
Object Associations
A Simple and Practical Approach to Virtual 3D Manipulation

Richard W. Bukowski Carlo H. Skquin

University of California at Berkeley 1

Abstract

This paper describes a software framework to aid in design-
ing and implementing convenient manipulation behaviors for
objects in a 3D virtual environment. A combination of al-
most realistic-looking pseudo-physical behavior and ideal-
ized goal-oriented properties, called object associations, is
used to disambiguate the mapping of the 2D cursor motion
on the display screen into an appropriate object motion in
the 3D virtual world and to determine a valid and desirable
final location for the objects to be placed. Objects selected
for relocation actively look for nearby objects to associate
and align themselves with; an automated implicit grouping
mechanism also falls out from this process. Concept, struc-
ture, and our implementation of such an object association
framework in the context of the Berkeley Soda Hall WALK-
THRU environment are presented.

1 Introduction

Creating a fully equipped model of a large, furnished build-
ing for virtual walkthroughs is an arduous task. Even as-
suming the availability of a good interactive 3D geometry
editor with a friendly and efficient user interface, such tasks
are inherently much more difficult than drafting and edit-
ing in only two dimensions. The problem with a 3D world
is that it is impossible to exactly control all six degrees of
freedom (DOF) at once with only 2-dimensional input and
display devices. Typically, software solutions are used to
map 2D cursor motion to limited 3D object space motion
[12]. These can be cumbersome to use in complex environ-
ments, and do not address the fact that objects often require
positioning with respect to objects around them. High-tech
solutions such as the “SpaceBall” [2], “DataGlove,” 3D mice
[15], or virtual 3D displays do not solve the problem either;
precise placement of objects in three dimensions is hard -
even in the real world - unless we get help from the phys-
ical interactions of the objects we want to place. Consider
positioning a picture frame one millimeter in front of a wall

‘Computer Science Division, Soda Hall, Berkeley, CA 947?0-1776;
bukowskiOcs.berkeley.edu and sequinOcs.berkeley.edu.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or drstnbuted for
direct commercial advantage, the ACM copyright notrce and the
title of the publication and Its date appear,. and notice IS given
that copying is by permission of the Assocration of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
1995 Symposium on Interactive 30 Graphics, Monterey CA USA
0 1995 ACM O-89791 -736-7/95/0004...$3.50

without touching the wall with the frame or with your hands;
visual feedback alone cannot do a satisfactory job.

As part of the Berkeley WALKTHRU Project we have
built a prototype version of an object manipulation system,
called “WALKEDIT,” tailored to populating large building
models with furniture, personal items, books, coffee cups,
and various trimmings and details that make such a build-
ing model look real and interesting (see Figure Cl). Our
approach is based on a system of “object associations,” a
software framework that supports simple and practical ma-
nipulation of 3D objects with 2D I/O devices via two spe-
cial types of programmer-supplied procedures and an im-
plicit grouping behavior. It gives the programmer the abil-
ity to specify object-dependent methods of. disambiguating
2D gestures in a 3D world and allows association of suitable
local behavior with database objects to make precise default
placement easy. These associations usually fall somewhere
between physical simulations and mathematical constraints,
but can be less formal and more flexible than either.

2 Interactive Building Environments

In the process of developing an editor for our Soda Hall
WALKTHRU program, we examined different methods for
helping the user to move objects in 3D with 2D devices.
We wanted the process of moving furniture in a 3D virtual
environment to be as quick and easy as moving cut-out card-
board pieces on a floorplan. However, it should also be pos-
sible to force objects to align themselves nicely to walls and
to one another, if the operator chooses such an option.

There is no single correct answer to the question of what
“ideally” should happen in response to a user dragging an
object across the 2D display screen. There is at least one
uncontrolled degree of freedom (DOF) due to the third co-
ordinate of the virtual world. Choosing the “right” value to
be assigned to this coordinate becomes a contention between
realistic (physically correct) and teleological (.goal-oriented)
models for the virtual world, and is strongly dependent on
the specific application domain. Traditional tools tend to
take an extreme stand on one or the other end of the spec-
trum.

Most 2D drafting tools provide an idealized goal-oriented
behavior. Selected shapes freely follow the cursor “across”
other objects and snap nicely into alignment with other fea-
tures if grids or gravity have been turned on. Setting up these
extra controls requires some overhead for activating align-
ment manifolds, setting up tugboats and orientation frames,
changing editing modes, or grouping and un-grouping ob-
jects. In 3D virtual worlds, the situation is even worse; ob-

131

jects now have twice the number of DOFs to be controlled.
However, the real world being modeled can often provide
disambiguating clues or implicitly desirable alignments. By
exploiting these application-specific expectations, some of
the teleological control overhead can be automated. In a
simulation of a physical environment, it seems natural to
exploit gravity and solidity to disambiguate the projection
of the 21) input parameters into the 3D virtual world. By
providing automated alignment with the surfaces on which
objects come to rest, extraneous DOFs are removed, and
the cognitive burden of specifying them is removed from the
user. A complete, accurate, physical simulation, on the other
hand, may be counter-productive to efficient 3D editing; we
all know how hard it is to move real furniture through a
small apartment.

