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Abstract

This paper describes the integration of the Berkeley Architectural
Walkthrough Program with the National Institute of Standards and
Technology’s CFAST fire simulator. The integrated system creates
a simulation based design environment for building fire safety sys-
tems; it also allows fire safety engineers to evaluate the performance
of building designs, and helps make performance-based fire codes
possible. We demonstrate that the visibility preprocessing and spa-
tial decomposition used in the Walkthru also allow optimization of
the data transfer between the simulator and visualizer. This opti-
mization improves the ability to use available communication band-
width to get needed simulation data to the Walkthru in the best or-
der to visualize results in real time; an appropriate communication
model and data structures are presented. General issues arising in
the integration of environmental simulations and virtual worlds are
discussed, as well as the specifics of the Walkthru-CFAST system,
including relevant aspects of the user interface and of the visualiza-
tion and simulation programming interfaces. A recommendation is
made to structure future simulators in such a way that they can selec-
tively direct their computational efforts toward specified spacetime
regions of interest and thereby support real-time, interactive virtual
environment visualization more effectively.
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1 INTRODUCTION

Virtual environments are of major interest to computer graphics re-
searchers; this is due, in part, to their ability to immerse the user
in a computer-generated alternate reality in which we can easily
recreate scenarios which are too dangerous, difficult, or expensive
to play out in real life. One application domain with a particularly
high expected payoff is building design evaluation, where scien-
tists, engineers, architects, and other professionals can enter a vir-
tual space and evaluate its physical structure without actually build-
ing or affecting a real instance of that structure. With such a sys-
tem, users could preview architectural designs, evaluate their per-
formance with various metrics, and do simulations and potentially
destructive “what-if” experiments (such as fire safety studies; see
figure 1) cheaply and with no risk. To obtain useful answers to such
experiments, we need to integrate good physical simulations with
virtual environment interfaces. Integration of powerful simulation
technologywith virtual reality visualization systemsaffords the pos-
sibility of intuitive interpretation and visualization of the results of
complex and powerful simulations via 3D computer graphics.

Figure 1: Above, a pool fire, three-quarters of a meter in diameter,
rages in a student office in Soda Hall; 100 seconds after ignition,
smoke nearly fills the room. Below, smoke has spread into the hall-
ways.
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We are attempting to realize some of these advantages for the
benefit of fire safety in architectural environments. We are in the
process of integrating the National Institute of Standards and Tech-
nology’s (NIST) Consolidated Model of Fire and Smoke Transport
(CFAST) [15] into the Berkeley Architectural Walkthrough (Walk-
thru) system [17, 10]. CFAST currently provides the world’s most
accurate simulation of the impact of fire and its byproducts on a
building environment. Integrated into the Walkthru, it provides real-
time, intuitive, realistic and scientific visualization of building con-
ditions in a fire hazard situation from the perspective of a person
walking through a burning building. The viewer can observe the
natural visual effects of flame and smoke in fire hazard conditions;
alternatively, scientific visualization techniques allow the user to
“observe” the concentrations of toxic compounds such as carbon
monoxide and hydrogen cyanide in the air, as well as the temper-
atures of the atmosphere, walls, and floor. Warning and suppres-
sion systems such as smoke detectors and sprinkler heads can be
observed in action to help determine their effectiveness. This tech-
nology can be used to improve fire safety by helping engineers and
architects evaluate a building’s potential safety and survivability
through performance-based standards (i.e. how well the building
protects its occupants from the fire). With more development, it
could also be used to help train personnel in firefighting techniques
and rescue operations by presenting them with practice situations
that are too risky to be simulated in the real world.

While the combination of virtual reality and environmental simu-
lation constitutes a framework for very powerful tools, it also raises
many implementation challenges. Among these challenges are in-
teraction with the virtual world, setting up and dynamically chang-
ing simulation conditions from within the virtual world to a simula-
tor, designing “visualization-oriented”simulators, transporting sim-
ulation results to the visualizer, integrating the simulator’s results
with the virtual environment, and visualizing those results in a way
that is useful to the user; either descriptively, in the case of scientific
visualization applications, or realistically, in the case of training or
entertainment applications. These problems are compounded by an
additional desire to distribute both the virtual environment and the
simulation over multiple computers – potentially connected by rel-
atively high-latency, low-bandwidth networks such as the Internet –
when attempting to simulate and visualize large buildings with hun-
dreds of rooms.

In this paper, we present an approach to the problem of dis-
tributed simulation-visualization data management that is optimized
for denselyoccluded polyhedral environments (i.e. buildings) based
on the Walkthru and CFAST programs. Walkthru has already ad-
dressed some of the problems of distributed visualization and of the
interaction between the user and the virtual world [16, 11, 4]. We
show that the basic virtual environment structure used in the Walk-
thru, a spatial subdivision of the world into densely occluded cells
with connecting portals, can be put to good use for simulation data
management. In addition to optimizing the visualization task, it is
also useful for optimizing bandwidth requirements between a vi-
sualizer and simulator, both for communicating scenario informa-
tion to the simulator and for communicating simulated states back to
the visualizer. Using this structure, we can minimize bandwidth re-
quirements for arbitrarily large visualizations and simulations, and
relieve the visualization and simulation designers of the complexity
of the data management problem. The solution is extensible to mul-
tiple distributed visualizers and simulators operating on one virtual
world. It also suggests an important attribute of future simulation
design for simulation developers who wish to make “virtual reality-
oriented” real-time simulators: the ability to partition a simulation
effort so as to concentrate computation on parts of the environment
of immediate interest to the observer (i.e. those parts that affect the
areas which are currently being viewed). This issue is also being
studied by other groups at Berkeley [5].

In section 2, we discuss the simulation/visualization data man-
agement problem in the context of other related work in virtual en-
vironment simulation. In section 3, we present an overview of the
two components of the system, Walkthru and CFAST, the issues in-
volved in combining these two programs, and more generally, issues
in combining visualization software with simulation software in a
densely occludedbuilding environment. In section 4, we present the
most important abstract representations for the exchange of simu-
lation data and the corresponding communication system. Section
5 explains the APIs and functionality provided to the visualization
front end, the user, and the simulator. Finally, in section 6, we dis-
cuss some of the details of the internal workings of the simulation
data management system.

