow any polygon interior pixel to be
brighter than the polygon’s vertices. Therefore, illumination
must be computed at additional points within the scene. In the
pictures included here, we subdivide wholly lit and penumbra
regions using regular grids of user-specified granularity. We
generally use a finer grid in the penumbra region, since the
intensity typically changes more quickly than in an equivalent
wholly lit region. The umbra region is not subdivided because
it receives only constant ambient illumination. Subdivision is
performed after classification, since it has no effect on the
precision at which classification occurs and would increase the
classification overhead if performed first. BSP-tree
subdivision can often generate thin sliver polygons that can
cause shading anomalies. Better results would be obtained

25

with an adaptive subdivision algorithm that attempted to
generate well-shaped fragments from these potentially
problematic fragments [3].

Difise illumination equation. To determine the
illumination at a point that is wholly lit, we perform contour
integration with the light source from the point being lit, as
described in [171. The diffuse illumination at point p due to
the light-source is computed as

where I1 is the light source intensity, n is the number of
vertices of the light source, IX,, is the angle between the vector
from p to light-source vertex v and the vector from p to light-
source vertex v+l, and p,, is the angle between the plane
defined by the two vectors used to compute CL and the plane on
which p lies. (The cosine of p,, may be computed as the dot
product of the normalized surface normal at p with the cross
product of the normalized vectors used to define a,.)

Figure 5: Penumbra volume of a single polygon.

Analytic visibiliry for penumbra vertices. For points in
penumbra, we must determine the fragments of the light
source that are visible from the point. We accomplish this
with a simplified version of the earlier point light-source
shadow algorithm. By traversing the scene BSP tree, we can
obtain all polygons between the point whose illumination is
being computed and the plane of the light source. (Whether
the traversal order is back-to-front or front-to-back is
unimportant.) As before, we consider only those scene
polygons that are front-facing relative to the light source (i.e.,
back-facing relative to the point being illuminated).

For each scene polygon, we clip the light-source polygon
by the point light-source shadow volume defined by the point
in penumbra and the edges of the scene polygon. The portion
of the light source that is inside this volume is discarded and
the portions that are outside are retained for comparison with
the next scene polygon’s volume. (Since the original light-
source polygon bounds any light-source fragments produced,
it can be used to do an extent check if desired.) The fragments
remaining when the BSP-tree traversal encounters the light-
source polygon are those that are visible from the point in
penumbra and we sum the illumination contributed by each
light-source fragment.

Discussion and Implementation

In the BSP-tree point light-source algorithm, the SVBSP
tree was enlarged to reflect a polygon’s contribution to the
shadow volume by using a simplified version of the set union
algorithm described in [21]. This simplification ignored any
part of a polygon that fell within the existing volume. It used
only planes determined by those fragments of the polygon that
were wholly lit. For a point light source, the volume
determined by these planes is guaranteed not to intersect the
existing shadow volume. (In other words, no fragment lit by a
point light source casts a shadow that falls within the shadow
cast by any other lit fragment.) This is not the case for
penumbra volumes, however. The penumbra volume cast by
one polygon may intersect the volume cast by another.
Therefore, a regular BSP-tree set union operation [21] must be

Figure 6: Incorrect merged penumbra volume of two
polygons.

/l-----l
--

Figure 7: Correct merged penumbra volume of two
polygons.

performed.
Figure 5 shows the penumbra volume defined by a single

scene polygon. Figure 6 shows the incorrect results that occur
if a second scene polygon is added and the planes defining its
penumbra volume are not continued into the penumbra volume
of the original polygon. In this case, the penumbra volume of
the second polygon considered by itself is similar to that of the
first polygon and overlaps the fast polygon’s penumbra
volume. This new penumbra volume crosses over the leftmost
light-source vertex plane bounding the first polygon’s
penumbra volume. Part of the second polygon’s contribution
to the merged penumbra volume is ignored, resulting in the
penumbra gap shown at the bottom of the figure. Figure 7
shows the correct merged penumbra volume that results when
the original volume is enlarged properly by unioning the
second polygon’s penumbra volume with the current
penumbra BSP tree, taking into account the possibility of

