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ABSTRACT

Image-space simplifications have been used to accelerate
the calculation of computer graphic images since the dawn of
visual simulation.  Texture mapping has been used to provide a
means by which images may themselves be used as display
primitives.  The work reported by this paper endeavors to carry
this concept to its logical extreme by using interpolated im-
ages to portray three-dimensional scenes.  The special-effects
technique of morphing, which combines interpolation of tex-
ture maps and their shape, is applied to computing arbitrary in-
termediate frames from an array of prestored images.  If the im-
ages are a structured set of views of a 3D object or scene, inter-
mediate frames derived by morphing can be used to approximate
intermediate 3D transformations of the object or scene.  Using
the view interpolation approach to synthesize 3D scenes has
two main advantages. First, the 3D representation of the scene
may be replaced with images. Second, the image synthesis time
is independent of the scene complexity. The correspondence
between images, required for the morphing method, can be pre-
determined automatically using the range data associated with
the images.  The method is further accelerated by a quadtree de-
composition and a view-independent visible priority.  Our ex-
periments have shown that the morphing  can be performed at
interactive rates on today’s high-end personal computers. Po-
tential applications of the method include virtual holograms, a
walkthrough in a virtual environment, image-based primitives
and incremental rendering. The method also can be used to
greatly accelerate the computation of motion blur and soft
shadows cast by area light sources.

CR Categories and Subject Descriptors: I.3.3
[Computer Graphics]: Picture/Image Generation; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Real-
ism.

Additional Keywords: image morphing, interpolation,
virtual reality, motion blur, shadow, incremental rendering,
real-time display, virtual holography, motion compensation.

1 INTRODUCTION

Generating a large number of images of an environment
from closely spaced viewpoints is a very useful capability. A
traditional application is a flight in the cabin of an aircraft
simulator, whereas the contemporary model is perhaps a walk
through a virtual environment; in both cases the same scene is

displayed from the view of a virtual camera controlled by the
user. The computation of global illumination effects, such as
shadows, diffuse and specular inter-reflections, also requires a
large number of visibility calculations. A typical approach to
this problem is to rely on the computer to repetitively render
the scene from different viewpoints. This approach has two ma-
jor drawbacks. First, real-time rendering of complex scenes is
computationally expensive and usually requires specialized
graphics hardware. Second, the rendering time is usually not
constant and is dependent on the scene complexity. This prob-
lem is particularly critical in simulation and virtual reality ap-
plications because of the demand for real-time feedback. Since
scene complexity is potentially unbounded, the second prob-
lem will always exist regardless of the processing power of the
computer.

A number of approaches have been proposed to address this
problem. Most of these approaches use a preprocess to compute
a subset of the scene visible from a specified viewing re-
gion[AIRE91, TELL92]. Only the potentially visible objects
are processed in the walkthrough time. This approach does not
completely solve the problem because there may be viewing
regions from which all objects are visible. Greene and
Kass[GREE93] developed a method to approximate the visibil-
ity at a location from adjacent environment maps. The envi-
ronment maps are Z-buffered images rendered from a set of dis-
crete viewpoints in 3D space. Each environment map shows a
complete view of the scene from a point. An environment map
can take the form of a cubic map, computed by rendering a cube
of 90˚ views radiating from that point [GREE86]. The environ-
ment maps are pre-computed and stored with viewpoints ar-
ranged in a structured way, such as a 3D lattice. An image from a
new viewpoint can be generated by re-sampling the environ-
ment maps stored in adjacent locations. The re-sampling pro-
cess involves rendering the pixels in the environment maps as
3D polygons from the new viewpoint. The advantage of this
approach is that the rendering time is proportional to the envi-
ronment map resolutions and is independent of the scene com-
plexity. However, this method requires Z-buffer hardware to
render a relatively large number of polygons interactively, a
feature still not available on most low-end computers.

This paper presents a fast method for generating intermedi-
ate images from images stored at nearby viewpoints. The
method has advantages similar to those of Greene and Kass’
method. The generation of a new image is independent of the
scene complexity. However, instead of drawing every pixel as a
3D polygon, our method uses techniques similar to those used
in image morphing[BEIE92]. Adjacent images are “morphed” to
create a new image for an in-between viewpoint. The morphing
makes use of pre-computed correspondence maps and, therefore,
is very efficient. Our experiments with the new method have
shown that it can be performed at interactive rates on inexpen-
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sive personal computers without specialized hardware.
The new method is based on the observation that a sequence

of images from closely spaced viewpoints is highly coherent.
Most of the adjacent images in the sequence depict the same ob-
jects from slightly different viewpoints. Our method uses the
camera’s position and orientation and the range data of the im-
ages to determine a pixel-by-pixel correspondence between im-
ages automatically. The pairwise correspondence between two
successive images can be pre-computed and stored as a pair of
morph maps. Using these maps,  corresponding pixels are in-
terpolated interactively under the user’s control to create in-be-
tween images.

