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Abstract

The result of a scene manipulation is usually displayed by re-
rendering the entire image even if the change has affected only a
small portion of it. This paper presents a system that efficiently de-
tects and recomputes the exact portion of the image that has changed
after an arbitrary manipulation of a scene viewed from a fixed cam-
era. The incremental rendering allows for all visual effects produced
by ray tracing, including shadows, reflections, refractions, textures,
and bump maps.

Two structures are maintained to achieve this. A ray tree is as-
sociated with each pixel and is used to detect and rebuild only the
modified rays after an optical or geometrical change. A color tree
represents the complete color expression of a pixel. All changes af-
fecting the color of a pixel without changing the corresponding ray
tree require only re-evaluation of the affected portions of the color
tree.

Optimizations are presented to efficiently detect the modified
structures by the use of strategies such as grouping similar informa-
tion and building hierarchies. Pruning and weighted re-evaluation
of information are also considered to manage the memory require-
ments.

The incremental rendering is done efficiently and accurately and
is suitable in an interactive context.

CR Categories and Subject Descriptors: I.3.7 [Computer Graph-
ics]: Three-Dimensional Graphics and Realism.
Additional Key Words and Phrases: scene editing, interactive
system, rendering, image quadtree, color tree, ray tree

1 Introduction

Computing the image of a 3D synthetic scene is a complex process,
especially when shadows, textures, bump maps, reflections, and re-
fractions are desired. A simple yet powerful algorithm producing
such effects is ray tracing [17]. Unfortunately, its computational re-
quirements are generally too high to be considered suitable to cal-
culate intermediate images resulting from an interactive scene ma-
nipulation. In fact, ray tracing is mostly used for high quality final
rendering, ranging from minutes to hours of computing.

�C.P. 6128, succ. Centre-Ville, Montréal (Qc) Canada H3C 3J7 f
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One important reason why ray tracing is rarely considered within
an interactive tool is that most interactive systems recompute the
entire image of the scene without considering any incremental ren-
dering from the previous image. The fastest rendering technique
is usually the projection of wireframe models without any line re-
moval. Unfortunately, it can only convey information about shape,
and complex objects are difficult to interpret. The Z-buffer algo-
rithm is quite fast and treats visible-surface determination. It be-
comes even more competitive by integrating the technique with hi-
erarchical models and treating the image hierarchically [7]. Shading
and shadowing for directional and point light sources, as well as tex-
tures and filtering can be simulated [3] [18] [14], but with a signifi-
cant impact on performance and memory usage. However, other im-
portant visual phenomena such as reflection and refraction can only
be approximated by textures, and this with great effort and potential
artifacts [5].

For interaction, one can also benefit from re-ordering the ren-
dering with respect to the phenomena being manipulated, or from
choosing between different levels of object complexity [4]. In spe-
cific contexts, some manipulations have been optimized by prepro-
cessing. Hanrahan and Haeberli [10] edit material properties on
a preprocessed sphere. Interactivity is obtained but the manipula-
tion is done from a different visual context than the scene itself.
Litwinowicz and Miller [12] interactively distort a texture directly
on a preprocessed projection of the uv coordinates of the texture
parametrization.

Instead of rendering the entire scene, other researchers have con-
sidered updating only the elements affected by a change. For each
surface, Cook [2] conserves in a tree structure (shade tree) the sym-
bolic evaluation of the illumination model. If a manipulation does
not modify the shape of the tree, then the local illumination may be
updated by simply evaluating the shade tree. The evaluation of a
tree may not be faster than the calculation itself, but if the tree is
replicated at each pixel and compressed according to the parameter
currently adjusted, then the evaluation of the smaller tree is faster.
By expressing a RenderMan shader by source code instead of a sym-
bolic tree, Guenter et al. [8] have defined specialized shaders.

In these techniques, the preprocessing is usually applied on the
first visible surface. Séquin and Smyrl [15] preserve in a tree the
color expressions of all intersections obtained by ray tracing. The
image is updated by traversing these color trees with modified pa-
rameters. They only consider changes that do not alter the shape
of the trees, which leads to significant time savings because this
avoids recomputing visibility. They also propose several compres-
sion techniques to reduce the memory usage and improve on the
display time. Systems such as Atlantis from Abvent and IPR from
Wavefront extend these color trees by adding a fixed number of ex-
tra ray generations to allow a user, for instance, to make reflective a
previously non-reflective object.