2 RELATED WORK

The most frequent application of virtual reality technology so far
has been visualization of static spatial environments. The major-
ity of current virtual worlds are nearly static environments with a
few movable objects and avatars inside. The most common appli-
cations of these systems are either peer-to-peer simulation of the
user’s interaction with other users or simulated entities, or systems
that use physics to make the world seem more “real” to an immersed
user. Some more famous examples of the former include the Iowa
driving simulator [7], where the user’s vehicle interacts with other
independently-simulated road vehicles, and the department of de-
fense’s NPSNET [13, 19], where “units” of military vehicles engage
in simulated combat on static terrain. Each simulated unit (or vehi-
cle) communicates its status to each other unit, but since the environ-
ment (i.e. the terrain) is fixed, the communication requirements are
bounded by the number of simulation entities, not the size of the en-
vironment. Though these systems may be doing some actual phys-
ical simulations, because only a few “detail objects” in the world
are actually changing, the amount of data being transferred is rela-
tively small. Other systems are typically concerned with the physics
of everyday object interaction, such as impenetrability and colli-
sions [9, 6, 14]; they have been used to evaluate the ergonomics of
environments like kitchens, automobiles, or work spaces. In these
systems, simulations are typically limited to objects being directly
manipulated, and the computations are simplified so that they can
be done directly in the visualization environment without seriously
loading down the computer.

On the other hand, many virtual-reality visualization systems
have been built to allow the user to perform and interact with com-
plex physical simulations, but they tend not to involve what we
would consider “interactive simulation;” that is, the user is sim-
ply exploring precomputed data, without being able to interactively
change the conditions under which that data was derived, and ob-
serve the results of their tampering. NASA’s virtual windtunnel [2],
in which airflow around a particular object is calculated, is a well
documented example of this approach. An observer can enter a
“black void” in which the object is suspended, insert “ink” sources
to produce streamers along flow lines, and view the airflow compu-
tations from within the air space around the object. This system vi-
sualizes a precomputed computational fluid dynamics solution, and
only allows the user to explore the space of the computed solution,
without the ability to interactively modify the object or wind condi-
tions for which the solution was generated.

The architectural community is very interested in full-scale in-
teractive environmental simulation of planned environments from
the point of view of an immersed human observer. Parameters of
interest include lighting, temperature, and airflow throughout an
entire building, and the computations can become very complex.
Some architectural firms have constructed non-interactive, prede-
fined video-tape visualizations comprising many moving people
[18]. Realistic world simulation, where the environment itself is



changing based on a reasonable subset of physical and chemical
laws, and under the possible influence of user-initiated changes to
the scenario set-up, is a much more difficult task. Combining such
simulations with immersive visualization by one or more active ob-
servers adds particular challenges with respect to synchronization
and data management.

For systems that do offer interactive, real-time scientific visual-
ization of complex simulations, the data transmission problem is
well documented [3, 8, 10]. As the simulated system grows more
complex, the amount of data needed to describe the full simulation
state of the system in each time step can easily exceed the avail-
able bandwidth between simulator and visualizer. Efficient encod-
ings, even lossy compression, have been employed to alleviate this
communications bottleneck [8]. Another approach is to run the vi-
sualizer on the same (super)computer that performs the simulation,
thereby hopefully gaining access to any needed data for visualiza-
tion on demand in less than a frame time. However, this requires
that the observer be physically close to the simulation engine, or that
there exist a fast video link between the visualizer and the display
screen used by the observer [9]. The video link approach also re-
quires an extremely low-latency command line from the observer
to the simulator to make the user’s normal movements and interac-
tions with the environment reasonably responsive. In such a set-up
it might be more difficult to realize a collaborative environment in
which individual observers can sign on at will from anywhere in the
country at any time.

Densely occluded interior environments such as buildings, boats,
planes, or caves offer certain advantages for immersive environ-
mental simulation. They can take advantageof the same kind of pre-
processing that has already been demonstrated in the context of vi-
sualization of static models [17]. Only those simulation results that
affect the currently visible set of spaces need to be transmitted to
the visualizer. A cell-based decomposition of the densely occluded
world allows an effective estimation of a tight yet still conservative
superset of the data which is absolutely necessary for visualization
at any moment in time. As long as the number and complexity of
the cells visible at any time remains bounded, the size of the whole
world model can be, in principle, arbitrarily large – as long as there
is sufficient (super)computer power to keep the ongoing simulation
up-to-date.

3 PROBLEM FORMULATION

The first problem we faced was to combine two existing large and
relatively well-developed programs into an integrated system that
leaves room for growth and experimentation. We will now briefly
introduce the two preexisting systems and define the key integration
issues.

3.1 Walkthru and CFAST

The Berkeley Walkthru program was designed to support real-time
interactive visualization of large (several million polygons), densely
occluded building models at interactive frame rates (greater than 10
frames per second). To accomplish this goal, the Walkthru subdi-
vides the “world” into rectilinear cells, connected by portals. In a
preprocessing step, the system associates with each cell the set of
all other cells that can be seen by an observer from any point within
that cell. From this information, plus constraints on how quickly the
observer can move through the database, the Walkthru can compute
a set of cells for each frame that tightly, but conservatively, bound
the set of cells visible in the next few frames. There are only two
types of object in the Walkthru: “major occluders,” which are two-
dimensional wall, ceiling, or floor polygons, whose planes define
cell boundaries; and “detail objects,” which are 3D models of build-
ing contents (such as furniture and light fixtures), and which are as-

sociated with the cells that intersect the object’s bounding box. Dur-
ing each frame, the detail objects and major occluders incident to
any visible cell are drawn, and visibility is reevaluated from the new
position. If the user wishes to voluntarily disallow changes in major
occluders by the database editor and any in-use simulators during a
visualization run, many visibility relationships can be precomputed
for the database. Otherwise, the update rate of the visibility com-
putations is easily quick enough to support relatively small-scale
changes in the visibility structure of the world (i.e. punching some
new holes in walls, or opening a new shaft in the floor or ceiling). In
the last few years, Walkthru has provided a testbed for several ap-
plications including database construction [4], large scale radiosity
computation [16], and scalable distributed walkthroughs with up to
thousands of simultaneous users [11]. This technology can now be
leveraged into support for distributed virtual environment simula-
tion.