  Pixel correspondence can be established if range data and
the camera transformation are available. For synthetic images,
range data and the camera transformation are easily obtainable.
For natural images, range data can be acquired from a ranging
camera [BESL88], computed by photogrammetry [WOLF83], or
modeled by a human artist [WILL90]. The camera transforma-
tion can be found if the relative positions and orientations of
the camera are known.

The idea of using images to represent a virtual environment
has been presented previously. An earlier approach uses com-
puter controlled videodiscs to perform surrogate travel
[LIPP80]. A more recent approach uses digital movie technolo-
gies to construct a virtual museum [MILL92]. In both systems,
a user navigates a finite set of routes and directions that have
been pre-determined. Our method allows greater flexibility in
the navigation because the stored frames can be interpolated
smoothly to synthesize arbitrary intermediate points of view.

A static subject or environment portrayed by a restricted set
of images indexed by the user's point of view supports a form of
"desktop virtual reality" termed "virtual integral holography"
[VENO90].  In this context also, our method permits smooth
interpolation of the images to present a continuous display se-
quence, rather than quantizing the user's point of view and
jumping to the closest prestored image.

The morphing method can be used to interpolate a number
of different parameters, such as camera position, viewing an-
gle, direction of view and hierarchical object transformation.
The modeling and viewing transformations can be concatenated
to compute the correspondence mapping between two images.
Generally, the images can be arranged in an arbitrary graph
structure. The nodes of the graph are the images. Each arc in the
graph represents a correspondence mapping, which is bi-direc-
tional, and two maps are associated with each arc. The number
of interpolation parameters determines the dimensionality of
the graph. For instance, the graph for a virtual camera moving
with two degrees of freedom (the latitudes and longitudes of a
sphere bounding an object at a central "look-at" point, for ex-
ample)  is a simple polyhedron (rendering of objects rather than
environments will be discussed in more detail in Section 4.4,
Image-based Primitives.) The camera’s location coordinates in-
dex a point on a face of the polyhedron, and the desired view is
synthesized by interpolating the images and mappings stored
with the vertices and edges of the face. Note that if each image
is of the form of an environment map, view angle and direction
also can be interpolated by re-projecting the environment map
to the desired view orientation [MILL93] without increasing the
dimensionality of the graph. Similarly, a camera moving in 3D
is supported by a graph which takes the form of a 3D space lat-
tice. The barycentric coordinates of the view location can be
used to interpolate among the images attached to the vertices of
the enclosing tetrahedron in a lattice of tetrahedra.

For the representation of scenes with objects moving or
changes other than those consequent to a change in viewpoint,
the graph becomes a general polytope. Generally, arbitrary dis-
tortions of surfaces are accommodated by the mapping, as are

hierarchical motions of linkages or the limbs of animated char-
acters1. To index such an elaborate set of mappings by the var-
ious parameters can be an arbitrarily complex process, requir-
ing multivariate interpolation of a multidimensional graph.

Without loss of generality, this paper will concentrate on
the interpolation of the camera position in 1D and 2D space
(accommodating "virtual holograms" of objects as well as re-
stricted navigation in 3D scenes). The scene is assumed to be
static, and all the image changes are as a result of camera
movement. Although the method can be applied to natural im-
ages, only synthetic ones have been attempted in the work de-
scribed here. Interpolation of images accurately supports only
view-independent shading.  Reflection mapping or Phong
specular reflection could be performed with separate maps for
reflection map coordinates or normal components, but only dif-
fuse reflection and texture mapping have been presented here.

Section 2 introduces the basic algorithms of the method as
well as its limitations and optimizations. Section 3 gives im-
plementation details and shows some examples. Section 4
shows applications of the method to virtual reality, temporal
anti-aliasing, generating shadows from area lights, image-
based display primitives and incremental rendering
("progressive refinement"). Conclusions and future directions
are discussed in the last section.

