Number Systems

• General form of a number in base b is

$$x = x_n b^n + x_{n-1} b^{n-1} + \dots + x_1 b^1 + x_0 b^0 + x_{-1} b^{-1} + \dots + x_{-m} b^{-m}$$

where x_i are the **positional coefficients**

• Modern computers use binary arithmetic, i.e., base 2

$$140_{10} = 1 \times 10^{2} + 4 \times 10^{1} + 0 \times 10^{0}$$

$$= 1 \times 2^{7} + 0 \times 2^{6} + 0 \times 2^{5} + 0 \times 2^{4} + 1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 0 \times 2^{0}$$

$$= 10001100_{2}$$

$$= 2 \times 8^{2} + 1 \times 8^{1} + 4 \times 8^{0} = 214_{8}$$

$$= 8 \times 16^{1} + C \times 16^{0} = 8C_{16}$$

Copyright ©1997

Computer Science 217: Number Systems

Page 119

October 12, 1999

Conversions

 To convert from decimal to binary, divide by 2 repeatedly, read remainders up.

• Easier to convert to octal, then to binary

Copyright ©1997

Addition

Addition in base b

$$x_nb^n + x_{n-1}b^{n-1} + x_{n-2}b^{n-2} + \dots + x_1b^1 + x_0b^0 \\ + y_nb^n + y_{n-1}b^{n-1} + y_{n-2}b^{n-2} + \dots + y_1b^1 + y_0b^0 \\ \\ z_{n+1}b^{n+1} + z_nb^n + z_{n-1}b^{n-1} + z_{n-2}b^{n-2} + \dots + z_1b^1 + z_0b^0 \\ \\ \text{where } S_i = x_i + y_i + C, \ C = S_{i-1}/b, \ \text{and} \ z_i = S_i \text{mod}b \ \text{where} \ S_{-1} = 0$$

- Addition in base 2:
- the sum might have one more digit than the largest operand

Copyright ©1997 Computer Science 217: Number Systems Page 121

October 12, 1999

Multiplication

• Multiplication in base 2: 00101101 * 10111001

```
1 00101101

0 00000000

1 00101101

1 00101101

1 00101101

0 00000000

0 00000000

1 00101101
```

010000010000101

 The product has about as many digits as the two operands combined, i.e.

$$\log(a \times b) = \log(a) + \log(b)$$

Machine Arithmetic

- Computers usually have a fixed number of binary digits ("bits"), e.g., 32 bits
- For example, using 6 bits, numbered 0 to 5 from the right

```
largest number 111111_2 = 63_{10} = 2^6 - 1
smallest number 000000_2 = 0
```

- What is 50 + 20?
- The highest bit doesn't fit, so we get $000110_2 = 6_{10}$
- Spilling over the lefthand side is overflow

Copyright ©1997 Computer Science 217: Number Systems Page 123

October 12, 1999

Sign Magnitude and One's Complement

• Sign-magnitude notation:

bit n-1 is the sign; 0 for +, 1 for - bits n-2 through 0 hold an unsigned number largest number $011111_2 = 31_{10} = 2^{6-1} - 1$ smallest number $111111_2 = -31_{10} = -(2^{6-1} - 1)$

- Addition and subtraction are complicated when signs differ
- Sign-magnitude is rarely used
- <u>One's-complement</u> notation: $-k = (2^n-1) k = 11111...(n \ bits) k$

bit n-1 is the sign; bits n-2 through 0 hold an unsigned number

bits n-2 through 0 hold **complement** of negative numbers

largest number
$$011111_2 = 31_{10} = 2^{6-1} - 1$$

smallest number $100000_2 = -31_{10} = -(2^{6-1} - 1)$

• Addition and subtraction are easy, but there are 2 representations for 0

Two's Complement

• *Two's-complement* notation:

$$-k = 2^n - k = (2^n - 1) - k + 1$$

bit n-1 is the sign; bits n-2 through 0 hold an unsigned number

bits n-2 through 0 hold the **complement** of a negative number **plus 1**

largest number
$$011111_2 = 31_{10} = 2^{6-1} - 1$$

smallest number
$$100000_2 = -32_{10} = -2^{6-1}$$
; note **asymmetry**

• To negate a 2's compl. number: first complement all the bits, then add 1

	start with	complement	increment	
+6	000110	111001	111010	-6
-6	111010	000101	000110	+6
+0	000000	111111	000000	-0
+1	000001	111110	111111	-1
+31	011111	100000	100001	-31
-31	100001	011110	011111	+31
-32	100000	011111	100000	-32