NIST’s CFAST is the world’s premier “zone model” fire chem-
istry and physics simulator. Similar to the Walkthru, it assumes an
environmentcomposed of rectilinear 3D regions (called “volumes”)
which are interconnected by portals (called “vents”). Within each
volume, physical quantities such as gas species concentrations, raw
fuel density, combustion byproducts, atmospheric pressure and tem-
perature, and wall, ceiling, and floor temperature are tracked. A
system of differential equations monitors the flow and exchange of
these quantities through vents into adjoining volumes. Although
CFAST’s building partition concept is analogous to the Walkthru’s
cell structure, CFAST does not require similarly precise geome-
try. Volumes have a floor and ceiling height as well as length and
width, but only the area of the volume (length times width) is rele-
vant. Volumes are also not positioned in 3D space; only their size
and height matters, and their connectivity through vents. Similarly,
the exact X and Y location of the vents is irrelevant to the physics
and is not represented; only orientation (horizontal or vertical) and
cross-sectional area of the vent are needed, as well as the height at
which it connects to the two prismatic volumes. As in the Walk-
thru, walls and floors are differentiated from “detail objects” such as
furniture. Wall specifications include material and thickness infor-
mation. The furniture database contains no geometry, but does in-
clude mass, materials, chemistry, and ignition and combustion detail
curves for each type of object. Objects will ignite at predefined tem-
peratures and burn as separate fires, producing appropriate physical
and chemical effects on the environment. Other fire-related objects,
such as sprinklers and HVAC ducts, affect the physics of the situa-
tion in realistic ways, but their only geometric component is posi-
tional information. Thus, the geometry of the CFAST situation can
be derived from a Walkthru model, but the Walkthru model contains
much more geometric information than CFAST represents; like-
wise, the unadorned Walkthru database contains none of the chem-
ical, material, or “building systems” information (i.e. in-wall duct-
work, piping, and wiring) needed by CFAST.

CFAST’s main engine is a differential equation solver, computing
flows of physical quantities and chemical species over time in the
upper and lower parts of each volume. The formulation of the prob-
lem as a set of differential equations makes it feasible to create a par-
allelized version of CFAST, but this has not been done yet. CFAST
provides large quantities of physical and chemical information, in-
cluding concentrations of each of 10 chemical species, combustion
products, temperatures of atmosphere, walls, floors, and ceilings,
ignition times of objects, toxicology results, and many other physi-
cal and chemical quantities for each volume per time point.

While our system was designedspecifically to integrate the Walk-
thru with CFAST, we attempted to make the combining framework
sufficiently general to be useful for any environmental simulation
one might want to do in a densely occluded world. Throughout this
paper, we will refer to a generic “visualizer” and a generic “simula-
tor;” for this project, the reader may infer “Walkthru” for visualizer
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Figure 2: How Walkthru (top) and CFAST (bottom) would “see” the
same model. The Walkthru model contains detailed geometric infor-
mation, but little else; the CFAST model is geometrically much sim-
pler, but contains chemical and materials information that Walkthru
lacks.

and “CFAST” for simulator, but should keep in mind that the de-
scribed framework is designed to be useful for other visualization
and simulation engines.

3.2 Integration of Visualization and Simulation

Given CFAST and Walkthru, and with consideration to future visu-
alization/simulation integration efforts, we are assuming the follow-
ing model for our system:

We have a simulator and a visualizer, each of which operates on a
cell-and-portal style environmental database. This database may be
arbitrarily large, i.e., we could be operating on a building that will
not fit into memory, and each of the two component systems can deal
with the paging problem in its own way. However, due to occlusion,
the visible “working set” of volumes will be tractable for any ob-
server position. There is a mapping between the volumes of the vi-
sualization database and the simulation database, but the two are not
be expected to be the same (i.e. a simulator “cell” might cover mul-
tiple visualizer “cells”, or vice versa). Presently, we do not support
arbitrarily complex geometric mappings between the two databases;
we assume that one or more visualizer cells correspond to one sim-
ulator cell. We assume that the visualizer will transmit any setup
information needed to begin simulation before issuing the start com-
mand. Furthermore, the visualizer may provide a front end by which
the scenario being simulated may be changed on-the-fly. For exam-
ple, the user may start a wastebasketfire in some room and then ex-
plore how the spread of the fire is influenced by opening or closing
various doors or windows in the visualizer, thus repeatedly chang-
ing the situation being simulated. In such a case, the visualizer must

transmit an update to the simulator in real time, and the simulator
should recalculate previously computed simulation results that are
affected by the change, as well as alter the course of the simula-
tion in progress. CFAST explicitly supports opening and closing
of vents at certain times in the model; however, we can make other
interactive modifications by “restarting” CFAST in the middle of a
run. We store the internal state of the solver at each time point, and,
if necessary, “roll back” the simulator to the time of the modifica-
tion by resetting the appropriate internal state if a change is made to
the simulation conditions at a previously-computedsimulation time.
The solution is rather brute-force, as it requires complete recompu-
tation of all conditions from that point forward. Hopefully in the
future CFAST will directly support interactive modification with-
out requiring discarding all simulation results past the time of the
change.

Either one or both of the two component systems may be dis-
tributed, and may be operating on computers connected by any-
thing from a LAN to a potentially high-latency, low-bandwidth net-
work such as the Internet. We would also like to be able to attach
and detach visualizers to a simulation in progress, to allow multi-
ple observers to independently observe different portions of the data
from the ongoing simulation. Each component system maintains
its own world database during operation. The simulator generates
data about subsequent world states observing relevant dependen-
cies. CFAST operates with a fixed time step and produces its re-
sults in time slices that span all volumes in the database; these con-
tain the current values of all the variables that are being tracked, and
some derived quantities such as aggregate toxicity. Only a subset
of that information will be of relevance to the visualizer at any par-
ticular time. We refer to a discrete piece of simulated information
that is associated with one time slice and one spatial cell, a simula-
tion “chunk.” These chunks might be generated in different order
depending on the demands of the visualizer.