2 VISIBILITY MORPHING

Image morphing is the simultaneous interpolation of shape
and texture. The technique generally involves two steps. The
first step establishes the correspondence between two images
and is the most difficult part of most morphing methods. The
correspondence is usually established by a human animator.
The user might, for example,  define a set of corresponding
points or line segments within a pair or set of images. An algo-
rithm is then employed to determine the correspondence
(mapping) for the remainder of the images[BEIE92].  The sec-
ond step in the process is to use the mapping to interpolate the
shape of each image toward the other, according to the particu-
lar intermediate image to be synthesized, and to blend the pixel
values of the two warped images by the same respective coeffi-
cients, completing the morph.

Our method uses the camera transformation and image range
data to automatically determine the correspondence between
two or more images. The correspondence is in the form of a
“forward mapping.”  The mapping describes the pixel-by-pixel
correspondence from the source to the destination image. The
mapping is also bi-directional since each of the two images can
act as the source and the destination. In the basic method, the
corresponding pixels’ 3D screen coordinates are interpolated
and the pixels from the source image are moved to their interpo-
lated locations to create an interpolated image. For pixels
which map to the same pixel in the interpolated  image, their Z-
coordinates are compared to resolve visibility. Cross-dissolv-
ing the overlapping pixels’ colors may be necessary if the im-
age colors are not view-independent. This process is repeated
for each of the source images.

This method is made more efficient by the following two
properties. First, since neighboring pixels tend to move to-
gether in the mapping, a quadtree block compression is em-
ployed to exploit this coherence. Adjacent pixels which move
in a similar manner are grouped in blocks and moved at the
same time. This compression is particularly advantageous since
a view-independent visible priority among the pixel blocks can
be established. The pixel blocks are sorted once by their Z-co-

1Establishing such elaborate mappings is straightforward
for synthetic images, a classic vision problem for natural ones.
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ordinates, when the maps are created, and subsequently dis-
played from back to front to eliminate the overhead of a Z-
buffer for visibility determination.

We will describe our method in terms of the morphing be-
tween two images first. Generalization of the method to more
images is straightforward and will be discussed later.

2 . 1 Establishing Pixel Correspondence
As a camera moves, objects in its field of view move in the

opposite direction.  The speed of each object’s apparent move-
ment is dependent on the object’s location relative to the cam-
era. Since each pixel’s screen coordinates (x, y and z) and the
camera’s relative location are known, a 4x4 matrix transforma-
tion establishes a correspondence between the pixels in each
pair of images. The transformations can be pre-computed and
reduced to a 3D spatial offset vector for each of the pixels. The
offset vector indicates the amount each of the pixels moves in
its screen space as a result of the camera’s movement. The off-
set vectors are stored in a “morph map,” which represents the
forward mapping from one image to another.  This map is simi-
lar in concept to a disparity map computed from a stereo
pair[GOSH89], the field of offset vectors computed for “optical
flow” analysis[NAGE86], or motion compensation in video
compression and format conversion[MPEG90].  For a computed
image or range image, an exact pixel-by-pixel map can be cre-
ated. The mapping is many-to-one because many pixels from
the first image may move to the same pixel in the second im-
age. Therefore, the morph map is directional and two morph
maps are needed for a pair of images.

The use of a pre-computed spatial look-up table for image
warping has been presented in [WOLB89]. Wolberg used the
look-up table to implement arbitrary forward mapping func-
tions for image warping.  Wolberg's maps contained absolute
coordinates rather than offset vectors.

In a typical image morph, as described in the beginning of
this section, a sparse correspondence provided by a human op-
erator is used to perform strictly two-dimensional shape inter-
polation.  Such a morph can also be used to interpolate stored
images in order to represent 3D scenes or objects, as suggested
in [POGG91].  The advantages of our method are that the corre-
spondence is dense (every pixel has an explicitly computed
map coordinate), the correspondence is automatic (rather than
relying on human effort), and the explicit prestored maps per-
mit the image deformations to be generated very quickly.

2 . 2 Interpolating Correspondences
To generate an in-between view of a pair of images, the off-

set vectors are interpolated linearly and the pixels in the source
image are moved by the interpolated vector to their destina-
tions. Figure 1 shows the offset vectors, sampled at twenty-
pixel intervals, for the camera motion sequence in Figure 3.

