
Copyright 1997 Computer Science 217: Structures Page 89

October 1, 1999

Structures

• Structures are heter ogenous collections of variab les
struct date {

int day;
char month[4];
int year;

};

• struct date can be used like int and char, e.g. to declare variables
struct date birthday, *graduation;

• Structure declarations can be combined with variable definitions
struct date { ... } birthday, *graduation;

• external and static local structures can be initializ ed at compile time:

struct date independence = { 4, "Jul", 1776 };

• Structures can be nested

struct person {
char name[30];
long ssn;
struct date birthday;

} p;

declares the structure date,
but does not allocate space

Copyright 1997 Computer Science 217: Structures Page 90

October 1, 1999

Fields

• Structure fields are accessed by variab le.field

struct person employee, employees[100];

employee.birthday.month
employees[i].name[j]

• structure pointer s point to instances of structures

struct date d, *pd;

pd = &d;
d = *pd; structure assignment is legal!

• “->” references a field in a structure pointed by a pointer

pd->month equivalent to (*pd).month

• Structures can contain pointers; -> associates to the left

struct tree { p->l->l->l->d.month;
struct date d;
struct tree *l, *r;

} *p;

Copyright 1997 Computer Science 217: Structures Page 91

October 1, 1999

Pointer s to Structures

• Manipulating pointers to structures:

struct foo { int x, *y; } *p;

++p->x increments field x in *p

(++p)->x increments p, then refers to field x

*p->y++ return int pointed to by field y in *p, increments y

*p++->y return int pointed to by field y in *p, increment p

• An array of structures is the preferred method for storing a table

#define NKEYS 100 “the old wa y:”

struct key { char *keyword[NKEYS];
char *keyword; int keycount[NKEYS];
int keycount;

} keytab[NKEYS];

Copyright 1997 Computer Science 217: Structures Page 92

October 1, 1999

Arra ys of Structures

• Easy to initialize such tables:

struct key keytable[] = {
{ "auto", 0, },
{ "break", 0, },
...
{ "while", 0 }

}

• Easy to search them:

int i;

for (i = 0; i < NKEYS; i++)
if (strcmp(word, keytable[i].keyword) == 0)

...

Copyright 1997 Computer Science 217: Structures Page 93

October 1, 1999

Sizeof

• sizeof x is a compile-time operator that gives the size of x in bytes

x can be (type) or expression

sizeof (int) 4
sizeof (int *) 4
sizeof (struct key *) 4
sizeof (struct key) 8

sizeof keytable NKEYS*sizeof (struct key)

• Use sizeof to define parameters

#define NKEYS (sizeof keytable/sizeof (struct key))

• Examples

int a[10];
struct operator { char key; void(*f)(int, int); } b[3], o, *p;

sizeof a 40
sizeof b 24
sizeof o 8
sizeof p 4
sizeof *p 8

Copyright 1997 Computer Science 217: Structures Page 94

October 1, 1999

Unions

• Unions provide a way to use diff erent types for data in a single stora ge area

union u {
double fval;
int ival;
char cval;

} uval;

uval.fval double

uval.ival integer

uval.cval character

• Union size is equal to the sizeof the largest field

sizeof uval 8

• No validity c hecks

Copyright 1997 Computer Science 217: Structures Page 95

October 1, 1999

Unions, cont’ d

• Unions often appear in structures to reduce space

struct value {
enum { Integer, Real, Character } type;
union u val;

} values[100];

type — a “type tag” — keeps track of the type stored in val

• Check type tag before accessing union fields:

void print(int i) {
switch (values[i].type) {
case Integer: printf("%d", values[i].val.ival); break;
case Real: printf("%g", values[i].val.fval); break;
case Character:printf("%c", values[i].val.cval); break;
default: assert(0);
}

}

Copyright 1997 Computer Science 217: Structures Page 96

October 1, 1999

Bit Fields

• Signed and unsigned integers can be packed into bit fields

enum Type { Integer=1, Real=2, Character=3 };

struct value {
int type : 3;
unsigned printed : 1;
union u val;

} values[100];

void print(int i) {
if (!values[i].printed) {

switch (values[i].type) {
...
}
values[i].printed = 1

}
}

• Extracting int bit fields sign e xtends the leftmost bit of the field

• Unnamed fields help lay out fields to access specific parts of a word

struct instruction { unsigned op:2; :5; unsigned op2:3; int
immed:22; };

Copyright 1997 Computer Science 217: Structures Page 97

October 1, 1999

Typedef

• typedef associates a name with a type , why?

• Standard declaration; the “variable” is a new type

typedef short int16;

typedef struct {
char *keyword;
int keycount;

} key;

typedef enum { Integer, Real, Character } Type;

int16 max(int16 x, int16 y);

key keytable[NKEYS];

(key *)p

sizeof (key) parentheses are required!