The bottleneck in getting simulation data to the visualizer for ren-
dering in real time may be in one of two places: either the simulator
is too slow to generate data in real time, or the communication pro-
cess between the simulator and visualizer has insufficient bandwidth
to transmit the necessary chunks in a timely fashion. The simula-
tion speed bottleneck is likely to hold for single-CPU simulations
of reasonably sized databases; CFAST on a single 150MHz R4400
can only simulate about 16 cells (depending on degree of intercon-
nection and density of furniture) in real time. Our goal in this situ-
ation is to increase the simulator’s potential effectiveness by letting
it know what areas of the world are of current interest to the visu-
alizer. Specifically, the visualizer will inform the simulator of the
currently visible cells and of the cells that may become visible in
the very near future. The simulator can then concentrate on calculat-
ing and shipping the corresponding chunks with priority. In the near
future, we expect simulator technology to improve; simulators will
become faster, and their designs will evolve to provide better sup-
port for interactive visualization. Recent work has shown that this
can be a promising approach for modeling the dynamics of physical
structures [5]. In the specific case of CFAST, NIST is working on
a version that will be able to concentrate its computational efforts
on critical areas of the simulation, improving the speed and poten-
tial size of the simulation. We are also considering parallelizing the
CFAST core for the Berkeley Network of Workstations (NOW) [1].

For the case where communication bandwidth is the bottleneck,
the framework provides mechanisms that are easy to use and that op-
timally exploit the available bandwidth, while hiding communica-
tions concerns from the simulation designer. Of course, it is not pos-
sible to guarantee that all needed simulation chunks will be at the vi-
sualizer in time: the user might jump to a different part of the build-
ing or suddenly advance the time slider far into the future. To min-
imize the visible discontinuities associated with such a switch, we
use a “just-in-time” chunk transmission scheme. Our scheme keeps



the communication channel in a state of near-starvation, allow-
ing unanticipated “emergency” chunks to be sent through a nearly-
empty transmission queue. This approach minimizes latency in the
emergency case while still transmitting chunks at the highest possi-
ble rate for the channel.

4 KEY ABSTRACTIONS

The key primitives that define the interactions between simulator
and visualizer are the Simulation Data Set and the Real-Time Chan-
nel over which this information gets exchanged. In this section we
define these two abstractions.

4.1 The Simulation Data Set

In order to provide efficient data exchange between simulator and
visualizer, we need a general structure for simulation data that can
be easily managed and which is flexible enough to accommodate
any information that a particular simulator may want to convey to
the visualizer. This structure, called the simulation data set, which
holds all simulation results, is organized in a three-level hierarchy
as a set of sets. At the top level, it is indexed by simulation time. At
the second level (i.e. within a particular timeslice) it is indexed by
an identifier corresponding to one of the volumes into which the two
databases are partitioned. At the third level, each spacetime volume
contains a set of one or more integer-indexed subvolumes which to-
gether provide an arbitrarily sized data subspace for each volume.
The leaf nodes of this hierarchy are the aforementioned “simulation
chunks;” they are fixed-size data structures that represent part of the
simulation output for a particular volume at a particular simulation
time. The structure of a chunk is user-definable, so it can be easily
modified to accommodate different simulator models. Because the
system has a known mapping between simulator volume IDs and
Walkthru cells, the visualizer can transmit desired simulation time
and cell visibility information to the simulator, allowing the latter to
determine exactly which chunks still need to be transmitted.

We do not currently manage distributed simulations, since the lat-
est version of the CFAST code is unable to operate in parallel. How-
ever, assuming that any multicomputer simulator subsystem would
be able to distribute the problem appropriately, the chunks gener-
ated by the separate simulators are easily recombined via simple set
unions. Furthermore, since the subsystem controller knows how the
problem is distributed, it should also be able to appropriately dis-
tribute the visibility lookaheaddata provided by the simulation man-
ager.

4.2 The Basic Communication Mechanism

A simple and robust communications model is critical to both the
performance and ease of use of a system that will be used to inte-
grate a visualizer and a simulator for real time operation. Our com-
munication model is based on a primitive we call a real-time chan-
nel (RTC). This is a 2-way, buffered, asynchronous mechanism that
can operate in either a nonblocking polling or an interrupt-driven
mode. Each channel has two separate 2-way byte streams: a data
stream for most communication, and a command stream, intended
to be used relatively infrequently, for user commands and simulator
status packets that need to arrive quickly. The interface to a channel
is independent of the specific low-level mechanism used (currently
either Internet- or Unix-domain sockets), and provides the ability
to send either single-integer “commands”or arbitrary-length “pack-
ets” across either of the two streams. A server mechanism is pro-
vided that allows a simulator to open a server port on a machine and
wait for connections, which will launch an instance of a simulator

connected to an instance of a channel. Channels can be opened lo-
cally or over a network; the appropriate low-level protocol is auto-
matically selected by the system when it connects.

5 PROGRAMMING, INTEGRATION, AND
USER INTERFACES

With the data format and the basic communication mechanism de-
fined, we now look at the system’s interface and functionality from
the point of view of both visualization designer and simulation de-
signer.
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Figure 3: A diagram of how the system components connect simu-
lator to visualizer. Components in bold outline are created by the
simulator designer; components in dotted outline are provided by
the integration framework.

5.1 Visualizer User Interface Constructs

The visualizer’s user interface needs to allow the user to connect
and disconnect the simulator, as well as to control the progress of
“visualization time.” The selection of which volumes are being vi-
sualized is determined simply by “walking” to the appropriate area.
We provide a standardized simulator controller consisting of a panel
with simulator connection and status controls, a time slider bar that
covers the timespan of the currently running simulation, and a set
of VCR-style controls (play, reverse play, fast forward, reverse, and
pause) that allows the user to control the rate at which time passes.
The slider bar may be directly manipulated to change the current
viewing time to any desired value; the VCR controls alter the “time
velocity” of the user in simulation time (Play is velocity 1, Fast For-
ward and Rewind are 10 and -10 respectively, Pause is velocity 0,
etc.). The portion of the slider corresponding to data that has been
computed by the running simulation is colored green; the portion
corresponding to the as yet unsimulated timespan is colored red.
This provides immediate feedback to the user about how far the sim-
ulation has progressed. The slider is prevented from entering the red
region.

