
Copyright -1997 Computer Science 217: Intro to C Page 14

September 14, 1999

ANSI C Programming Langua ge

• A small, general-purpose, initially systems pr ogramming langua ge

• Used for writing the UNIX OS and tools for many computers

• Now also very popular for general-purpose computing

• A “low-level” language

datatypes and control structures are close to those on most machines

• Notable features

pointer (address) arithmetic and operators

all functions are call-by-value

simple, 2-level scope structure

no I/O or memory management facilities (provided by library routines)

“flexible” type structure

• History

BCPL B C K&R C ANSI C
~1960 ~1970 ~1972 ~1978 ~1988

→ → → →

Copyright -1997 Computer Science 217: Intro to C Page 15

September 14, 1999

C Program Structure

• Programs

are composed of one or more files

each file contains global v ariab les and functions

/* this is the function “main” */
int main(int argc, char *argv[]) {

hello();
return 0;

}

/* this is the function “hello” */
void hello(void) {

printf("hello world\n");
}

• Execution

begins by calling main

ends when main returns (or some function calls the library function exit)

Copyright -1997 Computer Science 217: Intro to C Page 16

September 14, 1999

Function Definitions

• General form of an ANSI C function definition

[type] name (argument-declarations) { body }

int twice(int x, double y) {
...

}

• If no return value, type of function should be void .

• return statements specify function return values

int twice(int x, double y) {
return 2*x + y;

}

• Unlike in Pascal, functions are never defined within functions

Copyright -1997 Computer Science 217: Intro to C Page 17

September 14, 1999

Declarations & Definitions

• Declaration : specifies (announces) the proper ties of an identifier

extern int sp;
extern int stack[];

specify that “sp is an int ” and “stack is an array of ints ”

extern indicates they are defined elsewhere

- outside this routine, or even outside this file

• Definition : declares the identifier and causes stora ge to be allocated

int sp = 1;
int stack[100];

declare sp and stack, allocates storage, sp is initialized to 1

• Can a variable have multiple declarations?

• Why does a language have declarations for variables?

Copyright -1997 Computer Science 217: Intro to C Page 18

September 14, 1999

Scope

• How do functions defined in different files communicate?

- by calling one another (parameter passing and return values)

- through global (externally declared) variables

• External variables

Externally declared versus extern ?

Can we have multiple declarations of an externally defined variable within a file?

What if an external declaration is not initialized? Is it treated as defined?

• So which functions and data may a function reference?

- determined by the scope of identifiers

Copyright -1997 Computer Science 217: Intro to C Page 19

September 14, 1999

Global V ariab les & Scope

• The scope of an identifier says where the identifier can be used

• Functions can use global variables declared outside and above them

file a.c :

int stack[100];
main() {

...
}

int sp;
void push(int x) {
...
}

• Global variables and functions in other files are made avaiilable with extern

file b.c :

extern int stack[];
void dump(void) { ... }

stack defined in a.c is visible here

stack is visible

stack, sp are visible

Copyright -1997 Computer Science 217: Intro to C Page 20

September 14, 1999

Scope , cont’ d

• Formal parameter and local declarations “hide” outer-level declarations

int x, y;

...

f(int x, int a) {
int b;
...
y = x + a*b;
if (...) {

int a;
...
y = x + a*b;

}
}

• f(int x) {
int x;
...
}

struct a {
int a;
float b;

} *f;

float a = 1;

typdef int a;

int a(void){
char *a;
{
double a;
...
}

}

Copyright -1997 Computer Science 217: Intro to C Page 21

September 14, 1999

Scope , cont’ d

• Formal parameter and local declarations “hide” outer-level declarations

int x, y;

...

f(int x, int a) {
int b;
...
y = x + a*b;
if (...) {

int a;
...
y = x + a*b;

}
}

• Cannot declare the same variable name twice in one scope

• f(int x) {
int x;
...
}

• Different name spaces allow same identifier to be multiply declared in a scope

- function and typdef names; labels; struct/union tags; struct/union members

formal parameter x hides global x

local a hides f ormal parameter a

error!

Copyright -1997 Computer Science 217: Intro to C Page 22

September 14, 1999

Function Ar guments and Local V ariab les

• Local variables are temporar y variables (unless declared static)

created upon entry to the function in which they are declared

destr oyed upon return

• Arguments are transmitted by value

the values of the arguments are copied into “local variables”

• Arguments are initializ ed local v ariab les

int a, b;
main(void) {

a = 1; b = 2;
f(a);
print(a, b);

}

output:

3 4
3 2
1 5

void f(int a) {
a = 3;
{

int b = 4;
print(a, b);

}
print(a, b);
b = 5;

}

Copyright -1997 Computer Science 217: Intro to C Page 23

September 14, 1999

Function Dec larations

• Declares the type of the value returned and the types of arguments

extern int f(int, float);

extern int f(int a, float b);

• A void function is a procedure

• A void argument list means no arguments

 void hello(void)

• Unlike Pascal, functions can be used before they are declared

as long as defined in same file or declared extern

• A function without a dec laration

assumes the function returns an int

assumes arguments have the types of the corresponding expressions

“i = f(2.0, 1);” implies “int f(double, int);”

 if f is defined otherwise, anything goes!

Copyright -1997 Computer Science 217: Intro to C Page 24

September 14, 1999

Static V ariab les

• static keyword in a declaration specifies

lif etime: static vs dynamic

scope: static vs global

• Static variables are

allocated at compile time and exist throughout program execution

• Statics are permanent ; locals are temporar y

void f(int v) {
static int lastv = 0;

print(lastv, v);
lastv = v;

}

• Scope of static variables: within the file or block in which they are defined

- scope versus lifetime

• What if a variable is declared extern inside a function?

Copyright -1997 Computer Science 217: Intro to C Page 25

September 14, 1999

Static Functions

• Scope restricts the visibility of variables and functions

file stack.c :

static int sp;
static int stack[100];

static void bump(int n) {
sp = sp + n;
assert (sp >= 0 && sp < 100);

}

void push(int x) {
bump(1);
stack[sp] = x;

}

int pop(void) {
bump(-1);
return stack[sp+1];

}

• Static functions are visible only within the file in which they are defined

sp & stack visible here,

but not outside stack.c.

so also function bump

Copyright -1997 Computer Science 217: Intro to C Page 26

September 14, 1999

Initialization Rules

• Local variables have undefined v alues

• Need a variable to start with a particular value?

• use an explicit initializer

• External and static variables are initialized to 0 by default

• some consider it bad style to rely on this feature