Since we are working in a virtual world, we can adopt se-
lectively some of the desirable characteristics, while ignoring
ot,hers, and add some useful non-physical behavior on top.
Such “magic” behavior can be more convenient than the
behavior of real-world objects [13]. It is easier to move fur-
niture without concern for temporary physical obstruction
or inter-penetration; the notorious task of moving a piano
through a staircase is no problem in our WALKEDIT envi-
ronment, and pictures can hang on walls without physical
hooks. On the other hand, extra physical or non-physical
constraints can be imposed where they simplify manipula-
tion task:;: e.g., pictures can be forced to hang perfectly level
at all times, or chairs in a classroom can be made to snap
into nicely aligned rows. Object associations provide the
structure and the encouragement for the interface program-
mer to set up this balance between realism and virtual-world
magic.

Some of the key paradigms of 3D manipulation and some
of the behavioral aspects of objects in a building that we
found desirable when populating our Soda Hall model with
furniture are summarized below, together with a reference
to the object associations that provide the corresponding
behavior:

User-selected objects should follow the mouse pointer,
so that “point and place” becomes an integral, intu-
itive operation. The relocation procedure (to be dis-
cussed below) provides the main mechanism for this
behavior.

Objects typically should not float in mid-air but rest
on some supporting surface. If the cursor points to the
surface of a desk or to a bookshelf, it can be implied
that the user wants to move the selected object to that
particular surface; an association procedure, “pseudo-
gravity,” supports that goal.

Alternatively, many things, such as picture frames
or light fixtures are attached to walls or other verti-
cal surfaces; another association procedure, “on-wall,”
generates the desired behavior.

Such implicit associations of objects with reference ob-
jects should be maintained even when the reference
object moves or is changed in other ways; however,
they must also be breakable so that objects can be
lifted off a surface easily and moved somewhere else.
An automatic dynamic grouping mechanism built into
the object association framework provides that ser-
vice.

We have also found visibility information to be an im-
portant tool. In our WALKEDIT environment, it is natural

for the user to move in such a way that the destination point
of the motion is visible and the object’s final position can
be defined precisely by direct pointing. Therefore, we find
it acceptable to restrict object manipulations to locations
that one can see, avoiding the complexity of user interfaces
with which one can reach behind other objects (e.g. systems
based on DataGloves or other 3D devices). This simplifies
considerably the task of mapping 2D pointing to 3D motion.

3 Object Association Framework

3.1 Background

Our approach borrows heavily from several paradigms de-
veloped in the realm of interactive computer graphics over
the last decades. It first has notions of snap-dragging [3],
but without the need of explicitly dealing with visible align-
ment manifolds; most alignments are provided automatically
by the association procedures rather than explicitly by the
user. Second, while it can emulate some of the be.havior
of a physical simulation of the objects in the environment
[l, 71, it can be less constraining than our every-day world;
objects can pass through one another and remain in physi-
cally impossible non-equilibrium positions under the control
of suitable associations, which may be application-spec:ific or
may depend on the editing mode. Third, while some associ-
ations could readily be described as constmints, our system
does not require the rigid formality and associated solution
machinery that one would find in a mechanism editor based
on an underlying constraint system [ll, 4, 10, 8, 61.

A novel feature that emerges naturally from our ap
preach is an automated implicit grouping mechanism; :it uses
the relationships established between objects as they repo-
sition themselves with respect to their environment.

3.2 Two-Phase Approach

The generic editing move in an interactive environment is
to “grab” a.n object and then to “place” it (and any objects
grouped wi,th it) somewhere else. In our “WALKEDIT” pro-
gram, a user clicking on an object selects both the object
itself and a selection point on the object which makes a nat-
ural handle for further manipulation. Once the object and
its selection. point have been established, the user can apply
either a local motion by dragging the mouse pointer, or a
remote operation such as “picking up” the object and “plac-
ing” it at a different location. Control of these motions and
final placement is handled by the procedures of the Iobject
association.

When clragging the object to some desirable final posi-
tion, the intermediate path of the object should be as direct
as possible to follow the goal-oriented directive of the user,
yet the final position should be “realistic” within the defined
simulation constraints of the virtual environment. This ex-
tracts the best of the two competing approaches discussed in
Section 2; the user can move the object anywhere in a true
teleological way, but then the object realigns itself to sat-
isfy some of the physical realities of the environment. This
leads to a two-phase approach to moving an object. During
a first relocation phase, the object follows a trajectory free
of physical or behavioral restrictions and which is a suitable
disambiguation of the 2D path specification in screen space
into a 3D rnotion in world space. During a second aasocia-
tion phase ,the object uses its association rules to determine
a good nearby position which best satisfies the stated be-
havioral co:nditions of the object in a rest state.

132

Object associations are thus based on two types of small
procedures that are invoked when an object is selected. Each
object is assigned one relocation procedure but may have a
number of prioritized association procedures. The relocation
procedure is used during local, interactive motion to disam-
b&ate gestures made with the mouse pointer; it defines

a mapping of incremental 2D mouse motion to incremental
3D object motion. Association procedures are used for both
local and remote placement; they apply additional motion
components to an object, based on the other objects in the
area, with the goal to preserve the desired object behav-
ior. In addition, objects will dynamically link themselves to
the reference objects with respect to which they have aligned
themselves; they will typically follow any movements of these
reference objects.