The interpolation is an approximation to the transforma-
tion of the pixel coordinates by a perspective viewing matrix.
A method which approximates the perspective changes with lo-
cal frame shifting and scaling is presented in [HOFM88]. Per-
spective transformation requires multiplication of the pixel co-
ordinates by a 4x4 matrix and division by the homogeneous
coordinates, a rather computationally taxing process, although
bounded by image resolution rather than scene complexity.
Linear interpolation of pixel coordinates using the morph
maps, on the other hand, is very efficient and can be performed
incrementally using forward differencing.

If the viewpoint offset is small, the interpolation is very
close to the exact solution. Moreover, quadratic or cubic inter-
polation, though slightly more expensive to perform, can be
used to improve the accuracy of the approximation. When the
viewpoint moves parallel to the viewing plane, the linear in-
terpolation produces an exact solution. This case is demon-

strated in Figure 2a, which traces the paths of mapped pixels in
the interpolated image as the viewpoint traverses the four cor-
ners of a square parallel to the viewing plane. The squares in the
figure are the extents of the pixel movement. Because the
squares are parallel to the viewing plane, the linear interpola-
tion of the square corners produces the same result as perspec-
tive transformation. Another special case is when the view-
point moves perpendicular to the viewing plane along a square
parallel to the ground(Figure 2b). The resulting pixel locations
form trapezoids, which are the projections of squares parallel to
the ground. The trapezoids can be interpolated linearly in the
horizontal direction. The vertical direction requires perspective
divisions. The divisions can be avoided if a look-up table in-
dexed by the vertical offset is pre-computed for each possible
integer height of the trapezoids. The second case can be gener-
alized to include the case when the squares are perpendicular to
both the ground and the viewing plane. If the viewpoints are
aligned with a 3D lattice, the result will always fall into one of
the above two cases, which allows us to use linear interpolation
to generate an exact solution.

2 . 3 Compositing Images
The key problem with forward mapping is that overlaps and

holes may occur in the interpolated image.

2 . 3 . 1 Overlaps
One reason overlaps occur is due to local image contraction.

Local image contraction occurs when several samples in a local
neighborhood of the source image move to the same pixel in
the interpolated image. A typical example of this case is when
our view of a plane moves from perpendicular to oblique. Per-
spective projection causes the image to contract as the plane
moves away from the point of view.  In the mapping, the sam-
ples on the far side of the plane contract while the samples on
the near side expand. Contraction causes the samples to overlap
in the target pixels.

Multiple layers of pixel depths also will cause the samples
to overlap, as in the case of the foreground sculpture in Figure
3. Resolving this case is really a hidden surface problem. One
way of solving this problem is to use the Z-buffer algorithm to
determine the frontmost pixel. A more efficient way of deter-
mining the nearest pixel is presented in the Optimization Sec-
tion.

2 . 3 . 2 H o l e s
Holes between samples in the interpolated image may arise

from local image expansion when mapping the source image to
the destination image. This case is shown in Figure 3 where a
source image is viewed from viewpoints rotated to the right.
The cyan regions indicate holes. Generally, a square pixel in
the source image will map to a quadrilateral in the destination
image. If we interpolate the four corners of the square instead of
the pixel’s center, the holes can be eliminated by filling and
filtering the pixels in the destination quadrilateral.

A more efficient, though less accurate, method to fill the
holes is to interpolate the adjacent pixels’ colors or offset vec-
tors. The holes are identified by filling the interpolated image
with a reserved "background" color first. For those pixels
which still retain the background color after the source to target
mapping, new colors are computed by interpolating the colors
of adjacent non-background pixels. Alternatively, we can in-
terpolate the offset vectors of the adjacent pixels. The interpo-
lated offset is used to index back to the source image to obtain
the new sample color. Note that using a distinguished back-
ground color may not identify all the holes. Some of the holes
may be created by a foreground object and are filled by a back-
ground object behind it (e.g., the holes in the sculpture in the
rightmost image in Figure 3). This problem is alleviated,
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though not completely eliminated, when more source images
are added as described below (e.g. Figure 5d).

Holes may also arise from sample locations invisible in
each of the source images but visible in the interpolated image.
The hole region, as shown  in Figure 4, is the intersection of
the umbra regions cast by viewpoints A and B and the visible
region from point M. The small circle in the hole region is
completely missed by the two source images from points A and
B. One way of solving this problem is to use multiple source
images to minimize the umbra region. Figure 5a shows the
holes (cyan pixels) created by rotating one source image. Fig-
ure 5b shows that the number of holes is significantly less
when two sources images are used. The number of holes can be
reduced further if we place the two source viewpoints closer
(Figure 5c). The remaining holes can be filled by interpolating
the adjacent pixels(Figure 5d). If the images are computer-gen-
erated, a ray-tracing type of rendering can be used to render only
those missing pixels.