The controller also includes a tool intended to mitigate the inher-
ent “burstiness” of most simulations, including CFAST. This tool,
called the autopause mechanism, will automatically “pause” the vi-
sualization time in two cases. At the beginning of the simulation
run, it allows the simulator to get a certain distance ahead of the
current visualization time, in order to provide a buffer of data that
allows the visualization to proceed smoothly if the simulation out-
put becomes bursty. Second, at any time, if the visualization time



“catches up” to the simulator, the pause is engaged in the same fash-
ion. In either case, when the simulation provides enough of a buffer,
the pause will automatically be removed and visualization time will
once again move forward.

5.2 Establishing a Connection

There are two mechanisms for establishing a connection between a
simulator and visualizer. A local connection can be established by
the visualizer forking a simulator process, which is connected via a
local channel. Alternatively, the simulator can establish a server on
either a local or remote machine, and the visualizer can connect to it.
Once a connection is established, negotiation and setup are handled
by the simulator-specific visualization front-end and the simulator
being run. In the case of CFAST, the CFAST visualization front-
end within the Walkthru transmits the simulation scenario across
the channel in the form of a native CFAST data file, which it can
create and/or interpret from the Walkthru model geometry, registra-
tion information, and chemistry data provided by the user. Nego-
tiation is specific to the particulars of the simulation being run, so
the only mechanism provided is the communication channel. When
both sides are ready to begin, they each establish their respective
“manager” (either a visualization manager or a simulation man-
ager). With the managers attached to the channel, the simulator may
begin generating data and submitting it to the simulation manager,
and the visualizer can begin visualizing simulation data provided by
the visualization manager, each side trusting the managers to han-
dle the communication process. Attaching the managers does not
restrict use of the channel; “out-of-band” information such as con-
dition changes and commands from the visualizer can pass through
the managers and across the channel, where the simulator can ac-
count for these changes by adjusting or re-simulating all or part of
the current run.

5.3 Visualization Manager and API

The visualizer’s access to simulation data is controlled by the visu-
alization manager and the simulator’s visualization “front-end;” the
former is a standard component of our architecture, while the latter
must be provided by the simulation designer for each simulator to be
integrated into the system. When launched, the visualization man-
ager establishes a connection to a simulation manager on the other
end of a channel, as well as registering a callback with the visibil-
ity lookahead system of the Walkthru. The simulator’s visualization
front-end launchesboth the simulator and the visualization manager,
and must provide the visualization manager with a starting visual-
ization time and time velocity; these values are typically derived
from the simulation scenario. The visualization manager keeps the
simulation manager apprised of both the currently visible set of vol-
umes (from the renderer’s visibility system) and the current visu-
alization time and velocity; this is done via corrections which are
transmitted across the command stream of the channelwhenever the
time, time velocity, or lookahead set changes.

The simulator visualization front-end provides the user with both
direct and indirect control of the simulator and visual interpretation
of the simulation results. It may include arbitrary user interface con-
trols for the simulation scenario, and it is required to include a ren-
dering function for simulation chunks. The rendering function ac-
cepts a Walkthru database cell and a set of chunks describing the
current conditions in the cell, and renders the chunks’ contents into
the GL window. During each frame, it is called with all visible cells
in the frame that have simulation chunks associated with them at the
current visualization time. It is never called for a cell or simulation
chunk that is not visible in the current frame; this provides efficient,
rapid rendering of simulation conditions. The front-end is also pro-
vided with hooks into the visualizer’s event processing system and

is required to interpret any user interactions that might affect the on-
going simulation scenario. If suchan interaction happens, the neces-
sary changes to the scenario are transmitted to the simulator, and, by
default, all simulation chunks from that simulation time forward are
invalidated. The simulator then has the option to either re-validate
(i.e. tag valid without regenerating) or regenerate any portion of that
data.

CFAST simulation chunks come in two types. The first type con-
tains temperature, energy output, location, and fuel conversion rate
of one particular fire; there can be many of these in one spacetime
volume, corresponding to active fires from individual fuel sources
such as pieces of furniture. The second type, of which there is
only one per spacetime volume, contains the chemical concentra-
tions of nine different gases, fuel concentration, atmospheric pres-
sure and toxicity level, and smoke interface height for the volume
as a whole. The user can select a “natural” viewing mode or one
of several “scientific visualization” modes. In the natural mode, the
drawing function renders the smoke interface with texture-mapped
smoke flowing in the appropriate direction. If there are active fires
in the volume, a texture-mapped, animated flame is drawn at each
flame location with a physically accurate height and base area. If
the user is actually inside the smoke, hardware-enhanced fogging
of the viewing volume is used to simulate visibility attenuation. A
side panel indicates the chemical composition of the atmosphere;
an alarm sounds when the user experiences toxic chemical levels.
These panels and signals help the user determine what sort of con-
ditions would be experienced by someone inside the burning build-
ing. Alternatively, one of the scientific visualization modes can be
used. For example, if the user is interested in temperature, “infrav-
ision” can be activated; the observer can look at the walls, floor, or
smoke, and the surfaces are pseudo-colored according to their tem-
perature. Thermal distributions on the walls can be directly viewed,
and the spread of heat can be observed. Selection of appropriate vi-
sualization modes is an ongoing research topic of this project. Good
combinations of visualization and realistic rendering are being ex-
plored to provide maximum information transfer to the user.

5.4 Simulation Manager and API

The simulation manager allows the simulator to generate simula-
tion data as rapidly as possible without worrying about how that
data is being transmitted to the visualizer. Once the manager is en-
gaged, the simulator simply generates data, and “submits” the data
in the form of simulation sets to the simulation manager. Submis-
sions may be made for any timeslice or volume ID; if a simulation
chunk is submitted for the same time, volume ID, and subvolume ID
as a previously submitted chunk, it supersedes the older chunk. In
this way, a simulator may “retract” any subportion of the previously
generated data that is incorrect or that was generated as a quick ap-
proximation to be improved later. This will generally happen when
the user makes a change in the environment at a particular simula-
tion time, rendering many or all of the chunks after that time invalid.

If the simulator has the necessary capabilities, it may request the
current set of visible volumes and the current visualization time
from the simulation manager, and selectively generate or improve
the corresponding simulation data to ensure that the visualization
can proceed without pausing. We believe that this will be an impor-
tant feature of future simulators that intend to provide visualization
data in real-time while operating on very large databases.