3.3 Associations used in WALKEDIT

In WALKEDIT we are primarily concerned with keeping
objects supported against gravity, having them attached -
and thus properly aligned - to the ceiling, to walls, or to
vertical surfaces of other objects, or having objects aligned
with respect to each other. All this can be achieved with a
remarkably small set of primitives. Different objects carry
by design one or more (ordered) association attributes. The
user can add or remove extra association attributes from
the existing set to selected objects during the interactive
walkthrough mode. When such an object is selected, its
attributes will determine which relocation procedure applies
to the object and which association procedures are used to
determine the final placement of the object.

So far we have implemented two relocation procedures:
the on-horizontalprocedure is designed for objects that move
primarily horizontally, while the on-vertical procedure is for
moving along vertical surfaces. In both routines, the object
moves along a piecewise continuous, polyhedral 2D manifold
in space. The left mouse button translates the object along
the manifold without changing its orientation relative to the
manifold. The middle button rotates the object about a
line through the center of its bounding box normal to the
manifold section on which the object rests.

In addition, there are three association procedures: the
pseudo-gravity procedure, the anti-gravity procedure, and
the on-wall procedure. Pseudogravity simulates objects
that normally rest on a supporting surface. Anti-gravity
is used for attaching light fixtures, smoke detectors, sprin-
klers, and other such objects to a ceiling. On-wall is used for
pictures, white boards, wall clocks, and other objects that
hang on vertical surfaces. All of our WALKEDIT association
searches use the same type of ray-based probing mechanism
to find alignment objects. These ray-probes determine which
nearby objects affect the alignment of the selected object.

We cannot expect that these few simple procedures will
take care of all editing needs in our building environment.
The goal is to make 90% of the typically encountered op
erations easy and natural. For special needs we still can
access traditional editor functions via pull-down menus. If
one needs an exact rotation by 45 degrees, one opens the
rotation operator menu; if one wants to create a perfect row
of 20 chairs, the familiar replicate menu is perfectly appro-
priate. If, on the other hand, one finds that one often has
to do a special task that is not well supported by classi-
cal editor menu commands, such as pushing furniture into
corners, then it pays to write a new association procedure
“in-corner.” This procedure probes in all 4 directions, finds
the two closest objects, and then does on-wall alignments in
two directions, trying to satisfy them both at the same time.

If this is not good enough, because one frequently wants
to crowd furniture together in less regular formations, then
it is time to develop a more or less accurate pseudophysical
collision detection mechanism and add it to the collection
of association procedures. Depending on the types of ob-
jects that need to be manipulated, this may simply be based
on bounding boxes (good enough for file cabinets) or may
use a more sophisticated algorithm that can handle concave
objects (needed for grand pianos). We are currently experi-
menting with a prototype implementation of such a collision
detection routine based on the Canny-Lin algorithm that
quickly finds closest features in pairs of convex shapes [9, 11.

We have integrated these procedures with the user in-
terface layer that controls all the major editing functions:
selection, dynamic grouping, dragging, and detailed place-
ment. In the following sections we review these tasks in de-
tail and discuss our implementation of the procedures that
constitute the object association framework.

4 Selection and Dynamic Gathering

In WALKEDIT, selection is performed by shift-clicking the
object. There may be other objects that have been previ-
ously associated with the selected object; these other objects
were positioned with respect to the selected object when they
were last moved. For example, the reference object identified
by the pseudo-gravity association is the surface on which the
selected object came to rest. Since the position of the ref-
erence object influenced the position of the selected object,
it makes sense to implicitly group the latter with the former
and maintain that relative positioning when the reference
object is moved. This means that all of these associated
objects must be found and grouped with every new object
selected; this grouping is maintained for the duration of the
motion. An object can have multiple associations; it will
then move when any of its reference objects moves.

Associations are not permanently maintained con-
straints; they are applied to the object that is currently be-
ing moved. Moving an object can cause other associations
to disappear. Doing the group search dynamically ensures
that each time an object is picked, the group that gets as-
signed to it is the right one at that point in time. Because
associations are determined from a selected object towards
potential reference objects, but are used in the opposite di-
rection, valid associations between two objects may change
by the motion of a third, unrelated object. For example,
an alignment association between two concave objects may
leave space between the two into which a third object can be
inserted, thereby breaking the previous association. To allow
for such changes and to ensure robust behavior of the object
association framework, every time an object is selected we
perform a local search for associated objects dynamically in
real time and store them in a separate data structure. For
efficiency, likely candidates (that is, those objects that were
known to be associated with the selected object previously)
are checked first. Then, a general search is started in the
vicinity of the selected object, relying on our cell-based spa-
tial subdivision structure used for visibility precomputation
and observer tracking [14]. The association procedures (see
below) are called for all objects incident to the subdivision
cells occupied by the selected source object to see if they are
associated with it; each object returns a set of association
links, and all of these links together form a graph on the ob-
jects in that region. The search efficiently calculates a local
closure on this graph to obtain the group of objects linked,
directly or indirectly, to the selected object.

