
Increased Photorealism for Interactive Architectural Walkthroughs
Rui Bastos, Kenneth Hoff, William Wynn, and Anselmo Lastra

University of North Carolina at Chapel Hill

ABSTRACT
This paper presents a new method for interactive rendering of
globally illuminated static scenes. Global illumination is
decomposed into view-independent (diffuse) and view-dependent
(non-diffuse) components. The two are recombined during
rendering using a hybrid geometry- and image-based approach
along with multi-pass blending techniques. This approach allows
the preprocessing of both components and the fast rendering of
globally illuminated scenes.

The view-independent component uses a traditional precomputed
geometry-based radiosity solution that is rendered using standard
graphics hardware. The view-dependent component is
decomposed into “what is reflected” (radiance with depth) and
“how it is reflected” (BRDF), and precomputed and rendered
using image-based approaches. Radiance is stored as images with
depth, and rendered using perspective reprojection; the BRDF is
decomposed into an integration of incoming radiance and a
directional modulation. The radiance integration term is
approximated by convolving the reflected image with
precomputed kernel textures based on material properties. The
directional modulation is stored as a reflectance modulation
texture based on material properties and is rendered using sphere-
mapping during a blending pass.

Keywords:  interactive walkthroughs, global illumination, glossy,
BRDF, image warping

1. INTRODUCTION
Architectural walkthrough systems are expected to give
convincingly realistic interactive visualizations of complex virtual
environments [5]. These systems are often used in virtual
prototyping of building designs, stage and set lighting design, and
architectural design reviews where the demands for greater
realism and higher frame-rates are always increasing. In order to
provide a convincing simulation, we must attempt to mimic the
model's real-world counterpart by accurately representing the
visual complexity of the scene while maintaining a smooth
interactive frame-rate (greater than 20 frames per second). To
capture the intricate geometry and complex lighting effects of real
scenes, we require a detailed geometric model and an accurate
lighting simulation. However, to maintain interactive frame-rates,
the accuracy of one or both must often be compromised.

Previous work in interactive architectural walkthroughs focused
on the problem of accurate geometric modeling and interactive

rendering. Focus was placed on the problem of quickly rendering
a complex model, rather than on photorealism. The primary goal
was reducing the number of graphics primitives rendered per
frame without noticeably degrading image quality.

Accurate modeling of global illumination has been in general
prohibitively expensive for interactive walkthroughs;
consequently, most of the previous work placed little emphasis on
an accurate or complete illumination simulation. Global
illumination was generally decomposed into view-independent
and view-dependent components with only a small subset of each
actually being simulated.

View-independent illumination accounts for all effects of light
that are not dependent on the viewer’s position. This illumination
depends only on the configuration of the geometry and the lights,
and so may be precomputed and stored as a dense mesh with per-
vertex colors or as texture-maps that can be rendered using
traditional shading hardware [6][18].

View-dependent illumination accounts for specular and glossy
directionally-biased lighting. Diffuse reflection is an equal
scattering in all directions based on an incoming light direction;
specular reflection bounces the incoming light in a strictly narrow
band of reflected directions (perfect specularity means there is
only one reflected direction). Glossy reflection refers to the
continuum between perfectly diffuse and perfectly specular
reflections. Glossy surfaces have a directional bias that is defined
by the bi-directional reflectance distribution function (BRDF).
These effects depend on the viewpoint and are difficult to
precompute and render accurately.

2. CONTRIBUTIONS
Our approach focuses on interactive architectural visualization
that accounts for view-dependent glossy illumination. Unlike
previous global illumination research, we emphasize structuring
the model database to allow fast rendering at interactive rates with
view-dependent illumination from arbitrary viewpoints. In
addition to purely specular view-dependent effects, we properly
capture imperfect reflection scattering from glossy surfaces.

We present a hybrid geometry- and image-based approach that
offers the following:

• Decomposition of a glossy reflected image into incoming
radiance (“what is reflected”) and a BRDF (“how it is
reflected”) – this allows precomputation of the reflection
visibility and material properties.

• An image-based approach to handle interactive reflections –
a set of images augmented with depth is precomputed for
each reflector and is then reprojected into any reflected view
in constant time (independent of scene complexity).

• Decomposition of BRDF into a convolution kernel and a
directional modulation reflectance texture-map based on the
material properties – this allows graphics hardware to
efficiently use general BRDFs at rendering time for
simulation of glossy view-dependent effects.

• Rendering reflected images at an appropriate resolution
depending on the level of scattering of a glossy surface – this
avoids multi-pass high-resolution image accumulation.
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3. RELATED WORK
The Phong model [17] is the standard for approximating specular
highlights. This model works well for certain shiny materials;
however, it suffers from drawbacks. One is that indirect lighting
and visibility are not considered. In addition, it is normally
evaluated in hardware on a per-vertex basis. This results in visible
artifacts, and hence the number of primitives must be increased to
effectively capture the highlights.