Penumbra

Umbra

Hole
A M B

Fig. 4 Penumbra, umbra  and hole regions

2 . 4 Optimization
The basic method is made more efficient by  the following

two steps.

2 . 4 . 1 Block Compression
Since adjacent pixels tend to move together in the map-

ping, a block compression scheme such as a quadtree can be ap-
plied to compress the morph map. The compression serves two
purposes. First, it reduces the size of the morph map. Second, it
allows us to interpolate offsets for entire blocks instead of
pixel-by-pixel. The second aspect greatly accelerates the inter-
polation process as the main cost in the process is the interpo-
lation of the offset vectors.

The compression ratio is related to the image depth com-
plexity and the viewpoint movement. For images with high
depth complexity, the compression ratio is usually low. The ra-
tio is also lower if the viewpoint’s movement results in greater
pixel depth change. Figure 6 shows the quadtree decomposition
of the morph map for the image sequence in Figure 3. The max-
imal offset threshold within a block is one pixel in Figure 6a
and two pixels in Figure 6c, which means the offset vector co-
ordinates within a block do not differ more than one or two
pixel units. The compression ratio in Figure 6a is 15 to 1 and in
Figure 6b is 29 to 1 (i.e., the number of blocks vs. the number
of pixels).

The threshold provides a smooth quality degradation path
for increased performance. Large threshold factors result in
fewer quadtree blocks and, therefore, reduce the interpolation
time. The performance gain is at the expense of increasing
blockiness in the interpolated image. The interpolation times
in Figure 6b and 6d are accelerated by a factor of 6 and 7 respec-
tively. Note that the speedup factor does not grow linearly with
the compression ratio because the same number of pixels still
need to be moved.

2 . 4 . 2 View-Independent Visible Priority
In the basic method, the Z-buffer algorithm is used to re-

solve visibility. However, as shown in Figure 7, the A-closer-
than-B priority established in View1 is still valid in View2,
since Point A and Point B do not overlap in View2. The priority
is incorrect in View3 when A and B overlap. As long as the an-
gle θ in the figure is less than 90 degrees, the A-B priority does
not need to be changed when the viewpoint is moved. This ob-
servation allows us to establish a view-independent visible
priority for every source pixel for a viewing range. The pixels
are ordered from back to front based on their original Z-coordi-
nates when the morph maps are created, and are subsequently
drawn in a back-to-front order in the interpolation process.
This ordering of the samples, or sample blocks, eliminates the
need for interpolating the Z-coordinates of every pixel and up-
dating a Z-buffer in the interpolation process.

View1
View2

View3
A

B

θ

Fig. 7 View-independent visible priority

Note that the priority established here is for image pixels
rather than for the underlying objects, unlike list-priority algo-
rithms for hidden-surface removal[SCHU69].

This method applies to multiple source images as well. The
source images' pixel Z-coordinates are transformed to a single
coordinate system for establishing the Z-priority. All the pix-
els in the source images are sorted into the same priority list.

The priority can be assigned to every quadtree pixel block.
With static objects and a moving camera, pixel offsets are di-
rectly related to Z-coordinates. Since the pixels within a block
have similar offsets, they also have similar Z-coordinates. The
Z-coordinates within a block are filtered to determine a Z value
for the priority sort. The result is a sorted list of pixel blocks
valid for the entire range between views.

3 IMPLEMENTATIONS

The method presented above can be summarized as follows.

3.1 Preprocessing
The preprocessing stage establishes the correspondence be-

tween each pair of source and destination images. As mentioned
in Section 1, the source images are connected to form a graph
structure. Each node of the graph contains a source image, its
range data and camera parameters (i.e., camera’s position, ori-
entation). For each set of adjacent nodes in the graph, a sorted
list of quadtree blocks is created (e.g., a block list is created for
every triangle in a 2D lattice structure). Each block in the list
contains a pointer to a pixel block in a source image, the size,
the screen coordinates and the offset vectors of the block. The
block list is created in the following steps:

Step 1. Get input data: a source node (image, range data and
camera parameters), a destination node (only the camera param-
eters are needed) and a threshold factor for the quadtree decom-
position.