Murakami and Hirota [13] extend these previous techniques to
handle also changes in visibility for a scene rendered from a static
viewpoint. A ray is indexed by the list of regular voxels it tra-
verses. Any change to the scene is associated with its affected vox-
els, which in turn determine the potentially affected rays. They also
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Color Parameters

surface color
ambient, diffuse, specular coefficients
surface roughness
proportion of reflection, refraction, transparency
proportion plastic-metallic
light color and intensity
texture parameter
bump map
surface parametrization

Optical Manipulation

add/delete a reflection, refraction and transparency attribute
change a refraction index
add/delete/change a bump map of a reflective or refractive object

Geometrical Manipulation

add/delete/transform an object
add/delete/transform a light source
add/delete/transform a displacement map

Table 1: Color and ray tree dependent manipulations

use a clever hashing scheme to identify quickly the rays affected by
a given voxel. However the visibility determination is performed
with respect to the affected voxels rather than the transformed ob-
jects. Therefore, all intersections between a ray and the objects in
the affected voxels must be precomputed and saved, or recomputed
each time a voxel is affected. Increasing the number of voxels re-
duces this visibility determination, but at the cost of storing many
voxels, and also of handling more entries in the hashing table. Je-
vans [11] removed the previous dependency upon image resolution
by storing instead in each voxel the identification of limited regions
potentially affected by this voxel. However more unaffected rays
can thus be wrongly identified as affected, and the visibility is done
with respect to the entire scene.

In this paper, we present a system for the manipulation of a scene
viewed from a fixed camera. The visual effects in the images of
the scene can include the richness of all those produced by ray trac-
ing, including textures, shadows, reflections, refractions, and bump
maps. The central concept behind this system is the ability to effi-
ciently detect and recompute only the modified image portion. Al-
lowed changes are of any kind, whether modifying a surface shad-
ing parameter, a texture, making a surface reflective or refractive, or
transforming the geometry of any object.

To achieve this, some concepts from the systems described above
are unified into two tree-like structures: the color tree and the ray
tree. In the next section, we describe these two structures and how
they are used. In section 3, efficiency issues are addressed for the
detection and updating of these structures. In section 4, we consider
trade-offs between memory requirements and computing efficiency.
Finally, we give some typical results from using our system and con-
clude by summing up our work and by listing potential extensions
and applications.

2 Scene Manipulation

Changing some portion of a synthetic scene can affect different
properties treated at various stages of the rendering algorithm. To
efficiently update the image affected by a specific change may thus
require more than one data structure. All possible changes can be
divided into two categories. A color change may modify the color
of at least one pixel without affecting the scene visibility, while a
ray change (optical or geometrical) may change this visibility.

In an interactive context, the user selects a group of objects (se-
lection) and applies a given change to it. In the next subsections, we
explain the particularities of each manipulation and describe the two
structures used to incrementally render the current image. Please
refer to figure 1 for a graphical representation of the concepts de-
scribed in this section.

2.1 The Color-tree Structure

In ray tracing, the color of a pixel is computed by following a ray
through the scene. At each intersection, the color returned depends
upon the surface reflection/refraction model which specifies how
much of the light reaching this point is sent back along the ray di-
rection. We store the color of a pixel as an expression tree (figure 1
color tree) in which each leaf is a constant or a pointer to a param-
eter, and each node is an n-ary function. If a color subtree does not
contain any parameter, it is replaced by a constant leaf.

One can view our color tree as a union of concepts such as shade
trees [2], texture trees [16], and parametrized rays [15]. Indeed, a
color tree corresponds to the entire symbolic evaluation of a pixel
color without preserving information about the visibility.

A color change is the most simple and efficient change to han-
dle. It corresponds to a change that does not alter the visibility
in the image. Re-rendering the modified scene consists of simply
re-evaluating the color expression for each pixel. The refresh rate
therefore depends upon the number of nodes in each color tree,
which is a function of the number of light sources and interreflec-
tion/interrefraction combinations. In most cases, the display time is
uniform and quite fast. All the shading parameters listed in the top
section of table 1 are associated with color changes.