Walter et al. [21] presented an approach that fits “virtual lights” to
non-diffuse objects. A view-independent non-diffuse global
illumination solution is computed and used for fitting. The scene
is then rendered by Gouraud-shading the Lambertian view-
independent global illumination and by Phong-lighting the
specular objects using the fitted virtual lights. Phong lighting is
used as a set of appearance basis functions, instead of a lighting
model. The superposition of all contributions from virtual lights
approximates the global illumination of the non-diffuse objects,
including view-independent content and specular highlights.
While effective for low-gloss surfaces, mirror-like and highly
glossy reflections require excessive directional information.

Stürzlinger and Bastos [19] presented a splatting-based alternative
for rendering global illumination solutions; their approach
reconstructs both view-independent and view-dependent
components without decoupling them. A particle tracing method
is used to emit power-carrying particles from the light sources and
to track them through the environment until they are
probabilistically absorbed. All the particle hit-points are stored
along with their incoming directions and corresponding surfaces,
and each is associated with a kernel texture (Gaussian) centered at
the hit-point. At rendering time, each kernel texture is intensity-
scaled according to the surface’s BRDF and the current
viewpoint. The overlap of all the kernel textures on a surface
reconstructs view-independent and view-dependent components
of the global illumination on the surface. Similar to Walter et al.,
this approach also requires excessive directional information for
highly glossy and mirror-like surfaces.

Environment-mapping is another method for providing fast view-
dependent illumination. This technique efficiently accounts for
mirror-like reflections by precomputing the incoming radiance for
a reflector into a world-projection texture-map [4][11]. At run-
time, this texture is indexed using the reflected view vector for
each vertex and then mapped onto the reflector surface. This
technique is often implemented in hardware in the form of sphere-
mapping [15], making it nearly as fast as regular texture-mapping.
Environment-mapping also has significant drawbacks. No motion
parallax effects can be observed and the viewer is assumed to be
infinitely far away from the infinitely small reflector. These
drawbacks can be overcome by computing the reflected vector per
pixel [20] and by warping the texels [3].

Multi-pass methods are another alternative for rendering non-
diffuse environments [8]. Planar reflections are computed by re-
rendering the entire scene for all the mirrored viewpoints. Glossy
reflection is approximated by using per-pixel fog effects and by
accumulating several specular images in a stochastic multi-
sampling manner. Although the results can be impressive, the
computational time limits its application to small environments.

General global illumination research properly accounts for the
view-dependent components of illumination [6][18]. Most

research in this area focuses on creating an accurate single image
in a reasonable amount of time. Emphasis is placed on high
quality, measurable accuracy, and numerical robustness of the
methods.   Multiple frames/second is not usually an objective.

Recently, Lischinski and Rappoport [13] presented an image-
based technique for rendering non-diffuse synthetic scenes based
on layered depth images. They capture both view-independent and
view-dependent appearance as images and recombine these two
components to render images from any viewpoint; the results
outperform ray tracing with similar quality for shading and
reflections. The main disadvantages of their approach are the size
of the required data structures, and the rendering time, which is
dependent on the depth complexity of the scene.

4. OVERVIEW
As did previous researchers, we decompose the global
illumination into view-independent diffuse and view-dependent
glossy components. We store and render the diffuse scene as a
geometric database with an associated precomputed radiosity
solution, using either dense meshing and per-vertex color or a set
of radiosity textures [2], both of which can easily be rendered on
today's typical graphics hardware.

Unlike previous approaches to interactive photorealistic
rendering, we decompose the view-dependent component into a
visibility step and a material-properties step. The overall
illumination for a reflective surface is determined by the incoming
radiance and the reflectance distribution properties of the material.
The incoming radiance represents what is visible from any point
on a reflective surface, and the reflectance distribution represents
how the reflection is blurred and modulated across the surface of
the reflector. We can think of the incoming radiance as
representing "what a reflector sees", while the BRDF represents
"how it is seen"; this allows the simulation of imperfect glossy
reflections across arbitrary reflective surfaces. The incoming
radiance is sampled as a set of images augmented with depth,
which we refer to as radiance maps. These radiance maps are
precomputed by sampling over the hemisphere of possible
reflected view directions. At runtime, a subset of radiance maps
closest to the current reflected viewpoint is reprojected, in
constant time, onto the surface of the reflector. The BRDF is
decomposed into an integration of incoming radiance and a
directional modulation. The incoming radiance integration is
approximated by convolving reflected images with material-based
texture kernels. The directional modulation is approximated by a
reflectance texture-map that blends in the reflected image, in a
view-dependent manner, using sphere-mapping.