26

input shadow grid illum total output actual
Plate lights polygons time (set) time (set) time (set) time (set) polygons vertices

illuminated
vertices

132 1 14 0.3 0.6 2.2 3.1 747 1341,1668,231 494,437,6 1
394 1 149 13.4 5.3 105.4 124.1 3348 3125,8556,3043 1576,2512,839
5 2 70 8.6 10.2 30.8,37.9 87.5 4085 6768,4627,5791 2211,1140,1823

7969,5847,3370 2608, 1429, 1132
6 2 151 35.8 23.2 178.1, 247.2 484.3 9344 10821,14938,13458 3904,3839,4008

12599, 16594,10024 4352,4424,2944

Figure 8: Statistics for color plates. All timings are given in elapsed wall-clock seconds for an HP 9000 380 (22 MIPS, 2.6
MFLOPS). Input polygon count takes into account splits caused by building the scene BSP tree. Shadow time is
the time to classify the input polygons. Grid time is the time to subdivide the wholly lit and penumbra regions to
produce the output polygons. Illumination time is the time to determine illumination values for the output vertices.
Actual vertices lists the numbers of wholly lit, penumbra, and umbra vertices. Illuminated vertices lists the
numbers of wholly lit, penumbra, and umbra calculations performed, which is lower than the actual vertex count
because of vertex sharing. (Figures 5 and 6 have one illumination time for each light source, and one set of vertex
statistics for each light source. Note that the sum of the actual wholly lit, penumbra, and umbra vertices is the same
for each light source in these figures.)

overlapping volumes.
If the penumbra volume were incomplete, fragments that

were contained in the volume’s missing parts would be
marked as wholly lit and would be incorrectly illuminated.
Therefore, it is essential that the entirety of the actual
penumbra volume be represented. In contrast, since the umbra
volume is contained within the penumbra volume, if the umbra
volume were incomplete, fragments that were contained in the
umbra volume’s missing parts would be marked as being in
penumbra. Since the illumination algorithm correctly
determines that these fragments are wholly blocked from the
light, they will be correctly (albeit expensively) illuminated

It is interesting to note that unioning each polygon’s
umbra volume with the existing umbra volume does not create
the complete set of all points that are fully blocked from the
light source. Instead, it creates the set of all points p such that
there is at least one polygon that fully blocks p from the light
source. That is, the union of the individual polygon umbra
volumes does not contain those points that are fully blocked
from the light source only because of the contributions of
multiple blocking polygons. An example of this OCCUTS in
Figure 4(f). Points in the gap between planes v and y at the
bottom of the volume are fully blocked from the light source
because of the combined effect of polygons 1 and 3, yet do not
lie in the merged umbra volume.

As with most analytic algorithms, care must be taken to
contend with finite floating-point precision. To avoid
problems, as polygons are split, the plane equations are
copied, not recomputed. A similar method can be used to
guarantee that split edges remain truly collinear. When a
polygon edge is split, we also insert the new vertex in any
other polygon that shares the edge. This prevents the shading
discontinuities that would be caused by a “T” vertex. The
vertex at which a split occurs is also shared among the
polygon’s fragments. This allows each vertex’s illumination
computation to be performed only once. It also makes it easy
to determine the kinds of fragments that share a given vertex.
If a vertex is shared by a wholly lit fragment and a penumbra
fragment, we treat the vertex as wholly lit for both, eliminating
the need for the light-source visibility test. If a vertex is
shared by a wholly lit fragment and an umbra fragment, it is
treated differently in each to preserve the boundary. We

currently do not promote vertices shared by both penumbra
and umbra fragments to umbra vertices. This avoids the
possibility of smearing a full umbra shadow into a penumbra
fragment when the umbra fragment is blocked by an object
that does not block the penumbra fragment. This is similar to
the problem of “light leaks” [6], in which a polygon is
straddled by a partition that blocks light from some of its
vertices, even though illumination leaks under the partition
through interpolated shading.