Copyright ©1997

Computer Science 217: Number Systems

October 12, 1999

Page 125

Two's Complement, Cont'd

Adding 2's-complement numbers: ignore signs, add unsigned bit strings

Signed overflow occurs if

the carry into the sign bit differs from the carry out of the sign bit

• Same hardware for **both** unsigned and signed, but flags **two** conditions

overflowsigned overflowcarryunsigned overflow

Sign Extension

• To convert from a small signed integer to a larger one, copy the sign bit

	+5	-5
4 bits	<u>0</u> 101	<u>1</u> 011
8 bits	00000101	11111011

To convert a large signed integer to a smaller one: check trunced bits

+5	-5	
00000101	11111011	
0101	1011	OK!
+20	-20	
<u>0001</u> 0100	<u>1110</u> 1100	
0100	1100	Bad!
	00000101 0101 +20 00010100	00000101 11111011 0101 1011 +20 -20 00010100 11101100

Hardware does extension, but <u>may not</u> check for truncation; nor does C

Copyright ©1997 Computer Science 217: Number Systems

Page 127

October 12, 1999

Floating Point Numbers

Floating point numbers are like scientific notation

$$1.386 \times 10^6$$
 general form is
$$-3.0083 \times 10^{-14}$$

$$\pm m \times 10^{\pm p}$$
 exponent
$$4.32 \times 10^{-8}$$
 significand

- Significand restricted to range, e.g., $0 \le m < 1$, and fixed number of digits
- Floating point is approx. representation for infinitely many real numbers

$$m \times \beta^k$$
 m is an n -bit significand or fraction β is the base (usually 2) k is the **exponent**

e.g. for base 2

$$0.100011 \times 2^{6} = (1 \times 2^{-1} + 0 \times 2^{-2} + 0 \times 2^{-3} + 0 \times 2^{-4} + 1 \times 2^{-5} + 1 \times 2^{-6}) \times 2^{6}$$

Copyright ©1997 Computer Science 217: Number Systems Page 128

Floating Point Numbers, cont'd

- Normalized floating point numbers make the representation unique most significant digit is nonzero, e.g., $0.00486 \times 10^1 \Rightarrow 0.486 \times 10^{-1}$ for floating point numbers, $\beta^{n-1} \le m < \beta^n$ or $1/\beta \le |m| < 1$ i.e., when $\beta = 2$, most significant bit of m is 1
- Example: $n = 3, \beta = 2, -1 \le k \le 2$

• What about 0.0? Use reserved values of k, e.g.,

$$1.00_2 \times 2^{-2}$$
 for 0.0, $1.11_2 \times 2^5$ for ∞

Copyright ©1997 Computer Science 217: Number Systems Page 129

October 12, 1999

Page 130

IEEE Floating Point

- IEEE format uses a <u>hidden bit</u> to increase precision by 1 bit all <u>normalized</u> floating point numbers have the form $1.f \times 2^e$, so <u>assume</u> the leading 1 and omit it
- Single precision (float) format

 $-126 \le e \le 127$, **bias** = 127, $0 \le f < 2^{23}$

• Values 1.1754943508222875e-38 to 3.40282346638528860000e+38

k = e - 127	f	f. p. number
$-126 \le k \le 127$	$0 \le f < 2^{23}$	$\pm 1.f \times 2^k$
128	0	±∞
128	≠ 0	NaN (signaling/quiet)
-127	0	±0.0
-127	≠ 0	$\pm 0.f imes 2^{-126}$ (denormalized)

Copyright ©1997 Computer Science 217: Number Systems

IEEE Floating Point, cont'd

• Double precision (double) format

$$-1022 \le e \le 1023$$
, **bias** = 1023 , $0 \le f < 2^{52}$

• Values: 2.2250738585072014e-308 to 1.7976931348623157e+308

$\mathbf{k} = \mathbf{e} - 1023$	f	f. p. number
$-1022 \le k \le 1023$	$0 \le f < 2^{52}$	$\pm 1.f \times 2^k$
1024	0	±∞
1024	$\neq 0$	NaN (signaling/quiet)
-1023	0	±0.0
-1023	$\neq 0$	$\pm 0.f imes 2^{-1022}$ (denormalized)

• Biased exponents in the most-significant bits are useful because integer compare instructions can be used to compare floating point values a bit string of 0's represents the value 0.0

Copyright ©1997 Computer Science 217: Number Systems Page 131