
Copyright 1997 Computer Science 217: Operating System Page 187

November 2, 1999

Operating Systems

• Operating systems manage processes and resour ces

• Processes are executing instances of programs

• State vector: registers, program counter, memory mgmt registers, etc.

code

data

SV

process 3

code

data

SV

process 1

code

data

SV

process 2

state vector : inf ormation necessar y to star t, stop, and restar t the pr ocess

may be the same or diff erent pr ograms

user -level pr ocesses

operating system, “kernel”

bare mac hine

assemb ly & high-le vel langua ges

machine langua ge & system calls

machine langua ge

Copyright 1997 Computer Science 217: Operating System Page 188

November 2, 1999

Privileg ed Instructions

• Machines have two kinds of instructions

1. “normal” instructions, e.g., add, sub, etc.

2. “privileged” instructions, e.g.,
initiate I/O
switch state vectors or conte xts
load/save from protected memory
etc.

• Operating systems hide privileged instructions and provide vir tual
instructions to access and manipulate vir tual resour ces, e.g., I/O to and
from disc files

• Virtual instructions are system calls

• Operating systems interpret virtual instructions

Copyright 1997 Computer Science 217: Operating System Page 189

November 2, 1999

Processor Modes

• Machine level typically has 2 modes, e.g., “user” mode and “kernel”
mode

• User mode

processor executes “normal” instructions in the user’s program

upon encountering a “privileged” instruction, processor switc hes to kernel mode, and
the operating system performs a service

• Kernel mode

processor executes both normal and privileged instructions

• User-to-kernel switch saves the information necessary to contin ue the
execution of the user process

• Another view

Operating system is a process that runs in kernel mode.

Copyright 1997 Computer Science 217: Operating System Page 190

November 2, 1999

Vir tual Resour ces

• OS provides a high-le vel representation of low-level resources

• For example, low-level disks are presented as file systems
simple to use file system

tree-structured, hierarchical
directories
named files

files are sequences of bytes

network
k disk drives

 different capacities, speeds
 access via cylinder, sector, track

 fixed I/O format and transfer rules
authentication

 error correction and handling

UNIX Operating System

Copyright 1997 Computer Science 217: Operating System Page 191

November 2, 1999

System Calls

• Virtual instructions are often presented as a set of system calls

• Typical implementations (in order of prevalence)

single privileged instruction with parameters

interpret to other privileged instructions

jump to fixed locations

• Parameters are passed in a machine-dependent manner

in fixed registers

in fixed memory locations

in an argument block, with the block’s address in a register

in-line with the system call

on the stack

combination of the above

• System calls return results in registers, memory, etc., and an error
indication

Copyright 1997 Computer Science 217: Operating System Page 192

November 2, 1999

System Calls, cont’ d

• System call mechanism is tailored to the machine architecture

system calls on the SPARC use a trap instruction

ta 0

trap always; a trap value of 0 indicates a system call

parameters are in registers %g1, %o0 — %o5 and on the stack

• System call interface often designed to accommodate high-level
languages

system calls are accessed by a library of procedures

e.g., on UNIX, system calls are packaged as a library of C functions

• Typical UNIX system call

nread = read(fd, buffer, n);

returns the number of bytes read from the file fd, or -1 if an error occurs

what about EOF?

Copyright 1997 Computer Science 217: Operating System Page 193

November 2, 1999

Implementing System Calls as Functions

• In the caller
mov fd,%o0
mov buffer,%o1
mov n,%o2
call _read; nop
mov %o0,nread

• Implementation of read
_read:

set 3,%g1 /* 3 indicates READ system call */
ta 0
bcc L1; nop
set _errno,%g1 /* sets errno to the error code */
st %o0,[%g1]
set -1,%o0 /* return -1 to indicate an error */

L1: retl; nop

operating system
sets the C bit if an error occurred
stores an error code in %o0; see /usr/include/sys/errno.h

note that read is a leaf function

• UNIX has ~150 system calls
see “man 2 intro” and /usr/include/syscall.h

Copyright 1997 Computer Science 217: Operating System Page 194

November 2, 1999

Exceptions and Interrupts

• Operating systems also field exceptions and interrupts

• Exceptions (a.k.a. traps): caused by execution of an instruction

e.g., divide by 0, illegal address, memory protection violation, illegal opcode

• Exceptions are like implicit system calls

operating systems can pass control to user processes to handle exceptions (e.g.,
“signals”)

operating systems have ways to process exceptions by defaults

e.g., segmentation fault and core dump

• Interrupts : caused by “external” activity unrelated to the user process

e.g., I/O completion, clock tick, etc.

• Interrupts are like transparent system calls

normally user processes cannot detect interrupts, nor need to deal with them

Copyright 1997 Computer Science 217: Operating System Page 195

November 2, 1999

SPARC Traps

• A trap instruction

enters kernel mode

disables other traps

decrements CWP

saves PC, nPC in %r17, %r18

sets PC to TBR, nPC to TBR + 4

• Hardware trap codes
1 reset
2 access exception
3 illegal instruction
...