Figure 1 Our decomposition of global illumination.
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One approach to computing the incoming radiance for reflective
surfaces is to use geometry [8][15], which requires a rendering
pass using the fully detailed geometric database for each reflected
viewpoint. Glossy effects are then usually obtained by
accumulation of jittered images. By using an image-based
radiance sampling, we obtain the ability to render at an
appropriate resolution that depends on the BRDF scattering.
Mirror-like surfaces require high-resolution images and narrow
convolution kernels, while nearly diffuse surfaces require low-
resolution images and wide convolution kernels. This is a material
property, so the radiance samples can be precomputed and stored
at a minimum resolution. In short, to control a material’s light
scattering effect, we render at a resolution and use a convolution
kernel chosen appropriately for the reflective material.

We restrict our focus to glossy, first-order, planar reflections;
however, we later discuss how to extend this technique to curved
surfaces and recursive reflections. We emphasize a decomposition
of the global illumination that allows a hybrid geometry and
image-based approach, which efficiently accounts for glossy
reflections. Due to the light scattering of glossy reflections,
higher-order reflections often contribute very little to the final
scene’s illumination.

5. DECOMPOSITION OF ILLUMINATION
Our rendering method approximates global illumination by
combining three different lighting components. Each component
is determined by the material properties of the surfaces to be
rendered. We understand the BRDF from the observer’s
viewpoint – as a light-gathering approach (see Figure 2). It
describes how the material spreads light of an incoming solid
angle into a single outgoing direction, the viewer’s direction (a
single ray connecting the viewer to the point spreading the
incoming light). We decompose the general BRDF into the sum of
three qualitatively different components (see Figure 2): diffuse
(Lambertian) reflection, mirror (ideal specular) reflection, and
glossy (directionally diffuse) reflection [6].

For simplicity, we consider that a pixel receives light from the
scene only along a single direction. This represents the evaluation
of the rendering equation at the intersection point, i.e., the
radiance leaving the primitive in the direction of the viewer. We
restrict our discussion to the reflection of light, but algorithmic
similarities allow our techniques to be applied for transmission of
light as well.

In the general case, the total outgoing radiance, Lo(x,ϖo), leaving
a point x in an outgoing direction ϖo, depends on an emission
term and a reflection term. The emission term represents the
emitted radiance, Le(x,ϖo), emitted from point x in direction ϖo.
The reflection term is the integration of the incoming radiance,
Li(x,ϖo), over the hemisphere, Ω, covering the surface at point x,
weighted by the BRDF, ρbd(x,ϖo,ϖ), at that point and at outgoing
direction ϖo. Mathematically, this defines the rendering equation:

iiiiObdOeOO dxLxxLxL ϖθϖϖϖρϖϖ cos),(),,(),(),( ∫Ω
+= (1)

where θ  is the angle between the normal to the surface at x and
the incoming direction ϖi. This equation can be split into the sum

of three componentsbased on the material propertiesas
presented above. Our rendering approach approximates the
rendering equation as the sum of the following components.

For the ideally diffuse component, the BRDF is a constant and
can be factored out of the integral in equation (1). This component
reduces to evaluating the radiosity equation [6]. For the mirror-
like component, the BRDF is a delta function and the integrand is
non-null only when the incoming direction ϖi is exactly equal to
the outgoing direction ϖo.  This component reduces to evaluating
the incoming radiance Li(x,ϖo) weighted by the BRDF at the
reflection point x. The non-ideal (non-diffuse and non-mirror)
surface properties require integration of the contribution of
radiance reflected from all the incoming directions weighted by
the corresponding BRDF at that particular point.

The next section describes how our method handles the
computation and the rapid rendering of these view-independent
and the view-dependent components of the rendering equation.

6. RENDERING PIPELINE
Our hybrid method for rapid rendering of globally illuminated
scenes combines traditional geometry-based rendering with
image-based rendering to approximate the rendering equation (1),
by summing the three components described in section 5. Our
multi-pass, per-pixel, shading equation is expressed as the sum of
a view-independent term and a view-dependent term:

( ) 1,* ≤++= sdsdo kkRKMkDkL     (2)

where Lo is the outgoing radiance from the intersected point in the
direction of the viewer, D is the ideally diffuse component
obtained from a rendered geometry-based radiosity solution, M is
the mirror-like component (reflected image), K is the kernel
texture extracted from the material’s BRDF, R is the reflectance
modulation texture also deduced from the material’s BRDF, kd

and ks are the magnitudes of the diffuse and specular components,
and “*” represents the convolution operation. Note that M, K, and
R are image-based quantities. Additions and multiplications are
performed using blending functions in hardware. Note also that
the mirror component is a special case of the view-dependent term
with K=1 and R=1.