133

To keep the virtual environment interactive and the re-
sponse to any mouse-directed motions instantaneous, we do
not delay the interactive manipulation of the original se-
lected object; we carry out the association search in the
background. As soon as an associated object is found, it
is subjected to the cumulative set of manipulation transfor-
mations applied so far to the source object. This approach
has the somewhat startling effect, that when the user grabs
and moves a fully loaded desk, some of the objects on the
desk may at first remain behind, suspended in mid-air, and
will then catch up with the new desk position within a few
seconds as they are found to be associated with the desk. We
found that most users quickly accept this behavior. To min-
imize this effect, the association closure graphs, once con-
structed, are cached in memory, so that any further moves
of such a group of objects can be truly instantaneous. The
closure process may be safely interrupted before closure is
complete if the user decides not to move the chosen object
but instead selects a different one. The cache holds what-
ever portion of the graph was completed, and this potentially
useful work is saved; the next time an object in the area is
selected, the system will simply pick up the search where it
was left off.

This implicit grouping mechanism replaces both the ex-
plicit grouping mechanism found in many 2D editors and the
inherent grouping resulting from setting constraints between
objects. Our mechanism keeps the user focused on the actual
positioning of the desired object, while automatically mak-
ing many of the grouping connections the user would have
to make by hand with either of the classical methods. Fur-
thermore, breaking a connection between objects that have
been implicitly associated is as simple as grasping the depen-
dent (associated) object and moving it to a new location, at
which point the association with the old reference object is
broken and a new one is established. Of course, we also
give the user the power to override the automatic grouping
mechanism by turning it off, or to perform grouping manu-
ally by al&clicking objects to explicitly add or subtract them
from the current group. The two grouping mechanisms can
be active simultaneously; adding an object to a group by
olt-clicking will then also add any associated objects to that
group.

5 Dragging with Relocation Procedures

The local motion paradigm - dragging the object with the
mouse - is the basic editing move for fine-tuning the posi-
tion of an object, or for moving objects over short distances;
the user selects the object, then moves the mouse pointer in
the desired direction. To generate each frame of the motion
animation, the relocation procedure is first called to convert
the cursor position into a constrained position on a suitable
auxiliary manifold that depends on the type of association
carried Esy the selected object. The relocation procedure
moves the object along the manifold in such a way that the
selection point maintains coincidence with the cursor. After
the relocation procedure determines the base motion, any
relevant association procedures are run to determine addi-
tional motions that the object must perform to maintain its
desired behavior. The association procedures will normally
move the object in degrees of freedom not controlled by the
mouse; h.owever, if a more constraining motion is desired,
it may further restrict the motion on the surface of the 2D
manifold. For instance, the association procedure may force
an object. to move along a 1D path as if dragged by an invis-
ible rubber band between the mouse and the selection point.

When the user initiates an interactive motion by hold-
ing down some shift/control key and clicking a mouse but-
ton, the relocation procedure is called with argument.s cor-
responding to the current screen coordinates of the mouse,
the user’s view frustum, the particular drag mode being used
(translate or rotate), the selection point on the object, and
the original mouse screen coordinates where the object was
selected. It first makes an aprioriselection of one or two pre-
ferred DOFs that can be controlled directly and unambigu-
ously with a mouse or with another 2-parameter input de-
vice, and which most naturally reflect the basic motion of the
selected object. A simple, invisible, auxiliary P-dimensional
manifold, such as a plane, cylinder, or sphere, is established
through the current selection point; the only requirement
for the auxiliary manifold is that its projection into the view
window maps points on the screen 1:l onto points c’n the
manifold. The object is then moved under mouse control in
such a way that its selection point stays on the manifold.
The mapping between the cursor motion on the screen and
the relocation of the selection point in the 3D virtual world
is obtained by intersecting the cursor ray from the eye point
with the autiary manifold. This gives an intuitive behavior
for direct control; the object, grabbed by the user-selected
handle, will follow t.he projection of the mouse movement on
a reasonable restricted manifold. In general, these manifolds
should be piecewise continuous so that the object will move
in a predict.able local way for small movements of the mouse.

The manifold used in our on-horizontalprocedure is sim-
ply a horizontal plane through the selection point. In the
translation mode, the eye-cursor ray is intersected with the
plane equation .z = sz, where s is the original coordinate of
the selection point. The ray-plane intersection returns some
point i; the procedure returns translation vector i - s. In
the rotation mode, the eye-cursor ray is ignored; the z offset
of the mouse pointer on the screen is used as an angle. A
rotation by that angle about the plane normal is returned.

On-vertical uses a more complex manifold, composed of
piece-wise planar offset surface segments situated in front of
the faces of the visible walIs in the scene. In the translation
mode, the procedure uses the geometric database to intersect
the eye-mouse ray with the first surface it hits. If this sur-
face is a vertical one, the intersection point i of the ra;y with
the surface is determined, and the translation vector 1 - s
is returned (where s is, again, the initial coordinate of the
selection point). However, the algorithm also computes the
rotation angle between the manifold’s surface normal at the
selection point and at the new point, and returns that rota-
tion to maintain the orientation of the object’s “back” with
respect to the manifold. This makes wall hangings follow the
changes in wall orientation; if a wall hanging is moved a.round
a corner, the rotation causes it to turn its back toward the
new wall z: it moves. The on-vertical rotation mode simply
rotates the object about the normal of the manifold.

After sliding the object along the alignment ma:nifold,
the relocation procedure returns a 3D oflset vector in space,
representing the difference between the original pose of the
object whe.n it was selected and the new pose indicated by
the mouse motion; this represents the fundamental nnotion
intended by the user. This offset position is what is passed
on to the association procedures for the object.