Any shading parameter may be a variable or more generally, a
texture function controlling this parameter. At a given intersection
point, such a texture function may depend upon that point or upon
the surface parametrization at that point. Since a texture function
can be expressed as a tree structure, it is integrated as a subtree of our
color tree. A change of any texture parameter is thus also resolved
by evaluating the color tree.

Finally, if the user manipulates a higher-level property such as
changing a procedural texture to another, or changing the illumina-
tion model itself, the associated color subtrees are appropriately re-
placed.

2.2 The Ray-tree Structure

In order to compute visibility changes efficiently, an extended struc-
ture is used, namely, the ray tree. It is similar to Murakami and Hi-
rota’s ray set [13], but without information related to voxels. The
ray path of a pixel is the ordered list of objects encountered by a ray
originating from the eye position through this pixel. The ray tree
of a pixel (figure 1 ray tree) is the geometrically-specific informa-
tion of the ray path. Each node of the ray tree contains intersection
point dependent information (PDI): the intersection point, its nor-
mal, and surface parametrization. Nodes for the eye and for each
light are considered global and are not duplicated. A ray segment
joins two consecutive points of a ray tree. A node of a ray path is
only a pointer to an object from the list of objects defining the scene.
Rebuilding a portion of a ray tree causes an immediate update of the
corresponding color tree.

An optical change occurs when a ray tree is modified without
changing the scene geometry. The middle section of table 1 lists
some optical changes. An optical change is effective at a node when
its object pointed to has been modified by an optical change. The in-
tersection point at this node is guaranteed to be valid. However new
reflected or refracted rays may have to be re-shot from this point and
intersected with respect to the entire scene.

A geometrical change occurs when the geometry of the scene has
changed. Some of these changes appear in the bottom section of ta-
ble 1. A general geometrical change is handled in three steps. First
the selection is removed from all ray trees. The resulting ray trees
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Figure 1: Color and ray trees
will not contain any reference to the selection. Then only the selec-
tion is rendered while it is manipulated by the user. Finally when
the user releases the selection, the ray trees are updated. A ray test
is a visibility determination with respect to the selection only. A ray
update is a visibility determination with respect to the entire scene
(except for primary rays which need only a ray test), but only for the
affected pixels. This is typically a small fraction of the image.

To remove the selection from the ray trees, all of their nodes are
visited. If the corresponding object at a node is contained in the se-
lection, then the entire subtree is no longer valid. It is replaced by
a new ray subtree traced from the intersection point of the previous
node in the same direction as the incoming ray segment. The inter-
sections are computed with respect to the entire scene, but without
the selection itself.

The intermediate rendering does not modify the ray trees in any
way since at that time they do not contain any reference to the se-
lection. All ray trees are simply traversed and only intersection tests
between the segments and the selection are performed. If a ray seg-
ment intersects the selection then the intersection point is computed
and all emanating rays (shadow, reflection, refraction) must be re-
shot from that point with respect to the entire scene, including the
selection.

Adding the selection to the ray trees corresponds to rendering it
only once while updating the modified ray trees.

3 Hierarchies and Groups

The color and ray trees allow incremental ray tracing of the scene
during manipulation. In most cases, this is already an appreciable
gain because a structure test is much faster than its update. Also,
the visibility determination is typically the most expensive opera-
tion and none are performed for a color change.

Unfortunately, traversing all structures to determine what may be
affected quickly becomes a bottleneck. In this section, we propose
some optimizations to cull many unnecessary tests. Section 5 will
demonstrate the efficiency of these optimizations.

3.1 Selection-dependent Preprocessing

The image represented by its color and ray trees is built as a
quadtree. Typically, the user adjusts the scene by applying sev-
eral consecutive color or optical changes to the same selection. The
quadtree hierarchical structure can greatly speed up such subsequent
changes. Indeed, because the selection does not change, the portion
of the image dependent upon the selection remains the same. A flag
is kept in each region (quadtree element) that indicates if the region
is dependent or not upon the current selection. The preprocessing
is performed at the first change and the flags are not reset as long
as the user applies color or optical changes to the same selection.
Because of the hierarchical nature of the quadtree, the rejection of
independent regions is very fast.

