6d. DISCREPANCY LOWER BOUNIY

6.4.a. The Discrepancy of GIP

In this subsection we prove a lower bound for GIP by using the discrepancy method.
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We first introduce a slightly modified notation to facilitate easier algebraic handling.

Define a function £ as follows: flxy,....- ) is 1 ifGIPE (X, 0 ) =0 and =1 if
GIPf‘,{,ﬁ ...... v;.) = 1. In this case, instead of working directly with the discrepancy we
will use:
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whete the maximum is taken over all functions ¢ = ({0, 1}" ) — {0, 1]} such that ¢y does
not depend on x;, and the expectation is over all 2" possible choices of X, ..., X

First., it should be clear that Dfscl.,,,-ﬁmiﬁrlrf;} = Ag(n). This is becauvse the product
(1 ST %) S 1 b4 PR xp) gives Lona collection of points that forms 2 cylinder
intersection, and, conversely, any cylinder intersection can be written as such a product,
In addition, because we changed to the {—1, +1} notation, the expectation plays the
same role as the difference in probabilities previously did.

We define constants g recursively: f =0, and fiy = V'r'_““% It follows by induc-
tion that B < | — 4% < ™. We will prove the following upper bound on A ().

Lemma 6.17: Agln) < (8", forallk = 1,n =10

FROOF: Ohserve that A, () = 0, becausein this case ¢, must be constant and E,, | Fle)]
— 0 (in the case that n = 0, we get 4,(0) = 1. To overcome this, we define 0” = | for
this proof ). We proceed by induction on &, Let & = 2, and fix ¢y, ... . ¢h that achieve
the value of Ay (). Because ¢y does not depend on vy, and is hounded in absolute value
by 1,
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In order to estimate the right-hand side, we will use a special case of the Cauchy-
Schwartz inequality stating that for any random variable z: (E[z])* = El[z*]. Thus our
pstimate is:
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where ¢! stands for ¢y (x), .. .. X1, 1), and ! for ¢ (xy. .. oo X1 ).

Now observe that for every particular choice of i and v, we can express the product
Filxp,eee s Bpmrs ) FO0L ey Xt 1) in terms of the function fonk — | strings of pos-
sibly shorter length. Inspection reveals that the value of flxg,....- ST 3 ) ol b 5 e
Xey, v) is simply f(z1, ..., zx—1), where z; is the restriction of x; to the coordinates
j such that u; # v, (here is where the particular properties of [ are used). We will
sow view each 1, as composed of two parts: z; and y;, where z; is the part of x; where
n; # vy, and y; the part of x; where 1; = v; (this is done separately for every u, v).
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MULTIPARTY COMMUNICA TION COMPLEXITY

For every particular choice of u, v and consequently vy, ..., y_,, we define func
tions of the “z-parts™
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where the x;s are obtained by the concatenation of the corresponding v; and z;. We can
now rewrite the previous estimate as

Ailn) = (Eyu[Ey, _y,  [SO0H--i]l2,
where 55w g defined as
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Now §**T-9-1 can be estimated via the induction hypothesis, because f and the
§is are all functions of k — 1 strings. Moreover, note that &"*""*~1 4oes not depend
on z;. Thus the previous estimate of Ay(n) is bounded by
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where m, .. is the length of the strings z;, which is equal to the number of locations i
such that u; 3 v,

Because i and v are distributed unj formly in {0, 1)*, my o is distributed according to
the binomial distribution. For any constant m, the probability that M = m is exactly
()27". Thus the previous estimate gives:
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which completes the proof of the lemma, ]

To conclude, this shows that DF.vcm,mm(GIPjJ = 1/e#T, which implies that the de-
terministic (and even randomized) communication complexity of GIP! is ©(n/4%). In
fact, by Exercise 6.15, we also get a bound for DM FY and £y (f) of Q(loge+
nfd*), ;

6.5. Simultaneous Protocols

The protacols presented in Examples 6.3 and 6.4 are of a very restricted form: the
communication sent by each party does not depend at all on the previous communication
sent by other parties. We can imagine all parties speaking “simultaneously” and each
writing, on a common blackboard, a function of the & — 1 parts of the input it can see,
After all parties have spoken, the answer should be determined by what is written on
the blackboard. We call such protocols simultaneous.,

Definition 6.18: The simultancous communication complexity of f, D (). is the cost
af the best simultaneous protocol thay compittes f.
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