Diffuse GlossyMirrorBRDF = + +
Figure 2 Gathering approach to decompose the BRDF into
qualitative components.
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Figure 1 shows how we split global illumination into geometry
and image-based components and how we process each
independent component. Figure 3 is a diagram presenting the flow
of data and operations used to compute images with our system by
evaluating shading equation (2). We split the rendering pipeline
into preprocessing and runtime phases. The preprocessing phase is
composed of the following sub-phases:

Given geometry and information about materials and light sources, a
radiosity solution is computed for the scene. This radiosity solution
represents the ideally diffuse component D of equation (2).

Given the radiosity solution for the scene, the reflectors are sampled to
capture view-independent incoming radiance. This incoming radiance is
stored as a set of radiance maps with depth and represents the visibility
information of the view-dependent component M.

Given the material information of each reflector, a kernel texture K and a
reflectance modulation sphere-map R are computed based on the
reflector’s BRDF. These textures are used to post-process the reflected
images for the corresponding reflectors.

The runtime rendering phase progresses as follows:

   RenderGloballyIlluminatedScene( ViewPose )
        foreach visible reflector
            Create stencil region by rendering reflector as seen from ViewPose.
            Compute a reflected view pose, RefViewPose
            Select appropriate set of cameras using RefViewPose.
            Reproject selected radiance maps to RefViewPose      // M
            Convolve framebuffer with kernel K.       // M*K
            Enable sphere mapping

Modulate framebuffer region with modulation texture R
    by drawing the reflector as seen from ViewPose.

            Disable sphere mapping      // ks(M*K)R
            Sum diffuse component by rendering the reflector from ViewPose
      // kdD+ks(M*K)R
            Disable stencilling.

        foreach visible ideally diffuse object
            Render the object from ViewPose.

The color plate illustrates this algorithm, by showing the results in
the frame buffer for the runtime phase using a simple model. The
next sections describe in more detail how we handle the main
operations in the rendering pipeline.

7. VIEW-INDEPENDENT ILLUMINATION
In our approach, given the original geometry of the scene and
light source information, a phase precomputes the view-
independent global illumination solution for the scene. A
traditional finite-element (radiosity) approach [6][18] is used to
solve equation (1) for the view-independent case. The output is a
dense per-vertex color mesh approximating the view-independent
global illumination of the scene. Large surfaces in the scene are
finely subdivided to capture lighting information. We use
Lightscape Technologies software to compute our radiosity-
illuminated models.

Given the limit in number of primitives per frame that can be
rendered by graphics engines, walkthrough applications usually
try to reduce mesh complexity (and lighting information) by using
simplification techniques [9]. Instead of computing a dense
radiosity solution and then decimating it, we improve rendering
performance by replacing the fine meshing with the original larger
surfaces painted with radiosity textures [2].

8. VIEW-DEPENDENT ILLUMINATION
We split the view-dependent property of reflected light into two
independent sequential steps. First, we determine what is reflected
by a surface, and then process that reflected image to take into
account how it is reflected. The first step deals purely with a
visibility problem: we compute what is visible from every point
on a surface – this lends itself very well to preprocessing. The

second step deals with the evaluation of the BRDF at the
reflector’s surface: we compute how the material properties blur
and modulate the mirror-like reflected image; this is a view-
dependent operation and, as such, needs to be computed every
frame.

8.1.  What Is Reflected
Several approaches have been used to render mirror-like
reflections, but usually they are slow or inaccurate. We will
review some of these approaches and introduce our image-based
technique. We limit our discussion to forward mapping
approaches for reflectionapproaches that map objects from 3D
space onto the reflective surface. We do not review ray tracing, an
inverse mapping approach.

8.1.1. Related work in mirror-like reflections
Planar mirrors are the simplest specular surfaces to handle. Given
the viewpoint and the scene, one renders from the mirrored
viewpoint and direction, and blends this image onto the reflector
[8][15]. Although this technique is simple and attractive for
polygonal models, it is computationally intensive. Every mirror
polygon requires re-rendering the complete scene each frame.

Ofek and Rappoport [16] presented a technique for generating
reflections for curved surfaces based on creating virtual
(reflected) objects with respect to the reflectors. For each reflector
in the scene, potentially reflected objects in the scene are reflected
by geometry-warping their vertices into the virtual counterparts.
The virtual objects are then rendered and the resulting image is
blended with the main image (of the unreflected scene), as it is
done for multi-pass rendering. This approach both warps and
renders all the potentially reflected objects every
frameoperations that may require handling a large part of the
geometry database.

8.1.2. Related work in image-based rendering
Recently, several image-based methods have emerged as possible
tools for producing views of an environment in time that is
independent of scene complexity.  In general, image-based
approaches can be described in terms of the plenoptic function 
a description of all the radiance that is perceived from a given
position and direction in space, over all wavelengths, over all
possible times.