6 SIMULATION DATA MANAGEMENT

We have stated that the visualizer and simulator can rely on the vi-
sualization manager and simulation manager to get the simulation
data to the visualizer in time to be viewed. In this section, we ex-
plain how this is implemented via “just-in-time” data management.



6.1 “Just-In-Time” Simulation Data Management

In order for the visualization manager to ensure that the appropri-
ate simulation chunks are either already present or en route from the
simulation manager, it has to provide the simulation manager with
enough information to determine which chunks are most critically
needed. To do this, we define an “importance function” over space-
time, in which the chunks associated with spacetime cells of higher
importance will be transmitted to the visualizer earlier. Clearly,
the spacetime cells that are visible to the user at the current visu-
alization time are the most important ones, and are needed imme-
diately by the visualizer. Given the user’s location, maximum ve-
locities in space and time, the current visualization time, the cur-
rent visualization time velocity, and the preprocessed volume vis-
ibility information from the Walkthru’s cull process, we can com-
pute for each spacetime cell the earliest real time in the future in
which the user might be able to see that cell. This defines the de-
sired function; smaller “earliest-possible-time-to-visibility” values
correspond to higher importance. The information needed to com-
pute this function is available to the visualization manager, which
is directly linked to the visualizer; one of the visualization man-
ager’s tasks is to transmit this information to the simulation man-
ager, which evaluates the importance function over the set of chunks
generated by the simulator, and thereby determines which unsent
chunks are most important at any given time.

Our current system does not support the full computation of this
function. We implement a heuristic approximation by maintaining
a visibility set and an up-to-date visualization time at the simulation
manager. The visibility set contains the set of Walkthru cells that
are either currently visible to the observer, or may be visible in the
next several frames. This information is normally computed as part
of a Walkthru frame. The visualization manager monitors the vis-
ibility set and transmits an update to the simulation manager if the
set changes from one frame to the next. Similarly, the visualization
time and time velocity are updated if the user alters the time veloc-
ity or moves the time slider. Note that, though the visualization time
changes as real time passes, the simulation manager can keep accu-
rate track of the current visualization time without continuous up-
dates from the visualization manager; updates are only necessary if
the user manipulates a control setting.

The simulation manager then assigns highest importance to the
transmission of chunks that are in the visible set and whose time is
closest to the current visualization time in the direction of the current
time velocity. The next highest importance is assigned to chunks in
the visibility set in the opposite direction of the current time veloc-
ity, since the user often wants to review preceding time slices in the
current location to find out how the situation has evolved. All other
chunks are of tertiary importance. This corresponds to an approxi-
mation of the “ideal” importance function discussed above for very
high values of time velocity; it can be computed quickly and does
not require the full visibility information of the Walkthru’s visibil-
ity processing. The simulation manager uses the communications
channel to transmit those chunks that have not already been sent and
are of highest importance as denoted by the heuristic function.

A suddenchange in the time, time velocity, or visibility set can re-
sult in a need to get a new set of chunks to the visualizer as quickly as
possible. If the user has been visualizing simulation time ts = 10,
for example, and the time slider is moved to ts = 200, the simu-
lation manager may have this data, but it is unlikely that the data
has been transmitted already. In this case, the simulation manager
immediately evaluates the most critical chunks to be sent to the vi-
sualizer, and transmits those chunks as soon as possible.

It is interesting to note that limiting the user’s maximum “time ac-
celeration” (i.e. disallowing direct manipulation of the time slider,
allowing the user to move in time only with the VCR buttons) has
the effect of allowing us to compute a “time lookahead” to go along
with the visibility lookahead. This means that we can establish a

tight superset of the number of spacetime chunks that might be vis-
ible in the next few seconds of real time. Without such a bound, the
potentially visible set from one frame to the next includes the set of
potentially visible cells for all timeslices of simulation data avail-
able, because the user can drag the time slider from any point to any
point within one frame time. With such a bound, and a bound on
the number of chunks that will be submitted per spacetime volume
(which is easy to derive for most simulators, including CFAST), we
can compute a minimum required bandwidth so that we can guaran-
tee that all of the needed chunks will be available if there has been
at least enough time since the chunk’s submission to overcome the
latency of the communication channel.

If memory is limited on the visualization machine, it is possible
for our system to run the visualization manager as a cache, rather
than as an accumulator of the entire simulation data set. In this case,
the visualization manager is allowed to “throw out” old or not re-
cently used chunks. The visualization manager reports to the simu-
lation manager which chunks have been discarded, so that they may
be retransmitted if they need to be viewed again,. In the case of very
large precomputed data sets, the simulation manager can also be run
on a local machine, managing access to a huge disk file instead of
an active simulation, while the visualization manager manages the
set of simulation data being cached in memory.

6.2 Bandwidth Management

Given only the importance function on the set of simulation chunks
that have been submitted, there is no indication of how much data
should be sent by the simulation manager per unit time. Because the
channel is buffered, if no bandwidth usage constraint is enforced,
then every time some conditions are submitted by the simulator,
all of that data could be queued for transmission through a chan-
nel which will not be able to actually finish transmitting that data
for quite some time. In a priority situation, when the importance
function has changed due to user input, and a different set of chunks
are needed immediately, queued“old” chunkswould delay the trans-
mission of urgent data until those older chunks had drained through
the pipe. This “clogging” reduces or eliminates the system’s ability
to respond to sudden changes in visibility or time. Unfortunately,
with most physical simulators, this situation would occur fairly of-
ten; physical simulators, including CFAST, tend to exhibit “bursty”
output corresponding to sets of solutions for conditions across a
slice of time for the entire model. If we use our importance function
to determine which chunksare to be sent, the situation becomeseven
worse; sudden changes of the user’s time or position generate even
larger spikes, as new, potentially huge sets of chunks become highly
important when the user walks into a new region of the database.

An early solution we tried for this problem is to include a priority
bypass which provides the ability to interrupt the channel’s normal
input queue with a second queue of chunkswhich are to be transmit-
ted first. In an interactive system, this priority bypass often proves
ineffective, due to the fact that two of the aforementioned sudden
changes in the importance function could cause the system to send
priority data down an already busy priority channel, and the more re-
cent priority packets, which are now more critical, are delayed in the
same fashion that the one-channel strategy delays the first set of pri-
ority packets. The situation is made worse in larger databases; in the
unmanaged condition the size of these spikes grows with the size of
the database. Adding bypasses on top of bypasses quickly becomes
unwieldy and inefficient; once all of the data is sitting in multiply-
bypassed queues, control of transmission order becomes impossi-
ble, the amount of storage needed for redundant queues quickly be-
comes prohibitive, and the work needed to override a chunk which
has been regenerated by the simulator grows without bound.