0 Placement with Association Procedures

At the offset position, the association procedure needs to
find the closest valid rest pose for the moving object, given
that the latter is supposed to obey some particular behavior.

134

The first step is to find the possible candidates for alignment.
All of our association procedures currently rely on ray pro-
jections. Pseudo-gravity and anti-gravity cast rays vertically
downward and upward from the selection point, respectively;
the objects that these rays hit are the objects with respect
to which the selected object’s position is adjusted, falling
down or up respectively. The on-wall association casts rays
in the major horizontal axis directions of the original defini-
tion of the object; the closest object in those four directions
is the one used for alignment, as the object “falls” sideways
against the closest vertical surface.

In these simple procedures, the object does not change
its orientation. It is assumed that the object was suitably
defined in its local coordinate system, i.e., in a horizontal,
aligned position, so that by simply translating it, say, down-
wards onto (typically horizontal) floors, it will come to rest
in the intended position.

Here is the pseudo-gravity procedure in pseudo code:

1. While the object 0 has changed height in the last
iteration, do:

(4

(b)

(cl

Project a ray from the selection point S on object
0 downward to hit some face F of some object
A;
Determine if S is within the bounding box of
some object B (the smallest bounding box if
there is more than one);

if (B is NULL) or (B==A) or (S is visible), drop
the bottom of O’s bounding box to the height of
F; else, lift the bottom of O’s bounding box to
the height of the top of B’s bounding box;

2. Return the total motion of 0 and associate 0 with A;

In general, this procedure will place the selected object
on top of another one that the user points at by using a
combination of visibility cues and interference tests (see sec-
tion 8.1 for discussion of visibility issues). The anti-gravity
procedure, used for objects that stick to ceiling surfaces, is
identical to pseudo-gravity with the vertical directions re-
versed (“upward” instead of “downward” and “bottom” for
“top”). The on-wall procedure makes some additional as-
sumptions. For an object to attach itself to a wall, it needs
to have some notion of a “back-side” which is moved to be
coincident with the closest vertical support surface. Since
the Soda Hall object descriptions do not carry such a no-
tion explicitly, we assume that the object is defined with
its back’s surface-normal in one of the major horizontal axis
directions. These four directions are then checked for the
closest vertical surface, and the pseudo-gravity algorithm is
then run along the corresponding axis. Thus when the user
first brings such an object into the Soda Hall environment,
it needs to be placed close to some wall with its one side
that is supposed to act as its back-side.

For every move generated from an offset vector along
the relocation manifold, the association procedures decide
what local fix-up motions must be made at the new posi-
tion to implement the desired local behavior for the object
(e.g., falling to a supporting surface, in the case of gravity).
Each association procedure computes local components of
the overall motion, commensurate with the desired object
behavior. The motion generated by the association proce-
dures may also cause the object to change from one support-
ing manifold to another, such as when the motion generated
by the relocation procedure would move the object beyond
the edge of the current support or into another solid object.

Once the association has determined what local objects
and forces affect the motion of the selected object, the off-
set vector from the relocation procedure is modified to re-
flect the local motion, and the new vector is returned from
the association procedure. The procedure may also option-
ally return a set of one or more new local associations of
the selected object with other objects in its new environ-
ment. When the user finalizes the motion by “releasing” the
selected object, these new associations replace the original
associations that were in effect when the object was selected.

Objects can be placed into the scene directly out of a
knapsack. This is a standard inventory mechanism based on
a temporary buffer with which users can pick up, put down,
cut, copy, or paste the currently selected object or group. In
case of such a direct placement from a knapsack, the user
designates a destination point, but there exists no original
object handle location in 3-space from which an offset vector
can be calculated; thus, the relocation procedure is bypassed.
In these cases, the eye-to-cursor ray is intersected with the
first object that it hits, and a previously determined selection
point of the object in the knapsack (or the center of the
bounding box, as a default) is brought into coincidence with
that 3D location. Normally the object to be placed will now
be in an inconsistent physical state with respect to objects
at the target position; the association procedure(s) for the
selected object are called to correct the positioning in an
appropriate way, such as lifting it to the surface of the target
object under the influence of “pseudo-gravity” or pasting it
to the target face if the primary association of the object to
be placed is “on-wall.” The object can now be re-selected
and further fine-adjusted with local dragging motions.

7 Multiple Associations

Multiple association procedures may come into play for sin-
gle objects. For example, objects like book cases are sup-
posed to obey pseudo gravity and simultaneously fit snugly
against walls. This may reduce the DOFs of an object to just
one or even zero. In the latter case, the object may jump
from one desirable location to the next one as the user moves
the mouse pointer and the association procedure selects the
closest location that fits the desired behavior.

Multiple associations attached to an object type are ex-
plicitly ordered. The corresponding procedures are called in
a chain, each one receiving the cumulative associations and
offsets generated by the one before. A systems programmer
assigning combinations of associations to certain types of ob-
jects must consider their possible interactions. The interac-
tions can potentially be very complicated since associations
are described functionally rather than mathematically; an
association procedure can conceivably do anything. Because
of this, it is difficult, if not impossible, for the object associ-
ation framework to generically resolve conflicts between all
combinations of procedures. The associations implemented
in WALKEDIT are simple and orthogonal and are particu-
larly tailored to the rectilinear, axial environment of Soda
Hall; thus, their interactions are easy to predict and not
very problematic. The individual adjustments of all associ-
ations are gathered into a single cumulative transformation
which is then uniformly applied to the selected object and
all its dependent associated objects in the dynamically found
group.