Another possible optimization that would reduce
fragmentation is to merge fragments together when both
subtrees were classified as “in” or or as “out” [S]. Since a
penumbra volume extends infinitely far past the object that
casts it, we have also considered some approaches to
restricting its extent, similar to Bergeron’s use of end caps on
shadow volumes to eliminate the need to perform shadow
computations outside of a light’s “sphere of influence.” [4].

The area light-source algorithm has been implemented in
C on an HP 9000 380 TurboSRX workstation, and the results
are displayed interactively using hardware interpolated
shading. Because the scene polygons are represented as a BSP
tree, either the hardware z-buffer or a software BSP-tree
visible-surface algorithm can be used to render the scene.

Pictures. Color Plate 1 shows two objects floating in air
and one triangle light source with their penumbra and umbra
regions. The light grey and dark grey fragments are in
penumbra and umbra respectively, while the colored
fragments are wholly lit. The wholly lit and penumbra
fragments have been gridded after classification. Note the
band of penumbra separating the umbra regions of both
objects. As described above, this strip should be in umbra, but
will be properly illuminated because the illumination
computation determines that its vertices are unlit. The same
scene after illumination and interpolated shading is shown in
Color Plate 2.

Color Plate 3 shows a room with one quadrilateral area
light source and gray fragments to represent the regions
identified as being in penumbra and umbra. Color Plate 4
shows the room as it appears after illumination and shading.
Color Plate 5 shows a different view of a simpler version of
the room without the playpen, illuminated by two quadrilateral
light sources. Color Plate 6 shows the same scene as Color

27

Figure 9: Room scene classified, 2 lights.

Plate 4, illuminated by both light sources. Figure 8 provides
statistics for the color plates. Figure 9 shows the room
depicted in Color Plate 6, prior to illumination, with the
fragments produced by classification with both light sources
and gridding.

Note that the most expensive part of the algorithm is the
illumination phase, which need not be accomplished if the user
is interested only in classifying objects according to their
visibility, which is necessary in a number of applications in
areas such as computer vision and graphics [121.

Conclusions and Future Work

The algorithm described here analytically generates
penumbra and a subset of the umbra for static convex
polygonal environments illuminated by convex area light
sources. It is relatively simple to implement, places no
restrictions on the location of objects and light sources, and
runs efficiently for small scenes on modern workstations with
hardware 3D graphics support. To generate further points at
which illumination is sampled, we have implemented both
regular gridding and simple adaptive subdivision of those
fragments that are wholly lit or in penumbra.

We believe that an efficient analytic shadow algorithm
would be useful in multiple passes of a radiosity approach (not
just for the initial light-source calculations, as implemented in
[181). If selected radiators were treated as area light sources,
object-precision shadow boundaries could be determined,
instead of the relatively coarse boundaries obtained with
current adaptive meshing techniques. This may make it
possible to create more accurate images, with the illumination
contour integral used to calculate analytic form factors [2] that
properly take into account obstructions, guided by the shadow
(i.e., visibility) classification phase.

Acknowledgments

This work was supported in part by the Office of Naval
Research under Contract NOOO14-91-J-1872, the Defense
Advanced Research Projects Agency under Contract
N00039-84-C-0165, and an equipment grant from the Hewlett-
Packard Company. Thanks to Clark Still and Tim Lee of the
Columbia University Department of Chemistry, and Marilyn
Noz of the NYU School of Medicine for generously allowing
us to use their workstations.

References

1. Amanatides, J. Ray Tracing with Cones. Proc.
SIGGRAPH ‘84 (Minneapolis, MN, July 23-27,
1984). In Computer Graphics, 18(3), July 1984,
129-135.

2. Baum, D., Rushmeier, H., and Winget, J. Improving
Radios@ Solutions Through the Use of Analytically
Determined Form-Factors. Proc. SIGGRAPH ‘89
(Boston, MA, July 31-August 4, 1989). In
Computer Graphics, 23(3), July 1989,325-334.