McMillan and Bishop [14] formalized the problem statement of
image-based rendering in terms of sampling and reconstruction of
the plenoptic function, and proposed a set of warping equations
that describe the optical flow of plenoptic samples; however, their
approach does not address view-dependent illumination.

Levoy et al. [12] and Gortler et al. [10] proposed similar
approaches to image-based rendering in which a very dense
sampling of the plenoptic function is performed a priori and then
fast table lookup is performed at run-time. Whereas both
approaches produce a good reconstruction of the plenoptic
function for a wide range of views, they have very large memory
requirements.

8.1.3 Radiance maps with depth
Our approach for computing mirror-like reflections is based on
the notion that an image is a sampling of the plenoptic function at
a position in space over a range of viewing angles. Like McMillan
[14], we extend the plenoptic function sampling by preserving
depth along each sampled direction. We call such an image a
radiance map. Each pixel in a radiance map stores the outgoing



radiance and location of a point in 3D screen space – a point on
the surface intersected by the corresponding viewing ray.

Since the amount of computation required to reproject an image is
proportional to the image size, the time required to render a
mirrored view of the scene is constant in the resolution of the
radiance map regardless of the geometrical complexity of the
scene. This is in contrast to geometry-based multi-pass rendering.

The use of image-based techniques to accelerate the rendering of
architectural walkthroughs is not new.  In particular, Aliaga et al.
[1] use images with disparity to simplify geometry when viewed
through a portal (door or window).  The incoming radiance and
corresponding disparity are sampled for a number of views along
an arc in the horizontal plane behind the portal, as a preprocess.
During runtime, image selection and McMillan-style image-
warping are used to render final views through portals.

We extend Aliaga’s sampling to create viewpoints on the
hemisphere behind each planar reflector, instead of on a
horizontal arc [3]. For each reflective object, we precompute a
collection of radiance maps with depth for points behind the
reflector’s surface (Figure 4(left)). These radiance maps represent
what is seen from the reflector’s surface over a range of angles
and positions. As we deal with radiosity illuminated models, the
radiance stored by the maps is a view-independent quantity.  As a
result, reprojection of image samples from one screen space to
another can be used to determine the radiance arriving at a new
viewing position.

We split our approach for creating and rendering radiance maps
with depth into four distinct steps:

• sampling of the extended plenoptic function,
• selection,
• reprojection, and
• reconstruction.

Note that the first step is part of the preprocessing phase, while
the last three are performed in the runtime phase. The result of
this image-based pass is a perspectively-correct reconstructed
view of the environment as seen from a mirrored viewpoint.

Sampling of the plenoptic function
Our sampling process happens in three hierarchical stages, in
order to finely sample the visibility function as seen from the
reflector. First, we uniformly sample the planar reflector at a
given planar resolution. Each of these points on the plane defines
a reflector element on the glossy object. We then create a
hemisphere centered at each of these points. The reflector element
is a quadrilateral that inscribes the base of the hemisphere.
Finally, we select points on the surface of the hemisphere at
evenly sampled arc-lengths. For each point on the hemisphere we
create a radiance map. The (possibly off-axis) view-frusta for
radiance maps are created using one point on the hemisphere as
the center-of-projection and the vertices of the reflector element

as the near plane. Figure 4(left) shows how we choose the location
of the radiance maps for a single reflector element.

Selection
At runtime, we mirror the viewpoint and viewing direction about
each reflection plane. The selection of radiance maps is performed
as illustrated in Figure 4(right). By examining the viewing angle
formed by the mirrored viewpoint and the center of the reflection
plane, we quickly determine which cameras have the highest
radiance resolution in the reflected view direction. This is a
simple selection process implemented as a search for the minimal
angle. We have also implemented a distance-based selection
technique that evaluates the distance from the reference of the
radiance maps to the reflected camera and selects the closest
one(s).

Reprojection
We can project the pixels of the radiance maps to world space by
using the inverse of the transformation matrix used to compute the
radiance map. Then we can transform these points into a new
camera space and render a new image of the sampled scene.
McMillan [14] presented this process as an image warp that
projects pixels from a reference image into a destination image.
We prefer to treat this process as a reprojection of 3D points, in
order to exploit hardware rendering of 3D points.

Reconstruction
Once the radiance maps have been projected to the new camera
pose, an image needs to be reconstructed from the scattered points
on the screen. Two situations can arise: the magnification or the
minification of the picture elements (3D points).

For the case of magnification, we use a simple zero-order
approach by just increasing the point size of the projected point on
the screen; this is analogous to splatting [22] of a box kernel
aligned with the screen. Although simple to implement, this
approach may lead to artifacts due to noise introduced in the
reflected images.