Step 2. Create a morph map from the source to the destina-
tion (Section 2.1).
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Step 3. Decompose the morph map into quadtree blocks and
add the blocks to a block list (Section 2.4.1).

Step 4. Repeat Step 1 to 3 for each directional arc connect-
ing the set of nodes.

5. Sort the block list from back to front by the blocks’ Z-
coordinates.

3.2 Interactive Interpolation
In the interactive interpolation stage, the block list corre-

sponding to a new viewing location is retrieved. The parametric
coordinates of the location with respect to the adjacent nodes
are used as interpolation parameters. An interpolated image for
the new location is generated in the following steps:

Step 1. Get input data: interpolation parameters and a sorted
block list.

Step 2. Fill the interpolated image with a distinguished
background color.

Step 3. For every block in the list in back-to-front order,
compute its new location from the offset vectors and the inter-
polation parameters. Copy the pixel block from the source im-
age to its new location in the interpolated image (Section 2.2).

Step 4. For every pixel in the interpolated image that still
retains the background color, compute its color by filtering the
colors of the adjacent non-background pixels (Section 2.3.2).

3.3 Examples
Figure 8 shows a sequence of images generated by moving

the viewpoint to the right. The images were rendered at
256x256 resolution using progressive radiosity [COHE88]
from a model created for the Virtual Museum project[MILL92].

Figure 9 shows two intermediate images created by morph-
ing the leftmost and rightmost images. Each image took 0.17
second to generate (excluding the preprocessing time) on a
Macintosh Quadra 950.

Note that for the interpolation to work properly, the source
image cannot be anti-aliased. Anti-aliasing is view-dependent.
It blends silhouette pixel colors from a particular viewpoint.
Since the Z-buffer cannot be anti-aliased in the same way, the
anti-aliased silhouette pixels may attach to either the fore-
ground or the background objects depending on the quantiza-
tion of the Z-buffer. This problem can be solved by morphing
high-resolution unfiltered source images and then filtering the
interpolated image.

The method can be applied to interpolating more than two
source images. Figure 10 shows a sequence of images interpo-
lated from the four source images in the corners. The view-
points of the source images form a square parallel to the view-
ing plane. Therefore, as discussed before, linear interpolation
is an exact solution to the perspective transformation. New im-
ages are computed from the nearest three corner images. The
barycentric coordinates of the new viewpoint are used to inter-
polate the three images. Dividing the lattice into simplices
minimizes the cost of interpolation.

4 APPLICATIONS

The morphing method can be used in a wide variety of ap-
plications which require fast visibility computations of a prede-
fined static scene. Simulation and virtual reality applications
typically require a scene to be displayed interactively from dif-
ferent viewpoints. Temporal anti-aliasing, or motion blur, can
be accelerated by using morph maps to integrate image samples
over time. The image samples are interpolated from key images
using the morphing method. We also present an application of
morph mapping to compute shadows from area lights using the
shadow buffer method [WILL78]. The morphing method makes
it possible to define a new class of graphic display primitives
based on images. This approach is also useful in incremental

rendering as it provides a way to reuse the pixels computed for
previous images.

4 . 1 Virtual Reality
Instead of representing a virtual environment as a list of 3D

geometric entities, the morphing method uses images
(environment maps). To perform a walkthrough, the images ad-
jacent to the viewpoint are interpolated to create the desired
view.

In addition to supporting walkthroughs in virtual environ-
ments, the method can be used to create virtual holograms,
where the display on the screen will change with respect to the
user’s viewpoint to provide 3D motion parallax. One existing
approach uses 3D rendering to display the scene from the view-
point obtained by a head location sensor[DEER92]. Another
approach uses a finite set of pre-rendered frames, each corre-
sponding to a particular viewing location[VENO90]. With the
morphing method, only a few key images are required. The in-
terpolation can generate the in-between frames. Figure 10
shows a sequence of images with vertical and horizontal motion
parallax.

The image-based morphing method is inexpensive compu-
tationally and provides a smooth quality-speed tradeoff. Al-
though the total storage requirement may be large, the amount
of data needed to compute a frame is relatively small and can be
read from secondary storage as needed. This approach is very
appropriate for CD-ROM based devices because of their large
storage capability. As the complexity of geometrical models
increases, the advantage of image-based approaches will be
more significant because of their bounded overhead.