Figure 1 shows the flow of control, from the inputs to
the object association mechanism to its output for an object
with a relocation procedure and two association procedures.
On the input side, the user selects the object (upper box) and

135

then moves it with the mouse pointer (lower box). Selecting
the object launches the implicit grouping search, which pro-
ceeds simultaneously with the other operations. The original
position of the object and the motion of the mouse are sent
into the relocation procedure, which uses the initial position
and the mouse motion to determine an offset which is sent
through the chain of association procedures. Each associa-
tion procedure modifies the offset and sends it to the next
procedure, while outputting associations. The last proce-
dure also outputs the final motion of the object in 3D space,
which is applied to the list of objects output by the implicit
grouping search.

INPUT OUTPUT

I Selected Object Se1 of I
, Associated Objects

I

’ a I E
Objecl Space 1

‘S I

] ,i
I

Pseudo-~ravi,y: - Association of Object

I -2 Move Down from
I with the object klow il

1 Cwrent 3D Position
I

i

I I

I 3DOffrel ’
I Object Space ’
1

!) Object Motion

I
, inDatabare

I I .

Figure 1: A flowchart showing the various procedures at
work for an object that obeys on-wall and pseudo-gravity
(for example, a bookcase).

An interesting algorithmic question is raised by cyclic
constraints arising from the mutual associations of several
objects. Imagine placing two “on-vertical” objects back-to-
back in the middle of a room. Each object will associate with
the other, thus forming a cycle. If object A is selected, object
B will dynamically group with it, and will want to rigidly
follow the motion of object A; however, object A will want
to move along the surface of object B, because its association
sees B as the closest vertical surface. Thus the two objects
can never again be moved away from their joint back-to-
back alignment plane. A similar situation could arise if an
“on-ceiling” light fixture is attached to the underside of a
table obeying pseudo-gravity. Our current solution involves
breaking loops - once they have been detected - at the point
where a ‘large object would associate itself with a smaller
object. This seems to provide the right feel in a building
environment: but may not be a general enough answer.

8 User Interface Issues

While we can start from a few desirable paradigms (see Sec-
tion 2) to define the user interface for object manipulation
in a 3D virtual world, there will always be situations that
will put some of these principles in conflict with one another
and where there seems to be no obvious “right” answer. A
few such tricky problems are raised in this section and our
current solutions are discussed.

8.1 Use af Visibility Information

One of the main cues used to disambiguate the depth co-
ordinate during object manipulation is the intersection of
the cursor ray with a visible support surface. Thus when
moving an object obeying pseudo-gravity, one would typi-
cally grab it near its “foot” while looking downwards onto
the supporti.ng surface. This establishes a relocation mani-
fold with a reasonable intersection angle with the cursor ray
and gives the user good interactive control over the motion.
It raises the issue what should happen when the objmect is
dragged beyond the visible range of the support surface or
outside the extent of the support altogether. It also raises
the issue how one can ever lift an object ofFsuch a support
surface, e.g., to place a book onto a higher shelf.

Figure 2 illustrates a first typical situation. It Chould
be possible to slide a coffee cup underneath a table; thus,
we can not simply lift it to the top of the table when the
bounding boxes of the cup and of the table start to intersect.
Here we use visibility information and our pointingpara,digm
to resolve the issue. As long as the cursor ray clears the
table top, the cup stays on the floor. Since no part of the
table is between the cup and the floor, and the cup i.s not
actually intersecting the table, the association procedure has
no difficulties settling the cup in a valid position on the floor.
However, w:hen the ray intersects any part of the table, and
the bounding boxes of the cup and the table intersec-t, the
cup gets lifted to the top of the table.

Another critical situation is shown in Figure 3. When
the cup is dragged beyond the edge of the table top, a. non-
physical situation occurs. This could be resolved in two
ways. The system could try to place the cup where the
cursor ray hits a valid support surface. Since the ray may
still hit the table top, or perhaps end in a vertical surface,
this will not always lead to a useful answer. Thus we have

KEY: 0 Mouse positions on the screen

e Motion made by user
- -> Relocation procedure

Figure 2: A. selected cup (1) is dragged under a table. Vis-
ibility information is used to determine when it rises to the
tabletop (2); the association procedure modifies both the
object posit,ion and mouse cursor position (3).

136

KEY: 0 Mouse positions on the screen

--) Motion made by user
- -> Relocation procedure

Figure 3: A selected cup (1) is dragged off a table’s support-
ing surface. The cup falls (2) onto the lower surface (3).

found that it makes more sense to give priority to the phys-
ical view of the world and drop the cup straight down from
the spot where it left the table top to the floor, which then
acts as its new support surface.

In all these situations we have an interesting interplay
between the teleological and the physical view of our virtual
world; visibility information and the intersection of cursor
ray with a particular objects are used as additional cues to
infer the intent of the user.