Figure 2 b) shows with white contours the regions dependent
upon the central sphere: the primary ray segments intersecting the
central sphere, the interreflections on the floor and the left sphere,
and the refraction in the right sphere. Here, only shadows from
opaque objects are handled. Note that this preprocessing is also ap-
plicable for removing the selection from the ray trees.

3.2 Groups and Atoms

It is also possible to speed up the selection-dependent preprocessing
by using the concept of groups. A group is a region for which each
ray path is identical. As such, their corresponding ray trees only
differ by their PDIs, and the subregions of a group are also groups
themselves.

A flag in each region indicates if the region is a group by a pointer
to its corresponding ray path. If the region is a group, only the ray
path needs to be tested. After optical and geometrical changes, ray
paths may change and therefore some image groups must be up-
dated. However, because these changes are propagated from the
bottom of the quadtree to its top, the number of regions to be up-
dated is minimal. Figure 2 c) shows with white contours the groups
in the image.

In a scene composed of many visible objects, the number of
groups can be rather large and their efficiency thus much reduced.
If the scene is constructed as a hierarchy of objects, it is possible
to consider an atom to be at a higher level than the leaves in the
model hierarchy. By raising the atom in the hierarchy, the num-
ber of groups and ray paths should globally decrease, but if the user
tries to modify a subatomic object, the system will have to consider
the entire atom as modified. For instance in figure 4, the bust of
Beethoven, boat, individual trees, and cows could each be consid-
ered an atom.

Many regions contain typically a limited number of ray paths,
but because of the distribution of these ray paths within a region,
the quadtree subdivision might produce a large number of smaller
groups, each in the worst case consisting of a single ray path. To re-
duce these situations and decrease further the number of groups, the
groups are generalized to path groups, p-groups, where p indicates
the number of different paths in a region. A group is then a 1-group.

Determining if a p-group is dependent upon the selection should
be faster as there are no subregions to test, but it may require testing
up to p paths. The user can control a maximum value mp for p so
the gains in culling of p-groups are not outweighed by maintaining
and testing the list of ray paths.
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Figure 2: A simple scene
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3.3 Color-tree Evaluation

For a color update, the user typically adjusts the same parameter fre-
quently. In order to speed up the color update, color expression trees
can be compressed according to the currently-selected parameter by
maintaining at each node the evaluation of its subtree. In particu-
lar, the entire color expression of a pixel independent of the current
parameter is temporarily replaced by a constant color value. This
occurs when the pixel depends upon the selection but not on the se-
lected shading or texture parameter.

This optimization is present in Séquin and Smyrl [15] in which
a subtree is simply replaced by its value. The color trees could be
also compressed physically, at the cost of rebuilding them each time
another parameter is selected. This is also similar to compressing
the shaders in Guenter et al. [8].

3.4 Bounding Ray Trees

Testing each ray tree for intersection with the selection becomes pro-
hibitive if our goal is interactive manipulation. In order to greatly
speed up ray tests, we use a hierarchy of bounding volumes for the
ray trees. If the selection does not intersect such a bounding volume,
then no ray test has to be performed for the enclosed ray trees.

3.4.1 Tunnels

For each region of the image, a volume that encloses every point of
all its ray trees is kept. This region’s main volume, called a tunnel,
is built as a union of convex volumes, each called a section. Figure
3 shows a 2D representation of a tunnel and its 3D counterpart for
a particular region (a group) and viewpoint from the scene depicted
in figure 2. The tunnel encloses the eye (right apex), points on the
floor, reflection points on the sphere, and two branching sections go-
ing towards the light above.
Main tunnel
1st subtunnel
2nd subtunnel

Ray segments

Eye

(Shadow shafts
are not shown)

            �����������������������������������������������������������������������������������

Figure 3: 2D and 3D representations of a tunnel

The first section of a tunnel encloses the eye point and all points
directly visible from the eye through this region (first-generation ray
segments). For each point light source, there is another section en-
closing the same first-generation intersection points and the point
light source. All the reflected ray segments of the second genera-
tion are enclosed by another section, and similarly for the refracted
ray segments of this second generation. The two sets of endpoints
of these secondary segments each generate another section respec-
tively with each point light source. This process continues recur-
sively for the next-generation segments.