Another advantage of using the image-based approach is
that a real environment can be digitized by photographic
means. Using a camera to capture the environment usually is
much easier than modeling it geometrically. Although our
method relies on range data to establish the correspondence be-
tween images, range data should be easier to obtain than the
complete 3D geometry of the environment.

4 . 2 Motion Blur
If an image in a motion sequence is a sample at an instant of

time instead of over a time interval, the motion will appear to
be jerky and the image is said to be aliased in the temporal do-
main. One way to perform temporal anti-aliasing is super-sam-
pling. The motion is sampled at a higher rate in the temporal
domain and then the samples are filtered to the displayed rate.
Super-sampling requires the computation of many more sam-
ples. For images which are expensive to render, this technique
is very inefficient.

The morphing method allows additional temporal samples
to be created by interpolation. The interpolation time is con-
stant regardless of the rendering time for each frame. The sam-
pling rate is determined by the largest offset vector from the
morph map in order to perform proper anti-aliasing. Figure 11a
is a motion blurred image computed from 32 source images for
the camera motion in Figure 8. The images were first rendered at
512x512 resolution and then filtered down to 256x256 resolu-
tion before temporal anti-aliasing was performed.  The tempo-
ral samples were anti-aliased with a box filter. Each image took
around 5 seconds to render on a high-end workstation with 3D
graphics hardware support. Figure 11b was computed from the
same number of images interpolated from three of the source
images. Each interpolated image took 0.6 second to compute
on a Macintosh Quadra950. The only minor visible difference
between the two images is the top of the inside loop of the
foreground sculpture, due to the holes created from the interpo-
lation as discussed previously.

The super-sampling approach requires the sampling rate to
be determined based on the worst case. For images with fast
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moving objects and slowly moving backgrounds, this method
is not very efficient. One way to solve this problem is to seg-
ment the images based on object movement and use different
sampling rates for each segment. For instance, the foreground
sculpture in this figure needs to be sampled at the highest rate
while the wall behind it needs only a few samples. In the case of
motion caused by viewpoint changes as in this figure, the seg-
ments can be sorted in order of depth as discussed in Section
2.4.2. Each segment is filtered independently and a temporal
coverage value for each pixel is kept to indicate the ratio of
background samples vs. all samples. The multiple segment lay-
ers are then composited in front-to-back order with each seg-
ment’s pixel colors attenuated by the coverage value from the
previous segment.

4 . 3 Shadows
A very general and efficient way of rendering shadows is the

shadow buffer algorithm [WILL78]. The algorithm computes a
Z-buffer (i.e., shadow map) from the point of view of the light
source. To compute shadows, a surface point’s coordinates are
transformed to the light source’s space and its Z-coordinate is
compared to the corresponding Z-coordinate in the shadow
map. If the point is further away then it is in shadow.

The algorithm only works for point light sources. To ap-
proximate a linear or an area source, many point lights may be
needed [SHAP84]. The cost of computing the shadows is pro-
portional to the number of point sources used.

light1

eye

light2 light3

map2
map3

map1

Fig. 12 Shadow buffer interpolation for a linear

light source

The morphing method can be used to significantly reduce
the cost of computing the shadow map for each of the point
sources. Figure 12 illustrates the process of using the method to
compute shadows from a linear light source. A shadow map is
computed first for each of the two end points of the source (i.e.,
light1 and light2) using the conventional rendering method. A
morph map from the viewpoint to each of the two end points is
also computed to transform the screen coordinates to each point
source’s coordinate space (i.e., map1 and map2). The shadow
map for an in-between point (e.g., light3) on the linear source
is interpolated from the corner shadow maps using the morph-
ing method. The same interpolation factor is used to interpolate
the two morph maps (map1 and map2) to create a morph map
from the viewpoint to the in-between light source point
(map3). The standard shadow buffer algorithm is then used to
compute shadows for the in-between point source. The process
is repeated for all the in-between points at a desired interval.
The resulting shadow images are composited to create the soft
shadow of the linear source. This method can be generalized to
any area or volume light source.

Figure 13 shows the result after compositing 100 in-be-
tween shadow images generated by randomly distributed points
on a rectangular light source above the triangle. Four source
shadow maps located at the corners of the rectangle were created
for the interpolation. The shadow maps were rendered at
512x512 resolution and the shadow image resolution is
256x256. Percentage closer filtering [REEV87] was used to
anti-alias the shadows for each image. Each shadow image took
1.5 seconds to compute. Shading for the illuminated pixels was
computed by Lambert's Law weighted by the projected size of
the rectangle source over the pixel.