8.2 Mouse-Cursor Correspondence

Another key paradigm of the desired user interface is that
the object should follow the cursor as directly as possible.
This principle needs to be violated necessarily in situations
such as the ones above, where establishing a physically valid
position may result in a dramatic (vertical) adjustment. As
long as the association procedure doesn’t add any motion
to the object, the relocation procedure usually maintains
correspondence. However, the association procedure has no
responsibility to maintain the connection between the mouse
pointer and the selection point. This then raises the issue
whether in such situations the cursor should stay where the
user last moved it, or should be “warped” along with the ex-
tra motion given to the object by the association procedure.
While it is generally preferable to keep the cursor point at-
tached to the handle established at the selection point on
the object, this has the consequence that the cursor - and
the object itself - may disappear from the screen altogether.
Consider the situation in Figure 4 where the cup is moved
beyond the back end of the table, and where the cursor ray
hits no suitable support. The gravity procedure will drop the
cup behind the table and possibly out of sight, and the cur-
sor may vanish with it if the floor lies below the lower edge
of the viewport. If the fall happens too quickly, the user
might not know where the cup has gone and what should be
done to bring it back. We have introduced several remedies
for this unacceptable situation. First., the cup is made to
fall slowly, to imitate reality to some degree and to give the
user time to see what is happening. Second, the cursor never
disappears entirely from the screen; in the above situation it
would be clamped at the lower edge of the viewport. Third,
we maintain three axial lines through the selection point on
the object to give the user better insight into its position in
d-space. In the above case, the user would thus still see a
vertical line emanating from behind the table, giving a clear
cue of where the cup currently lies.

To bring the object back into view, the user can move
the cursor so that the (invisible) cup moves into the bound-
ing box of the table, whereupon it jumps back to the table
top. Alternatively, the user may go to a new location from
where the cup is visible, and then continue moving it from
its current location on the floor behind the table. Finally,
if the object seems totally lost, it can readily be brought
into the knapsack while it is still selected, and from there it
can be placed directly at the current cursor position. A key-
board shortcut permits to “warp” the object directly from
any (possibly hidden) position to the cursor position with a
single ctrl-click. This operation is also a very efficient way
to quickly populate a room with furniture. It takes three
mouse operations to place an object in a desired spot: one
click to select it, a &l-click to warp it into the neighborhood
of the desired spot, and one shift-click-and-drag operation to
fine-tune the final position.

9 Software Engineering Concerns

Providing desired object behaviors in 3D virtual worlds is in
principle not an easy task. Many nitty-gritty problems con-
cerning data structures and efficient representations must be
addressed in order to keep the environment truly interactive.
Creating a cohesive framework of object associations is our
attempt at keeping this overhead concentrated in one place,
so that it can be amortized more easily by the systems pro-
grammer with each new object behavior introduced, and so
that the user can be given the flexibility of easily choosing
the types of behaviors for each object that are most appro-
priate for the manipulation tasks at hand.

The descriptions of the association and relocation proce-
dures used in the Soda Hall walkthrough look very simple in
pseudo-code. It is important to note that the pseudo-code
is very close to the level of the actual C code used for the
implemented procedures. This is because the WALKTHRU
program system provides a rich set of libraries including a
complete geometric computation package that operates on
vectors, rays, points, planes, and other objects. It also pro-
vides the mechanisms to easily search the local area of an
object for other objects, to find the objects whose bound-
ing boxes contain a given point, and to quickly find the first
object intersected by some space ray. Thus, most lines of
pseudo code convert to a few lines of actual C code, making
implementation rather straightforward. In such an environ-
ment, object associations are most naturally implemented

KEY: 0 Mouse positions on Ihe screen - - - -. - .!f~~S~mstum
e Motion made bv user

.._.__ Observer

- -> Relocation procedure
---Z= Association procedure

Figure 4: A selected cup (1) is moved off the back of a table
(2), falling completely out of the view window (3). The
cursor is clamped to the lower edge of the window.

137

with additional C routines; the C language is more flexi-
ble and powerful than any higher level geometric scripting
language we could design ourselves.

10 Results

We have constructed a placement editor for real-time inter-
active w.dkthrough of large building databases. One of our
primary goaJs was to work with off-the-shelf input and dis-
play hardware, a goal which required the use of a software
framework to allow the user to perform unambiguous 3D
manipulation with 2D devices.

Our solution is based on object associations, a frame-
work that provides the flexibility to combine pseudo-physical
properties with convenient teleological behavior in a mix-
ture tailor-made for a particular application domain or a
special set of tasks. We have found that such a mixture of
the “maE;ical” capabilities of geometric editing systems with
some partial simulations of real, physical behavior makes a
very attractive and easy-to-use editing system for 3D virtual
environments. The combination of goal-oriented alignments,
such as snap-dragging, with application specific physical be-
havior, such as gravity and solidity, reduce the degrees of
freedom the user has to deal with explicitly while maintain-
ing most of the convenience of a good geometrical drafting
program.

We found it to be practical to separate into two types
of procedures the mapping of 2D pointing to 3D motion
and the enforcement of the desired object placement be-
havior . These procedures are clearly defined and easy to
implement as small add-on functions in C. Geometric and
database toolkits allow high-level coding and ease of modi-
fication. Our object associations normally cause little com-
putational overhead to the WALKTHRU system. This is an
important concern, since keeping the response time of the
system fast and interactive is a crucial aspect of its usability
and user-friendliness [5].