A special situation occurs when the region is a group. In this case,
all n ray trees have the same path and each section always encloses
exactlyn ray segments. These tunnels are usually thinner as the rays
tend to remain closer to each other. However, if the region is not
a group, some sections enclose ray segments whose endpoints do
not belong to the same objects. Such a section may be much larger
than necessary as some ray segments are not correlated. However,



if a region forming a p-group consists of p tunnels associated with
each p different ray paths, then many of those undesirable sections
are eliminated. If the region has more ray paths than the maximum
number mp, the mp

th tunnel contains all ray trees belonging to the
p�mp + 1 remaining ray paths.

3.4.2 Sections

A section bounds a set of ray segments. We adopted the shafts intro-
duced by Haines and Wallace [9]. A shaft is built using two aligned
boxes with each bounding plane passing through a face of a box or
through a pair of relevant edges, each of them belonging to a dif-
ferent box. This construction has the property that if a shaft is built
with two given boxes, then it encloses any subshaft built using two
subboxes. A pyramid shaft is a particular shaft where all points at
one end are the same. It is used for sections whose apex is the eye
or a point light (figure 3).

Rather than testing for an intersection between the shaft and the
selection itself, we use a bounding box around the selection. The
test is based only on trivial rejections between the vertices of these
two bounding volumes and their supporting planes. This is simpler
and faster to compute, although if no trivial rejection has occurred,
the test proceeds as if there were an intersection. For an exact test
between a box and an arbitrary convex polyhedron, see Greene [6].

Figure 2 d) shows with white contours the regions updated when
a geometrical change is applied to the selection (the central sphere).
The updated portion of the image is larger than the minimal one in
figure 2 b) because the bounding volume of the selection is used
for the intersection test. This appears first in the projection of the
selection in the image, and also in larger shadows and reflections
of the selection. Moreover, this test is limited to trivial rejections
only. The selection is scaled by 1

4
in figure 2 e). The corresponding

smaller updated regions are displayed with white contours. One can
see that some irrelevant regions are located at the silhouette of the
reflective sphere because of some incoherently large sections. Al-
lowing up to two tunnels per region eliminates some of these sec-
tions (figure 2 f).

3.4.3 Updating the Tunnels

Adding an object to the ray trees may change some tunnels. This
is also the case after an optical change. The tunnel of a region with
at least one modified ray tree must be recalculated. However, the
modification is propagated from bottom to top and no tunnel is re-
built needlessly.

A region is formed by four subregions (quadtree structure), so a
tunnel of this region is formed by its four subtunnels. At the lowest
level, the ray segments form the shaft which is built using the two
bounding boxes of their endpoints. At a higher level, the bounding
boxes used for the shaft bound the respective subboxes of the four
subshafts. Each level is thus updated in constant time.

4 Spacetime Considerations

In previous sections, we described the structures and optimizations
allowing us to manipulate a scene interactively. However, we did
not discuss memory requirements. Memory usage is the major
drawback of our scheme as each pixel contains a lot of information.

In order to manipulate a scene at various image resolutions given
limited memory, we present various trade-offs between the space re-
quired by the full structures and the computing time necessary to re-
build them.

In this section, we discuss strategies to lower the memory require-
ments, based upon controlling the number of different information
pieces. This leads to a more general approach based upon the rela-
tive importance of an information. Note that none of these memory
strategies affect the resulting images; they only influence what infor-
mation will need to be recomputed. This makes the system flexible
according to the space and time constraints.

4.1 Eliminating Information

All color trees, ray trees, and tunnels represent the largest portion
of the memory usage in our system (table 2). Fortunately, we can
exploit the locality involved with most changes.

By limiting tomc the number of color trees, and if a color change
does not update more than mc pixels, then the refresh rate is not af-
fected. However, if the number of updated pixels is larger than mc,
the excess pixels can be updated using the (slower) ray tree evalua-
tion.