4 . 4 Image-Based Primitives
A 3D object is perceived on a flat display screen through a

series of 2D images. As long as we can generate the images
from any viewpoint, it does not matter if a 3D description of
the object is available. The morphing method permits any view
of an object to be generated by interpolation from some key
images. Therefore, a new class of primitives based on images
can be defined. These image-based primitives are particularly
useful for defining objects of very high complexity since the
interpolation time is independent of the object complexity.

Figure 14 shows a sequence of images of a rotating teapot
generated by the morphing method. The middle images were
generated by interpolating the two key images at the extreme
left and right. The key images were rendered with viewpoints
rotated 22.5 degrees around the center of the teapot. A larger
angular increment of the key images may result in holes and
distortions as a result of the linear interpolation. Figure 15 is
the same source images extrapolated to show the pixel blocks
which compose the teapot.

Rendering an object using the morphing method is really
not different from rendering a complete scene as described pre-
viously. The image-based object or scene can be treated as a
“sprite” that can be composited with images generated by other
means.

4 . 5 Incremental Rendering
Adjacent images in an animation sequence usually are

highly coherent. Therefore, it’s desirable to perform the render-
ing incrementally. Ideally, the rendering should be limited to
only the pixels which are different from the previous frame.
However, searching for the pixels that change is not always
trivial. Some incremental rendering approaches which make use
of frame-to-frame coherence were presented in [CHEN90],
[JEVA92].

The morphing method provides a natural way of making use
of frame coherence. For an animation sequence where the mo-
tion of every frame is known in advance, the frames can be ren-
dered initially at a coarse temporal sampling rate. The remain-
ing frames can then be computed by the morphing method. The
missing samples or view-dependent shading, such as high-
lights, of the interpolated frames can be computed by additional
rendering. If accuracy rather than speed is the main concern, the
map-based interpolation or extrapolation of pixel coordinates
can be replaced by perspective transformation.

5 CONCLUSIONS AND FUTURE DIRECTIONS

The interactive speed which the image-based display has
achieved on modest computing platforms has fulfilled our pri-
mary goal in pursuing this research.  In addition to this primary
objective, we have demonstrated effective application of the
view interpolation approach to computing some of the more
complex rendering effects. Image-based computer graphics
promises to be a productive area of research for some time. A
number of intriguing research problems suggest themselves:

An automatic camera has been developed to record an array
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of images of an object from viewpoints surrounding it
[APPL92]. What are the prospects for automatic camera loca-
tion selection to minimize the number of holes in the interpo-
lated images? Similarly, what are good algorithmic criteria for
dispensing with as many recorded images as possible, or select-
ing the best subset of images to represent the object?

By modeling the 3D transformation from one image to the
next by a field of straight-line offsets, we introduce an approx-
imation analogous to polygonization (except in the restricted
cases mentioned in Section 2.2). Higher-dimensional, rather
than linear, interpolation might be expected to better approxi-
mate the arcs traversed by objects rotating between views.
Curved motion blur is another possible benefit of higher-order
interpolation.

View-dependent shading such as specular reflection would
extend the useful range of morphing as a display technique.
One possibility mentioned previously is to define additional
maps for specular surfaces, which specify normal components
or reflection map coordinates.

Special-purpose image compression might profit greatly
from morph-mapping algorithms. The resemblance of the
morph maps to motion-compensation vectors commonly used
in video sequence compression has been mentioned. These vec-
tors, used in format conversion to address the interlace prob-
lem, and in compression to squeeze a little more redundancy out
of the signal, also find application in optical flow algorithms
for tracking objects in the visual field. The redundancy removed
from the video sequence by motion compensation is limited, as
it applies only between successive frames. In a morph mapping
encoder, objects which appear and disappear repeatedly could be
encoded with a small set of maps. The decoder, a hybrid of an
image warper and a graphics pipeline, would use them as
"sprites" from a catalog of maps.

The representation of objects and surfaces as sets of images
and maps, possibly pyramidal maps, suggests the application
of morph mapping to more general global illumination models.
The approach of determining visibility to an area light source
to compute soft shadows can be extended to treating all surfaces
as sources of radiosity.  For many global illumination prob-
lems, a few images and morph maps can serve to represent hun-
dreds or thousands of computed images.
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