3. Baum, D., Mann, S., Smith, K., and Winget,
J. Making Radios&y Usable: Automatic
Preprocessing and Meshing Techniques for the
Generation of Accurate Radiosity Solutions. Proc.
SIGGRAPH ‘91 (Las Vegas, NV, July 28-August 2,
1991). In Computer Graphics, 25(4), July 1991,
5 l-60.

4. Bergeron, P. A General Version of Crow’s Shadow
Volumes. IEEE CG&A, 6(9), September 1986,
17-28.

5. Brotman, L. and Badler, N. Generating Soft
Shadows with a Depth Buffer Algorithm. IEEE
CG&A, 4(lo), October 1984,5-12.

6. Campbell, A.T., III, andFussel1, D.S. Adaptive
Mesh Generation for Global Diffuse Illumination.
Proc. SlGGRAPH ‘90 (Dallas, TX, August 6-10,
1991). In Computer Graphics, 24(4), August 1990,
155-164.

7. Chin, N. and Feiner, S. Near Real-Time Shadow
Generation Using BSP Trees. Proc. SIGGRAPH ‘89
(Boston, MA, July 31-August 4, 1989). In
Computer Graphics, 23(3), July 1989,99-106.

8. Chin, N. Near Real-Time Object-Precision Shadow
Generation Using BSP Trees. MS Thesis, Dept. of
Computer Science, Columbia University, New York,
NY, 1990.

9. Cohen, M.F. and Greenberg, D.P. The Hemi-Cube:
A Radios&y Solution for Complex Environments.
Proc. SIGGRAPH ‘85 (San Francisco, CA, July
22-26, 1985). In Computer Graphics, 19(3), July
1985,314O.

10. Cook, R.L., Porter, T., and Carpenter, L. Distributed
Ray Tracing. Proc. SIGGRAPH ‘84 (Minneapolis,
MN, July 23-27, 1984). In Computer Graphics,

28

18(3), July 1984, 137-145.

11. Crow, F. Shadow Algorithms for Computer
Graphics. Proc. SIGGRAPH ‘77 (San Jose, CA,
July 20-22, 1977). In Computer Graphics, 1 l(2),
Summer 1977,242-248.

12. Feiner, S. and Seligmann, D. Dynamic 3D
illustrations with visibility constraints. In
Patrikalakis, N. (ed.), Scientific Visualization of
Physical Phenomena (Proc. Computer Graphics
International ‘91, Cambridge, MA, June 26-28,
1991), Springer-Verlag, Tokyo, 1991,525-543.

13. Foley J., van Dam, A,, Feiner, S., and Hughes,
J. Computer Graphics: Principles and Practice,
Second Edition, Addison-Wesley, Reading MA,
1990.

14. Fuchs, H., Kedem, A., and Naylor, B. On Visible
Surface Generation by A Priori Tree Structures.
Proc. SIGGRAPH ‘80 (Seattle, WA, July 14-18,
1980). In Computer Graphics, 14(3), July 1980,
124-133.

15. Fuchs, H., Abram, G., and Grant, E. Near Real-Time
Shaded Display of Rigid Objects. Proc. SIGGRAPH
‘83 (Detroit, MI, July 25-29, 1983). In Computer
Graphics, 17(3), July 1983,65-72.

16. Naylor, B., Amanatides, J., and Thibault,
W. Merging BSP Trees Yields Polyhedral Set
Operations. Proc. SIGGRAPH ‘90 (Dallas, TX,
August 6-10, 1991). In Computer Graphics, 24(4),
August 1990,115-124.

17. Nishita, T. and Nakamae, E. Half-Tone
Representation of 3-D Objects Illuminated by Area
Sources or Polyhedron Sources. Proc IEEE
COMPSAC, November 1983,237-241.

18. Nishita, T. and Nakamae, E. Continuous Tone
Representation of Three-Dimensional Objects
Taking Account of Shadows and Interreflection.
Proc. SIGGRAPH ‘85 (San Francisco, CA, July
22-26, 1985). In Computer Graphics, 19(3), July
1985,23-30.