The core of the problem is the inherent buffering of data in the
communication channel. This buffering is unavoidable due to its



ubiquity in the low-level communication structures provided by the
operating system and the network itself, which use buffering to op-
timize throughput. Unfortunately, the more buffering there is in the
channel, the larger the potential latency for a high-priority packet
to be transmitted through the channel; since guaranteed-receipt net-
work protocols guarantee arrival in order of transmission, every bit
of buffered data in the channel must clear the channel before our
high-priority packet can get through. Thus, we would like to op-
erate the channel in a near-starvation mode, which simultaneously
minimizes buffering while using all or nearly all of the bandwidth to
transmit useful chunks as quickly as possible. This job is handled by
our bandwidth manager, which closely controls the speed at which
the simulation manager is allowed to transmit chunks to the visual-
ization manager. Available bandwidth is currently specified to the
bandwidth manager in total kilobytes (kb) per second. The band-
width number should be selected to closely approximate real band-
width (i.e. on two machines on an Ethernet, bandwidth might be on
the order of 1,000 kb per second, whereas two machines connected
by 28.8 kilobaud [kbps] modem would only be able to manage about
3 kb per second). Several times a second, the bandwidth manager
“wakes up” and gives the simulation manager permission to trans-
mit another x kb worth of simulation chunks on the data stream,
where x is the given bandwidth divided by the manager’s wakeup
frequency. When this happens, the simulation manager selects x kb
worth of chunks from the unsent chunk pool in order of importance,
and gives those chunks to the channel for immediate transmission.
By the time the manager wakes up again, all of the submitted chunks
should have cleared or nearly cleared the channel; thus, if an emer-
gency situation happens while the manager is asleep, when the man-
ager next wakes up, the most important chunks will be transmitted
on a nearly empty channel, which minimizes the transmission la-
tency for those chunks. At the same time, if no emergency occurs,
the channel is still being utilized at nearly its maximum capacity,
with the next most important set of chunks being sent “just-in-time”
for the channel to have completed transmitting the last set; clogging
cannot occur if the bandwidth estimate is accurate or conservative.

In our current system, the bandwidth manager’s settings are pro-
vided by the user. In the future, we intend to have the bandwidth
manager dynamically determine via feedback how much bandwidth
is available in the pipe, and scale its notion of available bandwidth
appropriately [12].

6.3 Performance

Figures 4 through 6 show a typical example and comparison of the
performance of three strategies for data management. The most ba-
sic is the naive, oldest-data-first strategy (figure 4A) which simply
queues timeslice data into the communication channelas it becomes
available. The second is the visibility-guided strategy (figure 4B),
in which simulation data is transmitted only for visible or almost-
visible volumes (i.e. in order of the basic heuristic importance func-
tion), but with no bandwidth management, so that it queues all un-
sent available data for the visible volume set after a change in vi-
sualization time or the visible set. The third strategy is our full
bandwidth-managed-importance strategy (figure 4C), which incor-
porates all of the subsystems mentioned in this paper. The data was
gathered from our instrumented RTC package during identical pre-
recorded runs of both the visualizer and simulator, in which all sim-
ulation data generation, user motion, and manipulation of the time
slider and VCR controls were recorded and reproduced in exactly
the same way for each run. The communication bandwidth was ar-
tificially reduced to 3 kb/s for these runs in order to demonstrate the
difference between the strategies; at present, our largest test case is
insufficient to stress the switched Ethernet in our office. The reader
may wish to note that this bandwidth was selected to correspond to
that available from a 28.8 kbps modem link.

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300

S
im

ul
at

io
n 

T
im

e 
(s

)

A. Trace Data:  Oldest-Data-First Strategy

Requested Visualization Time
Simulated Up To

Max. Simulation Time Transmitted

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300

S
im

ul
at

io
n 

T
im

e 
(s

)

B. Trace Data:  Visibility-Guided Strategy

Requested Visualization Time
Simulated Up To

Max. Simulation Time Transmitted

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300

S
im

ul
at

io
n 

T
im

e 
(s

)

Real Time from Simulation Launch (s)

C. Trace Data:  Bandwidth-Managed-Importance Strategy

Requested Visualization Time
Simulated Up To

Max. Simulation Time Transmitted

Figure 4: Trace data of simulator-visualizer data transfer for three
strategies: the oldest-data-first strategy (top), the visibility-guided
strategy(middle), and the bandwidth-managed-importancestrategy
(bottom). The horizontal axis is real time; the vertical axis is simu-
lation (i.e. virtual) time. Three functions are plotted for each strat-
egy: the amount of simulation time completed by the simulator, the
viewer’s current visualization time, and the timestamp of the latest
chunk that has been transmitted from simulator to visualizer. Note
the vertical lines in the requested visualization time, which denote
user-created time discontinuities, and the horizontal lines in the re-
quested visualization time, which show regimes for which data is
available from the simulator, but for which that data had not been
transmitted in time to be viewed. The “maximum simulation time
transmitted” curvesgive an indication of how responsiveeach strat-
egy is to user movement in space and time.
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Figure 5: Trace data of communication pipe backup (i.e. clogging)
for the oldest-data-first and visibility-guided strategies. The for-
mer is much worse than the latter, although it is in the latter that
it actually makes a difference. Pipe blockage in the bandwidth-
managed-importance case is negligible (less than 1.5 KPS on this
graph, where the others peak at about550 KPS and 250 KPS respec-
tively), and can in fact be reduced to an arbitrarily small amount on
a fast computer by increasing the manager’s callback frequency.