An estimate of the anisotropic projected point size, based on
projected areas, is given by:
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where Windowx,y is a resolution scaling factor from the reference
to the desired image in x or y (Windowx,y = Refx,y / Desx,y),
DistanceScale is a distance scaling factor (DistanceScale= Refdepth

/ Desdepth), and Angularx,y is an angular scaling factor based on the
dot product of the desired view-direction and the reference X and
Y axes.

The same expression above can be used for minification of the
radiance maps – when the projected area of the radiance map is
smaller than its original area. In this case, we use step size
estimation (Stepx,y) to skip points when reprojecting the radiance
map.

The estimation of point size on a per-point basis clearly generates
the best results; however, it is a bottleneck. To keep the
computation reasonable, we organize points of the radiance maps
into a quadtree. Nodes of the quadtree contain only points in a
given range of depths or have a minimum number of points. For
each node, we compute a representative point as the average of all
the points inside that node; this representative point is used to
estimate the point size for all the points inside that node, as
presented by equation (3). This hierarchy also permits view-
frustum culling of sub-regions of the radiance maps.

reflector reflector

Figure 4 Left image shows radiance map sampling on the
hemisphere surrounding the reflector. Three view frusta from
behind the reflector are shown. Right image shows a new
reflected view (dashed) and the two “best fit” sample cameras
(solid) used for rendering.



8.2 How It Is Reflected
Once we know what is reflected for a particular reflector, we need
to process this mirror-like reflected image to take into account
how it is reflected, by evaluating the material’s BRDF. We take
into account glossiness and view-dependent reflectance
modulation by applying image processing techniques to the
reflected image.

This decomposition of the BRDF into two components allows
writing the BRDF as the product of an integration cone term and a
directional amplitude function. Given the low frequency of both
functions, we represent them using texture mapsa kernel texture
and a reflectance modulation texture.

We can, for example, approximate the microfacets-based Cook-
Torrance reflectance model [7]. We use the view-dependent term
of equation (2) as Cook and Torrance’s specular component:
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where F is the Fresnel term, D is the slope distribution function, G
is the geometrical attenuation term, and N, L, and V represent the
normal, light, and view vector. D and G represent how light is
spread locally on the surface due to microfacets on a
neighborhood, and thus influences solid angle integration and our
kernel texture. In terms of our technique, we sample DG to
precompute the kernel texture to be used for the convolution step.
F represents how light is reflected from each smooth microfacet,
influencing reflectance modulation locally. We sample F divided
by the denominator of equation (4) to precompute the sphere-
maps for given materials.

8.2.1 Solid angle integration
The reflected images obtained with the approaches presented in
section 8.1 represent a perfect mirror reflectiona single
incoming direction contributes to a particular outgoing direction
(any pixel in the reflected image). However, for glossy
reflections, we need to consider that more than a single incoming
direction over the hemisphere makes a significant contribution to
the radiance in a particular outgoing direction. A solid angle over
the hemisphere needs to be sampled to achieve a reasonable
approximation of the outgoing radiance of equation (1). The size
of this solid angle varies according to reflectance properties of the
material – the blur of the reflected images – which defines an
integration cone. The more diffusing the material, the larger the
cone angle.

We implement glossiness by performing a 2D-convolution with a
space-invariant kernel over the reflected image. The blur

produced by the convolution approximates the integration cone or
incoming solid angle. This approximation assumes coherence
exists across the reflected image and we disregard visibility events
that may occur in the region surrounding a pixel. Each pixel of the
reflected image, after the convolution, is the result of a weighted-
average of the surrounding pixels. The weights for neighboring
pixels are given by the kernel texture. The size of the kernel
texture controls the support of the kernel (the size of the cone) and
derives from the glossiness of the material. For a reflectance
model such as Cook and Torrance’s, a Gaussian or a Beckman
distribution is sampled in order to create the kernel.

Even though the convolution step is not aimed directly at the
reconstruction stage of section 8.1, it helps obtain smoother
reflected images.

8.2.2 Reflectance modulation
Besides the size of the solid angle to be sampled, the reflectance
properties of a material also dictate the angular dependence of the
amplitude of the reflected image. An ideal mirror and an ideal
diffuse material each have constant amplitude for any reflected
direction, whereas a surface such as paper or varnished wood
exhibits angular variation of the amplitude; at grazing angles they
exhibit a high specular component that is quite small at normal
incidence/reflection.
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We implement this view-dependent modulation of the reflected
image with a rendering pass over the reflector. Once the reflected
and blurred image is in the frame buffer, we enable multiplicative
blending and render the reflector using its reflectance sphere map
to modulate that image. The sphere-mapping technique evaluates
the reflected vector at the vertices of the reflector and uses this
information to derive the texture coordinates and index into the
sphere reflectance map [15]  a texture lookup in hardware.