19. Schumacker, R., Brand, B., Gilliland, M., and Sharp,
W. Study for Applying Computer-Generated Images
to Visual Simulation. Technical Report AFHRL-
TR-69-14, NTIS AD700375, US Air Force Human
Resources Lab, Air Force Systems Command,
Brooks AFB, TX, September 1969.

20. Sutherland, I., Sproull, R., and Schumacker, R. A
Characterization of Ten Hidden-Surface Algorithms.
ACM Computing Surveys, 6(1). March 1974, l-55.

21. Thibault, W. and Naylor, B. Set Operations on
Polyhedra Using Binary Space Partitioning Trees.
Proc. SIGGRAPH ‘87 (Anaheim, CA, July 27-3 1,
1987). In Computer Graphics, 21(4), July 1987,
153-162.

22. Woo, A., Poulin, P. and Foumier, A. A Survey of
Shadow Algorithms. IEEE CG&A, 10(6),
November 1990, 13-3 2.

Appendix: Pseudocode

procedure generateshadows (ALSlist, BSPtree)

for each node n in BSPtree ; scene BSP tree
copy n.scenePolygon into n.fragmentList

endfor

for each als in ALSlist
centroid := centroid of als

pBSP := OUT-CELL ; penumbra BSP tree
uBSP := OUT-CELL ; umbra BSP tree

for each node n in BSPtree in front-to-back order
relative to centroid

; move n.fragmentList to fragmentList
; so that n.fragmentList can be recreated
; with fully classified and subdivided fragments
fragmentList := n.fragmentList
n.fragmentList := NULL

for each fragment f in fragmentList
if f not facing centroid OR als not facing f

mark f in umbra
n.fragmentList := append(n.fragmentList,f)

else
; split f into wholly lit & shadowed fragments
; by filtering down pBSP

tempFragmentList := NULL
classifyWhollyLitOrShadowed

(als,pBSP,f,&tempFragmentList)

; partition shadowed fragments into penumbra
; and umbra

for each fragment t in tempFragmentList
if t is shadowed

classifyPenumbraOrUmbra
(als,uBSP,t,&n.fragmentList)

else
n.fragmentList :=

append(n.fragmentList,t)
endif

endfor

; enlarge pBSP and uBSP trees

pv :=
constructPolygonPenumbra(als,n.scenePolygon)

pBSP := union(pBSP,pv) ; see [21]
uv :=

constructPolygonUmbra(als,n.scenePolygon)
uBSP := union(uBSP,uv)

endif
endfor ; fragment

endfor ; node

discard pBSP and uBSP

endfor ; als
endproc

29

procedure classifyWhollyLitOrShadowed
(als,pBSP,f,fragmentList)

if (pBSP is a leaf)
if (pBSP == OUT-CELL)

mark f as wholly lit
else

mark f as shadowed
endif
fragmentlist := append(fragmentList,f)

else
splitPolygon(pBSP.plane,f,&negPart,&posPart)
if (negPart != NULL)

classifyWhollyLitOrShadowed(als,pBSP.negChild,
negPart,&fragmentList)

endif
if (posPart != NULL)

classifyWhollyLitOrShadowed(als,pBSP.posChild,
posPart,&fragmentList)

endif
endif

procedure classifyPenumbraOrUmbra
(als,uBSP,f,fragmentList)

if (uBSP is a leaf)
if (uBSP == OUT-CELL)

mark f as penumbra
else

mark f as umbra
endif
fragmentList := append(fragmentList,f)

else
splitPolygon(uBSP.plane,f,&negPart,&posPart)
if (negPart != NULL)

classifyPenumbraOrUmbra(als,uBSP.negChild,
negPart,&fragmentList)

endif
if (posPart != NULL)

classifyPenumbraOrUmbra(als,uBSP.posChild,
posPart,&fragmentList)

endif
endif

endproc endproc

30