The result is a technique that makes object placement
quick and accurate, works with “drag-and-drop” as well as
“cut and paste” interaction techniques, can provide desir-
able local object behavior and an automated grouping facil-
ity, and greatly reduces the need for multiple editing modes
in the user interface. The resulting environment is devoid
of fancy widgets, sophisticated measuring bars, or multiple
view windows. To the novice user it seem that not much is
happening - objects simply follow the mouse to reasonable,
realistic l.oca.tions. And that is how ideally it should be: any
additional gimmick is an indication that the paradigm has
not yet been pushed to its full potential. Some issues remain
to be fully resolved, such as dealing with association loops,
but our prototype demonstrates that this approach provides
a simple, flexible, and practical approach to constructing
easy-to-use 3D manipulation interfaces.

A prototype implementation in the context of a model
of a building with more than 100 rooms has proven to be
attractive and has reduced by a large factor the tedium
of placing furniture and wall decorations. One of the au-
thors has constructed scenes of rather cluttered offices with
many pieces of furniture, fully loaded with books, pencils,
coffee cups, etc. in five to ten minutes (see Figure C2).
The implementation in our specific WALKEDIT applica-
tion domain required only 5 programmer-defined procedures
to fully characterize most of the desired object behavior.

138

References

PI

PI

PI

[41

[51

[61

PI

PI

PI

[101

ml

WI

P31

PA

P51

Baraff, D. Fast Contact Force Computation for Non-
penetrating Rigid Bodies. Proc. of SIGGRAPH ‘94 (Or-
lando, FL, Jul. 1994), pp. 23-34.

Barlow, M. Of Mice and 3D Input Devices. Computer-
Aided Engineering 12, 4 (Apr. 1993), pp. 54-56.

Bier, E.A. Snap-Dragging in Three Dimensions. Proc. of
the 1990 Symposium on Interactive JD Graphics (Snow-
bird, IIT, Mar. 1990), pp. 193-204.

Borning, A. The Programming Aspects of Thinglab,
a Constraint-Oriented Simulation Laboratory. ACM
Trans. on Programming Languages and Systems 3, 4,
pp. 353-387.

Funkhouser, T.A. and SCquin, C.H. Adaptive Dlisplay
Algorithm for Interactive Frame Rates during Visual-
ization, of Complex Virtual Environments. Proc. of SIG-
GRAPH ‘93 (Anaheim, CA, Aug. 1993), pp. 24’7-254.

Gleicher, M. Briar: A Constraint-Based Drawing Pro-
gram. Proc. of the ACM Conference on Human Factors
in Computing Systems - CHI ‘92 (Monterey, CA., May
1992), pp. 661-662.

Hahn, J.K. Realistic Animation of Rigid Bodies. Com-
puter Graphics 22, 4 (Aug. 1988), pp. 299-208.

Helm, R., Huynh, T., Lassez, C., and Marriott, K. Lin-
ear Constraint Technology for Interactive Graphic Sys-
tems. Proc. of Graphics Interface ‘92 (Vancouver, BC,
Canada, May 1992).

Lin, M.C. and Canny, J.F. A fast algorithm for incre-
mental distance calculation. International Conference
on Robotics and Automation, IEEE (May 1991), pp.
1008-1014.

Myers, B.A. Creating User Interfaces using Pro,gram-
ming by Example, Visual Programming, and Con-
straints. ACM Trans. on Programming Languages and
Systems, 12, 2 (Apr. 1990), pp. 143-177.

Nelson., G. Juno, a Constraint-Based Graphics System.
Proc. of SIGGRAPH ‘85 (San Fransisco, CA, Jul. 22-
26, 1985). In Computer Graphics 19, 3 (Jul. 1985), pp.
235-243.

Nielson, G. and Olsen, D. Direct Manipulation Tech-
niques for 3D Objects Using 2D Locator Devices. Proc.
of the 1986 Workshop on Interactive 3-D Graphics
(Chapel Hill, NC, Oct. 1986), pp. 175-182.

Smith, R.B. Experiences with the Alternate Reality
Kit: An Example of the Tension between Literalism
and Magic. IEEE Computer Graphics and Applications
7, 9 (S,ep. 1987), pp. 42-50.

Teller, S.J., and S&quin, C.H. Visibility Preprocessing
for Interactive Walkthroughs. Proc. of SIGGRAPH ‘91
(Las Vegas, Nevada, Jul. 28-Aug. 2, 1991). In Computer
Graphics, 25, 4 (Jul. 1991), pp. 61-69.

Venolia, D. Facile 3D Direct Manipulation. Proc. of the
ACM Conference on Human Factors in Computing Sys-
tems -- CHI 93 (Amsterdam, Netherlands, Apr. 1993),
pp. 31-36.

Figure Cl.

A snapshot of WALKEDIT in use. A desk is
selected. Note the selection lGnt (a small
blue-green octahedron) and the fact that the
desk contents are implicitly grouped to the
desk.

Figure Ct.

A scene created with WALKEDIT. There
are approximately fifty objects, all resting on

valid surfaces and none interpenetrating.
This scene took about six minutes to create.

A Simple ant1

Figure 3: Sculpting of u chair from a block of wood. Figure 4: A volumetric ray traced scene uf a room.

Figure 5: Sculpted cello and chair.

Waug ;uld K ‘34

Figure 7: Sculpted windmill on u fractal terrain.

me Sculpting”

214