• Software trap codes

sets TBR to trap number + 128

• There are conditional traps just like conditional branches

• There are separate floating point traps

Copyright 1997 Computer Science 217: Operating System Page 196

November 2, 1999

System Calls f or Input/Output

• Associating/disassociating files with file descriptor s
int open(char *filename, int flags, int mode)
int close(int fd)

• Reading/writing from file descriptors
int read(int fd, char *buf, int nbytes)
int write(int fd, char *buf, int nbytes)

• Another version of cp sour ce destination (see src/cp1.c)
#include <sys/file.h>
main(int argc, char *argv[]) {

int count, src, dst;
char buf[4096];
if (argc != 3)

error("usage: %s source destination\n", argv[0]);
if ((src = open(argv[1], O_RDONLY, 0)) < 0)

error("%s: can’t read ‘%s’\n", argv[0], argv[1]);
if ((dst = open(argv[2], O_WRONLY|O_CREAT, 0666)) < 0)

error("%s: can’t write ‘%s’\n", argv[0], argv[2]);
while ((count = read(src, buf, sizeof buf)) > 0)

write(dst, buf, count);
return EXIT_SUCCESS;

}

Copyright 1997 Computer Science 217: Operating System Page 197

November 2, 1999

Write with Confidence

• Most programs don’t check for write err ors or writes that are too lar ge

int ironclad_write(int fd, char *buf, int nbytes) {
char *p, *q;
int n;

p = buf;
q = buf + nbytes;
while (p < q)

if ((n = write(fd, p, q - p)) > 0)
p += n;

else
perror("iconclad_write:");

return nbytes;
}

• perror issues a diagnostic for the error code in errno

iconclad_write: file system full

Copyright 1997 Computer Science 217: Operating System Page 198

November 2, 1999

Buff ered I/O

• Single-character I/O is usually too slow
int getchar(void) {

char c;

if (read(0, &c, 1) == 1)
return c;

return EOF;
}

• Solution: read chunks of input into a buffer, dole out chars one at a time
int getchar(void) {

static char buf[1024];
static char *p;
static int n = 0;

if (n--)
return *p++;

if ((n = read(0, p = buf, sizeof buf)) > 0)
return getchar();

n = 0;
return EOF;

}

• Where’s the bug?

Copyright 1997 Computer Science 217: Operating System Page 199

November 2, 1999

Implementing the Standar d I/O Librar y

• Single-character I/O functions are usually implemented as macros

#define getc(p) (--(p)->_cnt >= 0 ? \
(int)(*(unsigned char *)(p)->_ptr++) : \
_filbuf(p))

#define getchar() (getc(stdin))

• A FILE holds per-file buffer information

typedef struct _iobuf {
int _cnt; /* number of characters/slots left in the

buffer */
char *_ptr; /* pointer to the next character in the

buffer */
char *_base; /* the beginning of the buffer */
int _bufsiz; /* size of the buffer */
short _flag; /* open mode flags, etc. */
char _file; /* associated file descriptor */

} FILE;

extern FILE *stdin, *stdout, *stderr;

• See /usr/princeton/include/ansi/stdio.h

Copyright 1997 Computer Science 217: Operating System Page 200

November 2, 1999

Buff ered Writes

• Single-character writes are usually implemented by macros

#define putc(c,p) (--(p)->_cnt >= 0 ? \
(p)->_ptr++ = (c) : \
_flsbuf((c), (p)))

#define putchar(c) (putc((c),stdout))

• Buffering can interfere with interactive streams

for (p = "Enter your name:\n"; *p; p++) putchar(*p);
for (p = buf; ; p++)

if ((*p = getchar()) == '\n')
break;

for (p = "Enter your age:\n"; *p; p++) putchar(*p);
for (p = buf; ; p++)

if ((*p = getchar()) == '\n')
break;

bug: program waits for input before prompt appears

Copyright 1997 Computer Science 217: Operating System Page 201

November 2, 1999

Buff ered Writes, cont’ d

• Output stream must be flushed before reading the input
void fflush(FILE *stream)
for (p = "Enter your name:\n"; *p; p++) putchar(*p);
fflush(stdout);
for (p = buf; ; p++)

if ((*p = getchar()) == '\n')
break;

for (p = "Enter your age:\n"; *p; p++) putchar(*p);
fflush(stdout);
for (p = buf; ; p++)

if ((*p = getchar()) == '\n')
break;

• Standard I/O supports line-b uff ered files
#define putc(x, p) (--(p)->_cnt >= 0 ?\

(int)(*(unsigned char *)(p)->_ptr++ = (x)) : \
(((p)->_flag&_IOLBF) && -(p)->_cnt < (p)->_bufsiz ? \

((*(p)->_ptr = (x)) != '\n' ? \
(int)(*(unsigned char *)(p)->_ptr++) : \

_flsbuf(*(unsigned char *)(p)->_ptr, p)) : \
_flsbuf((unsigned char)(x), p)))

• Why is line buffering necessary?
f = fopen("/dev/tty", "w")