The three graphs in figure 4 compare three functions of real time
for each strategy: how far the simulator has progressed through
the simulation, labeled Simulated Up To; the latest simulation time
for which simulation data has actually been sent to the visualizer
(i.e. the maximum possible viewable simulation time at the visu-
alizer), labeled Max. Simulation Time Transmitted, and the simu-
lation time currently being requested by the user within the Walk-
thru, labeled Requested Visualization Time. If bandwidth were infi-
nite, the user should be able to “see”simulation results whenever the
requested visualization time is less than the simulated-up-to time,
and the maximum simulation time transmitted would be identical to
the simulated-up-to time (which is the most recent simulation time
available from the simulator). Under bandwidth limitations, how-
ever, it may be that the requested visualization time is less than the
simulated-up-to time, but the data is not yet available (i.e. the max-
imum simulation time transmitted is less than the requested visual-
ization time) due to failure of the communication channel to trans-
port the needed data. The most visible evidence of this in the graphs
is where the requested visualization time becomes a horizontal line,
indicating that the autopause mechanism has engaged due to the vi-
sualizer not having the needed data (resulting in a zero time velocity
and unchanging visualization time). Many such flats are seen in the
case of the oldest-data-first strategy; the channel is far too narrow
at 3 kb/s to transmit the data in time. The visibility-guided strategy
does better toward the beginning of the run, where the fact that few
volumes are visible allows it to get more timesteps to the visualizer,
since those steps contain fewer volumes. However, when the user
walks out into the hallway at time 70, the new set of visible volumes
results in a deluge of newly important data being queued into the
channel. When the user proceeds to move the time slider at time 83,
the channel is clogged with the (as yet unsent, but already obsolete)
“priority” data from the hallway transition, and the system is unable
to respond, resulting in a period of no data being visible. A graph
of the communication channel blockage per unit real time (figure 5)
shows that a large “clog” occurs at time 70 in the visibility guided
case; this clog is what prevents the adaptation to the time discon-
tinuity at time 83. The oldest-data-first strategy shows much more
extensiveclogging. Ironically, since the naive strategy has no ability
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Figure 6: Trace data of the percentageof spacetime volumes visible
to the user which have simulation data available, but for which that
data has not yet been transmitted to the visualizer. The oldest-data-
first strategy exhibits massive gaps in viewable data; the visibility-
guided strategy fares better, but there is still a 40-second period
where the user should be seeing smoke and flame, but instead
sees nothing. The bandwidth-managed-importancecase shows only
brief, 1- to 2-second gaps at time discontinuities (i.e. where the user
unpredictably drags the time slider far into the untransmitted data).

to adapt to changing conditions anyway, the clogging is somewhat
moot.

In the bandwidth-managed-importancecase, the system adds the
data to the pipeline a little at a time, never adding enough to clog it
for more than a fraction of a second; when the user enters the hall-
way, the system immediately switches to transmitting the needed
data for the hallway, and when the time slider is moved, a similar
switch is performed that sends the data for the new time. Since the
pipe is never clogged, the needed data can be transmitted quickly in
subsequent emergency situations.

Figure 6 shows the crucial data of concern; that is, the percent-
age of volumes per unit real time that are visible to the user and for
which simulation data has been generated,but for which that simula-
tion data has not been transmitted yet. The top curve shows that the
oldest-data-first strategy spends almost half of the simulation run in
this state; the viewer is looking at blank volumes when they should
be seeing smoke. The center curve shows that the visibility-guided
strategy does well until the second discontinuity at t = 83, at which
point it breaks down as well; however, it recovers just after t = 100,
whereas the oldest-data-first strategy doesn’t recover for another 20
seconds. Finally, the bandwidth-managed-importance strategy is
shown at the bottom. The spikes are 1 to 2 seconds long, and are
only present at gross visualization time discontinuities (compare the
locations with the vertical jumps in visualization time in figure 4).
This corresponds closely with the minimum response latency for an
emergency; it takes about 1 second just to transmit the data for a
timestep at 3 kb/s, and the bandwidth manager makes new band-
width available once every 0.5 seconds in our system, so the total
response latency in our test case has a lower bound of 1 second, and
an expected time of 1.25 seconds if the channel had absolutely no
latency (which is the ideal case). Thus, our bandwidth manager ap-
proaches ideal performance under these conditions. If we bound the
user’s time velocity, we can further reduce the frequency of these
spikes; with a bandwidth of about 30 kb/s, we could eliminate them
entirely for any user manipulation of the VCR controls (i.e. any time
velocity under 10 virtual seconds per real second). This claim can-
not be made for the other two strategies.



7 CONCLUSION

We have developed an example of a simulation based environment
for the study of fire hazards and their environmental effects in build-
ings. An existing simulator, NIST’s CFAST, and an existing visual-
izer, the Berkeley Building Walkthru program have been integrated
via a new general framework.

To achieve the most effective simulation for real-time visualiza-
tion, we have exploited the “cell-and-portal” data structures of both
systems. The resulting spatial subdivision and localization of the
overall world allows the visualizer to concentrate the expensive ren-
dering task on only those cells that are possibly visible to the ob-
server. With a suitably structured simulator, preference could also
be given to simulating the environment in the neighborhood of the
observer; but even with an unstructured simulator that produces data
in a strictly time-ordered fashion, the cell-based subdivision permits
an efficient grouping and prioritizing of the simulation data for its
transmission to the visualizer over a potentially bandwidth-limited,
high-latency network.

The integration of CFAST into the Walkthru visualizer makes the
results of this powerful fire simulator much more understandable at
several levels and allows the user to interfere with and redirect the
ongoing simulation. Previously, CFAST operated in a batch mode,
and provided limited, one- and two-dimensional graphs and data
dumps that had to be pieced together with substantial cognitive ef-
fort. The use of 3D computer graphic techniques employing suit-
able symbolic visualizations permits scientists to perceive several
variable values such as temperature, smoke levels, or air toxicity in
a parallel and quantitative manner. On the other hand, using more
natural rendering techniques showing flickering flames and drift-
ing smoke clouds, gives even lay-persons an intuitive understanding
of the environmental phenomena being simulated. Such realistic-
looking virtual worlds offer the promise of practicing fire-fighting
and rescue strategies without any physical danger to the trainee.

The abstractions, integration mechanisms, and high-level data
structures that define the interface between the CFAST fire simu-
lator and the Walkthru visualization program are also applicable to
other virtual environments combining one or more simulators with
first-person interactive visualizers in densely occluded worlds. The
demonstrated programming interfaces will also allow rapid proto-
typing and integration of other environmental simulations into the
Walkthru.
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