The sphere map itself is a square texture where texels outside an
inscribed disk are never accessed and texels inside the disk
contain useful values. Reflected vectors parallel to the surface
normal map to the center of the disk and reflected vectors
orthogonal to the surface normal map to the outer ring in the disk.
We precompute our reflectance maps based on this mapping and
on the material of the reflectors. Figure 6 shows a reflectance
sphere map for a low-gloss material. Notice the low reflectance at
orthogonal incidence/reflection (center of the disk) and the high
reflectance at grazing angle (in the ring). The sphere maps are
precomputed by sampling the material’s BRDF. For each pixel in
the sphere-map texture, compute the reflected vector and evaluate
the BRDF of the material for those conditions.

Figure 5 Left image shows radiance maps stored as images
augmented with depth. Right image shows radiance maps
reprojected into a new view.

Radiance Map 1 Radiance Map 2 New Reflected View

Figure 6 Reflectance sphere map for gold obtained by sampling
the Fresnel equation for RGB=(0.63, 0.56, 0.37). The graph
shows RGB components along the middle line of the sphere
map (along the angle between the reflected vector and the
sphere normal). Note the color shift predicted by the Fresnel
equation on both the texture and the graph.



9. RESULTS
Our system is implemented in C++ using the OpenGL and GLUT
libraries. The performance tests were run on a Silicon Graphics
Onyx2 workstation using a single 250 MHz R10000 processor
and an Infinite Reality 2 graphics pipe with four raster managers.
We tested our system on two data sets: one consists of a simple
textured 16,000-triangle model with up to 11 planar reflectors; the
second is a large radiosity-illuminated and textured 140,000-
triangle house model with five planar reflectors.  (See color
plates.)

The diagram in the color plates shows a sequence of images in
which portions of our per-pixel shading equation have been
evaluated for all the visible reflective surfaces.  The kernel and
reflectance modulation textures are also shown. The scene is
composed of a pyramid and a teapot, both of which are inside of a
textured cube. The pyramid has a specular component with copper
material properties and the remainder of the scene is ideally
diffuse. Three of the five non-diffuse reflectors are visible in the
images. The upper left image combines the mirror-like reflected-
images generated for the reflectors. This image shows the result of
only computing the M component of our shading equation.
Geometry-based reflections were used, in this case, to stress that
our shading approach is independent of model representation
(geometry versus images).  The next image, labeled M*K, shows
the result of the convolution operation used to perform solid angle
integration of incoming radiance.  The texture kernel K is the DG
term of the Cook-Torrance reflectance model for copper.  The
image labeled ks(M*K)R shows the frame-buffer after the sphere-
map reflectance modulation. R shows the directional reflectance
modulation texture and corresponds to the fresnel term divided by
the denominator of equation (4) for copper. The image labeled D
shows the view-independent illumination. The bottom image,
labeled ks(M*K)R + kdD, shows the final result of summing the
view-dependent and view-independent components. Note the
difference in modulation on the three faces of the pyramid, due to
their distinct orientations with respect to the viewer. Also observe
the tapering and color shift of the view-dependent component on
the base of the pyramid.

To analyze the performance of our system, we used a house
model. Images were rendered at 720x486 and performance data
were collected by playing a pre-recorded path (944 frames)
through the model. Table 1 contains a description of the radiance
maps for each of the five reflectors in the scene.

Name

# of

hemispheres

Radiance maps per

hemisphere

Radiance map

resolution

Memory

(Mbytes)

1 Piano Top 1 23 128x128 2.54

2 Living Floor 12 6 128x128 7.98

3 Door Mirrors 11 17 128x128 20.69

4 Music Floor 8 7 128x128 6.21

5 Bench Top 1 67 32x32 0.57

Table 1 Data for the five reflectors in the house model.

The graph (in the color plates) shows the performance for our
image-based approach versus the geometry-based approach. It
illustrates the cost of increasing the number of radiance maps
reprojected per reflector. Notice that the image-based approach
with one or two images was twice as fast as the geometry-based
one. Note that increasing the number of selected radiance maps
improves the quality of reflected images.

We have also analyzed the performance of the individual
operations involved in our runtime rendering. We ran a series of
tests on the house model using our image-based approach and
selecting two radiance maps for each hemisphere. Allowing the
number of reflectors to vary, we found that time spent rendering

the view-independent component of the scene was invariant with
respect to the number of reflectors.  We also found that the
convolution and modulation operations combined for no more
than 3% of the total rendering time.  This suggests that the two
operations do not dominate in the evaluation of our shading
equation.  It is important to note that the convolution operation is
a screen space operation; consequently, the cost is dependent on
the screen-space projected area of each reflector and not on model
complexity.