Similar to the color and ray tree reduction, a maximum number of
tunnels can be specified by the user in order to control their memory
usage. The time for reconstructing a tunnel becomes a function of
the number of its immediate subtunnels already constructed, and the
number of subtunnels to reconstruct. So the worst case of rebuilding
a tunnel depends upon its level in the hierarchy.

4.1.1 Color Trees

Another solution specific to color trees prunes color subtrees by re-
placing them by their corresponding functions rather than their ex-
pansion in a tree. A procedural texture is an example of such a func-
tion. However when changing one parameter of this texture, the
smaller trees thus obtained may be slower to evaluate as the function
calculation is usually slower than its subtree evaluation. The user
could also select a subset of parameters which are subject to change,
and thus replace any subtrees in which no such parameter appears by
a constant. Changing another parameter will involve however a ray
tree evaluation.

4.1.2 Ray Trees

The ray trees represent another important portion of the storage
used. All of this information can be removed in order to reduce the
memory usage, requiring any intersection point, normal vector, and
surface parametrization to be recalculated on demand. However,
these quantities are not usually expensive to recompute, because the
object to intersect with is already known. So the visibility calcula-
tion for the intersection point is done with respect to that object only.
Although it is faster to preserve all this information, another space-
time trade-off is possible by keeping only a certain number of ray
trees. A deleted ray tree may be recalculated from a pointer to its
ray path, which is stored in a global list.

4.1.3 Tunnels

Because of their hierarchical nature, many lower level subtunnels
are rarely accessed. Also the lower we get in the structure, the more
such subtunnels there are. By simply eliminating the tunnels at the
two lowest levels, one obtains a reduction of a factor of about 16 in
the number of tunnels. Moreover, this contributes to improving the
global performance, as testing a lowest-level tunnel is more expen-
sive than testing the few enclosed ray trees themselves.

4.2 Shadow Counters

For shadows cast by opaque objects, it is not necessary to know in
which order objects are blocking the light, but only if the light is
visible or not. Therefore, instead of constructing the list of ray seg-
ments starting from a given intersection point up to a point light, we
use only a counter to indicate the number of blocking objects.

When an object is removed from the ray trees, the counter for a
light at a ray node is decremented if the object was a blocker. If the



Scene Color Ray 1-groups Ray Tunnels
trees paths trees

Figure 2 66,000 125 4,500 66,000 10,900
(simple) 32.5 MB — — 5.3 MB 5.4 MB
Figure 4 66,000 5,300 12,100 66,000 10,900

(complex) 20.5 MB — — 3.7 MB 4.3 MB

Table 2: Statistics on memory requirements

counter reaches zero, the illumination must be recomputed; other-
wise, nothing has to be recomputed. When an object is added to the
ray trees, some counters may be incremented. If it is the case for a
counter previously at zero, the illumination from that light (now in
shadow) must be recalculated.

Still, l such counters must be associated with each intersection
point for a scene with l lights. To control the space used by the coun-
ters, we set a maximum of b+1 bits for each counter, hence handling
up to 2b�1 blockers. The extra bit represents overflow and it is set
only when more than 2b�1 blockers lie between the light and the in-
tersection point. When removing a blocker, if any shadow counter
is decremented to zero and its extra bit is set, we know that the point
is still in shadow, but not the number of blockers. It is therefore nec-
essary to re-shoot a ray towards the light with respect to the entire
scene to update the counter value. If the value of b is zero, the extra
bit becomes a simple flag indicating if the light is visible or not. Be-
cause the shadow counters are stored in the ray paths, a small value
of b reduces the number of ray paths, but the increased cost of hav-
ing to re-evaluate more often shadow rays.

If there are semi-transparent blockers among opaque blockers,
a counter between two consecutive transparent blockers (along a
shadow segment) is used.

4.3 Information Weight

A color subtree, a ray tree and a tunnel do not have the same space
and time requirements. The specification of a weight with each
piece of information, which indicates its relative importance among
the others, is a more general approach.

The weight can be a function taking into account (1) the memory
size needed by the information, (2) the time needed to recalculate it,
and (3) its latest access time. The system will thus give preference
to remove information that is more space intensive, that is faster to
rebuild, and that has been inactive for a long time. This weight func-
tion provides a way to remove the less important information and to
preserve the rest.

The memory size of each type of information depends upon the
implementation but is simple to estimate. The time to recalculate a
piece of information can be measured empirically, or estimated by
various means. For instance, due to its hierarchical nature, the time
needed to compute a tunnel corresponds to the computing time of its
subtunnels plus its own computing time. For tunnels, we can also
consider its surface area as a weight factor since the probability of
intersecting an object is proportional to this area.

An information’s inactive time is not measured in absolute time.
Indeed, the wait between two successive manipulations should not
influence the inactivity time. We suggest considering instead the
number of changes since the latest access to the information.

5 Results

This section provides some statistics on our current implementation.
The scene on which the manipulations were applied appears in fig-
ure 4, with the original image (a) before any manipulation and the
resulting image (b) after all modifications. All times are in seconds
and were gathered on a Silicon Graphics Indigo2 Extreme R4400,
running at 150 MHz, with 128 MB of RAM.

The original scene consists of about 16,500 objects (13,500 poly-
gons). It takes 1,100 seconds to preprocess the original image at a
256 � 256 resolution, Simply ray tracing the same scene requires
640 seconds. Statistics about the number of different pieces of in-
formation as well as their respective memory requirements are pro-
vided in table 2. To compare, we also give the same statistics for
the simple scene of figure 2. One can notice that although simpler
in terms of geometry, the visibility complexity of figure 2 is higher
than the one of figure 4, which is illustrated by larger memory needs
for its color trees, ray trees and tunnels.

The top section of table 3 shows statistics on color changes. The
modifiable parameters that are integrated in the color tree are all tex-
ture parameters defining a constant color, except for the color of the
light source. Traversing the image quadtree to identify the pixels de-
pendent upon the selection takes from 1 to 2 seconds. Using groups
for this selection-dependent preprocessing (SDP) leads to 20-40%
savings of the first color updates. Computing all colors from the ray
paths takes less than 10 seconds. If all ray trees are used instead of
recomputed from the ray paths, this time goes down by 40-70%. If
the color trees themselves are used, this time is reduced by 90-95%.
The four color changes in table 3 are all updated under half a second.
The savings due to compression of the color trees are less significant
(1-20%).

The optical change in the middle section of table 3 displays a
similar behavior than first color changes with respect to the use of
groups for the selection preprocessing (25%).

Some statistics on geometrical changes are given in the bottom
section of table 3. Changes are dependent upon the number of rays
that must be shot and how expensive they are to intersect with re-
spect to the entire scene. The use of tunnels greatly reduces all geo-
metrical changes, especially when only a fraction of all ray trees are
allowed to reside in memory. This is due to the fact that many ray
trees do not need to be recomputed from ray paths because simply
culled by the tunnels. Indeed, tunnels culled between 65-90% of the
ray tests. The hierarchical nature of the image quadtree and tunnels
shows that almost no performance is lost, even when using 10% of
all ray trees.

6 Summary and Conclusion

In this paper, we presented two tree structures allowing an incre-
mental recomputation of the image after any modification of a scene
viewed from a fixed camera.

The color tree preserves the entire expression leading to the final
color of a pixel. Any changes affecting the value of parameters in
these trees, such as shading and texture parameters, are quickly dis-
played by re-evaluating only the subtrees dependent upon the mod-
ified parameters.

By storing the image in a quadtree of regions, a preprocessing
step identifies by a flag each region within which at least one color
tree is affected by a given color change. This preprocessing is, in
addition, sped up by the notion of groups, where regions are formed
by pixels with identical ray paths. So, an entire group can be elimi-
nated by testing a single ray path.

The ray tree preserves only the visibility specific information of
the rays generated from a pixel. Any changes affecting a ray tree
are handled by re-shooting rays from the previous valid intersection
point. Any modification in a ray tree is directly updated in its cor-
responding color tree. All optical and geometrical changes can be
handled with this structure.