In all these test runs with the house model, the image-based
approach outperformed the geometry-based one, but this
performance was not free. The image-based approach incurs
additional memory overhead. The house model required 50
megabytes of storage of which 20% was for geometry-related data
and 80% was for radiance maps.

Color plates (a) and (b) compare image quality of geometry-based
reflections with our image-based approach. The image-based
approach exhibits loss of detail and artifacts in some regions of
the image. This is unfortunate for mirror-like reflections, but
reasonable for glossy reflections. The primary causes for these
artifacts are due to disocclusions and noise introduced by the
point-based reconstruction.

Our BRDF decomposition for simulating glossy surfaces
convincingly approximates the view dependent reflectance for
glossy surfaces. Color plates (b) and (c) show the results on the
music room of the house model. In (b) the view-direction is
parallel to the floor and the piano top, while in (c) the viewer is
looking down. Notice the increase in specular reflectance at
grazing angles and the appropriately decreasing view-dependent
component at higher angles.

Clearly, the blur obtained with convolution approximates the
roughness of the surface at small neighborhoods. Unfortunately,
this assumes that reflected points are at a constant distance from
the reflector. A more accurate implementation would perform
convolution in layers, so that points closer to the reflector would
be less blurred than points farther away.

The use of hardware sphere-mapping to approximate the view-
dependent reflectance function is very effective. Since we only
use the sphere-map for directional information, we do not suffer
from the occlusion and motion parallax problems inherent in the
original technique, as described in section 3. However, our
technique requires high resolution on a region (ring) of the
sphere-map where the original sphere-mapping offers low
resolution. Though we reduced this problem by uniformly
increasing the resolution of the whole map and the tessellation of
the reflectors, a better solution would be to flip the sphere-
mapping indexing scheme in the hardware. Grazing angles would
index texels in the center of the sphere-map, where there is higher
resolution than in the ring. For a more clever hardware
implementation of our technique, we could realize that sphere-
mapping is under-utilized by our application. Isotropic BRDFs
need just a one-dimensional texture-map indexed by the radius of
the sphere-mapping indexing scheme.

10. CONCLUSIONS
In this paper we presented an approach to obtain glossy
reflections that runs in constant-time (per reflector) independent
of the scene complexity. In addition to mirror-like reflections, we
efficiently account for the scattering effect of glossy reflections by
decomposing the illumination into components that can be
precomputed and quickly rendered using a multi-pass image-
based approach. Our approach for glossy reflections is not tightly



coupled with the image-based reflection that we present; it can be
used with any other model representation.

Our approach runs in constant time, like sphere-mapping, and
preserves motion parallax, like geometric reflections.
Unfortunately, mirror-like reflections in our approach require
precomputing and storing a large quantity of data.

We have obtained constant time rendering per reflector, but the
computation and storage increases as the number of reflective
surfaces increase; however, if the constant time to perspectively-
reproject a radiance map is less than the time to render the
geometry, we obtain greater performance. We have found that the
sampling strategy and the selection approach are crucial in
achieving improved reconstruction of the reflected images.

We effectively obtain view-dependent glossy effects, while
incurring significantly less computational overhead than previous
techniques, especially as the complexity of the scene increases.

11. FUTURE WORK
As in the geometry-based planar reflections, we can approximate
curved surface reflections by using a piecewise-linear, polygonal
tesselation of the surface; each facet is treated as a planar
reflector. As the tesselation gets finer, we obtain more accurate
results. A benefit of our approach is that we can tailor the reflector
sampling density and resolution to be appropriate for the many
small reflectors; furthermore, the scattering effect helps to mask
the discontinuities in the curved reflection.

Recursive reflections can be handled exactly like in multi-pass
geometry-based planar reflections [8]  by recursively calling
the reflection routine for all reflectors visible from the reflected
viewpoints. However, we have two major differences from
normal geometric perfectly specular reflections: we do not require
much recursion depth for non-diffuse reflectors, and we only
require a constant time rendering of the reflected views. Previous
approaches simulate these effects by redisplaying the entire scene
geometry. In addition, the scattering effect is frequently simulated
by multiple passes over the geometry in a jitter-and-accumulate
strategy.

A more promising approach to the solid angle integration
technique presented in section 8.2.1 would use splatting of the 3D
points onto the surface of the reflector  a feed-forward
reconstruction approach (for each point in the object, splat its
contribution to all the pixels in the reflected image). This idea
combines the reconstruction step of section 8.1.3 with the solid
angle integration of section 8.2.1.

Our hybrid approach can also be extended to account for glossy
transmission (translucency) and other effects, including depth-of-
field and motion blur.
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