After a geometrical change, it is possible to avoid testing each
individual ray segment with the current selection. To do so, the ray
trees are combined into tunnels formed by a union of shafts. The ray
segments modified by a geometrical change are therefore quickly
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a) Before changes b) After changes c) Higher resolution

Figure 4: A more complex scene

Color SDP SDP Only 1% 10% All Color Compression
Change without with ray ray ray ray tree

groups groups paths trees trees trees

leaves color left tree 1.5 1.1 4.65 4.45 1.26 1.26 0.28 0.23
highlight left sphere 1.5 1.1 0.94 0.66 0.52 0.52 0.12 0.09
marble color on Beethoven 1.91 1.43 8.36 7.78 5.09 4.91 0.35 0.32
ground color 2.17 1.59 7.60 7.28 4.50 2.49 0.47 0.44

Optical Change

index of refraction 1.53 1.12 8.55 8.51 8.47 8.47 — —

Geometrical removing rendering
Change all ray trees 10% ray trees 1% ray trees

(0 / 1 / 2) tunnels (0 / 1 / 2) tunnels (0 / 1 / 2) tunnels

transform central sphere 51.0 37.8/ 8.8/ 7.8 82.9/ 11.4/ 7.8 88.8/ 16.2/ 12.4
move left colored cow 111.0 38.4/ 13.3/ 12.2 79.2/ 13.3/ 12.3 85.0/ 17.0/ 14.5
move refractive sphere 12.6 39.4/ 6.0/ 5.7 85.6/ 6.2/ 5.7 90.5/ 6.9/ 6.4
flying furthest tree 10.0 38.5/ 16.0/ 13.8 76.0/ 16.0/ 13.8 80.5/ 22.0/ 19.0

Table 3: Statistics on changes (times in seconds)
detected by intersecting the selection with the hierarchical structure.
Any change in the ray trees is updated in a bottom up fashion, from
the modified ray trees up only to its bounding tunnels.

As a result, the images are usually updated in less than a second
for most color changes. Optical and geometrical update times de-
pend upon the number of rays shot, and upon the complexity of the
object (selection or scene) to intersect with these rays. However the
number of new rays is usually a small fraction of all rays necessary
to render the image.

The question of high memory requirements is addressed by prun-
ing color subtrees and eliminating tunnels and ray trees. This in-
formation can be efficiently recomputed on demand by keeping a
pointer to its corresponding ray path. Also, an adjustable weight
function based on memory size, recomputation time, and age of in-
formation, helps to determine the best information to keep within
the available memory space.

The main conclusion we can draw from our scheme and its cur-
rent results is that the entire visibility could be handled efficiently
using only ray paths. This information does not require so much
memory for the important gains it provides. All remaining mem-
ory can be used to speed up specific changes, by building various
structures such as color trees, ray trees, and tunnels. Their respec-
tive memory spaces can be managed adaptively according to local
changes.

We expect the benefits of efficient incremental re-rendering to
lead to more advanced interactive systems, since processing time
can be concentrated on the phenomena the user is interested in,
rather than on redundant rendering.
7 Future Work

The current system suggests some interesting avenues to investi-
gate. It could be easily extended to render efficiently animated se-
quences from a fixed camera when a limited number of objects are
moving. It should be possible to exploit time coherency from our
knowledge of all motions.

The hierarchical structures, ray tracing rendering and weight
functions provide essential information about what is changing with
respect to all previously computed information. All this knowledge
makes the system a potential candidate for well balanced workload
distribution in parallel processing, and memory management. For
instance, the use of a large storage device provides an alternate so-
lution to the memory usage for higher image resolution. Such a
virtual storage has typically slower access time that can however
be factored in the information weight when it is removed from the
prime memory. So faster access memory acts then as cache which
we could manage accordingly.

The structures can also be used for other purposes. The similar-
ity between image formation and light propagation [1] suggests to
use the ray paths only for light preprocessing in order to handle the
high memory requirements to reduce the aliasing effects. The incre-
mental updating for changing scene geometry should avoid much
unnecessary lighting recomputations. Furthermore, the beam-like
shape of tunnels suggests a way to estimate the contribution of par-
ticipating media, coherent ray tracing, and image filtering.
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