October 12, 1999

Number Systems

¢ General form of a number in base b is

-1 1 0
+ ...+ X b+ X5b

_ n n
X = Xb +x,_4b
-1 —m

+x4b T+ .+ x b

where X; are the positional coefficients

* Modern computers use binary arithmetic, i.e., base 2

1x10°+4x 10" +0x 10°

140,
1x2"+0x2%+0x2°+0x2*+1x22+1x22+0x2t+0x2°
10001109

2x8°+1x8 +4x8° = 214,

8x 16 +Cx 16’ = 8Cy

Copyright 11997 Computer Science 217: Number Systems Page 119

October 12, 1999

Conversions

* To convert from decimal to binary, divide by 2 repeatedly, read

remainders up.
8 |140
8z
8[2

0

N D
—

POOORr,rPFRPOO

* Easier to convert to octal, then to binary

8 C hex

140 = 10001100 binar
T y
2 1 4 octal

Copyright 11997 Computer Science 217: Number Systems Page 120

October 12, 1999

Addition

¢ Addition in base b

n-1

n n—-2 1 0
Xpb + X, _4b +X,_ob + ..+ X107+ X5b

n-1

+y bty 0" ey bn-24 4y bt +yb°

n+1 n-1
b

n n-2 1 0
z +z,b"+z, b T4z, _b"Te+ L +Z/b"+2Zb

n+1
where § = x;+y;+C,C = §_;/b,and z = Smodo where S ; = 0

¢ Addition in base 2:

00101101
+ 10011001

11000110

* the sum might have one more digit than the largest operand

Copyright 11997 Computer Science 217: Number Systems Page 121

October 12, 1999

Multiplication

* Multiplication in base 2: 00101101 * 10111001

100101101

0 00000000

1 00101101

1 00101101

1 00101101

0 00000000

0 00000000

1 00101101
010000010000101

* The product has about as many digits as the two operands combined,
le.

log(axb) = log(a) +log(b)

Copyright 11997 Computer Science 217: Number Systems Page 122

October 12, 1999

Machine Arithmetic

Computers usually have a fixed number of binary digits (“bits”), e.g., 32
bits

For example, using 6 bits, numbered 0 to 5 from the right
largest number 1111113 = 63 = 26—1
smallest number ~ 00000Q, = 0

What is 50 + 20?

110010
+ 010100

1000110

The highest bit doesn't fit, so we get 000116G, = 6,,

Spilling over the lefthand side is overflow

Copyright 11997 Computer Science 217: Number Systems Page 123

October 12, 1999

Sign Magnitude and One’ s Complement

* Sign-magnitude Nnotation:
bit n—1 is the sign; 0 for +, 1 for -

bits n — 2 through 0 hold an unsigned number

largest number 011113 = 31, = 271 1

1

smallest number 111111, = -31,, = —(26_ -1)

Addition and subtraction are complicated when signs differ

* Sign-magnitude is rarely used

* One’s-complement notation: -k = (2"-1) - k = 11111...(n bits) - k
bit n—1 is the sign; bits N — 2 through 0 hold an unsigned number

bits n — 2 through 0 hold complement of negative numbers
largest number 011113 = 31, = 2571 4

smallest number 100000, = -31;, = —(26_1—1)
Addition and subtraction are easy, but there are 2 representations for O

Copyright 11997 Computer Science 217: Number Systems Page 124

October 12, 1999

Two’s Complement

* Two's-complement Notation: k=2"-k=2"-1)-k+1

bit n—1 is the sign; bits N — 2 through 0 hold an unsigned number
bits n — 2 through 0 hold the complement of a negative number plus 1
largest number 011111, = 31,5 = 2°7'—1

smallest number 100000, = —3210 = —26_1; note asymmetr y

* To negate a 2’s compl. number: first complement all the bits, then add 1

start with complement increment
+6 000110 111001 111010 -6
-6 111010 000101 000110 +6
+0 000000 111111 000000 -0
+1 000001 111110 111111 -1
+31 011111 100000 100001 -31
-31 100001 011110 011111 +31
[-32] 100000 | 011111 [100000 | -32 |

Copyright 11997 Computer Science 217: Number Systems Page 125

October 12, 1999

Two’s Complement, Cont’ d

* Adding 2’s-complement numbers: ignore signs, add unsigned bit strings

+20 010100 -20 101100
+-7 + 111001 ++7 + 000111
+13 001101 -13 110011
+20 010100 -20 101100
++7 + 000111 +-7 + 111001
+27 011011 -27 100101

» Signed overflow occurs if
the carry into_the sign bit differs from the carry out of the sign bit

+20 010100 -20 101100
++17 + 010001 +-17 + 101111
-27 100101 +27 011011
* Same hardware for both unsigned and signed, but flags two conditions
overflo w signed overflow

carry unsigned overflow

Copyright 11997 Computer Science 217: Number Systems Page 126

October 12, 1999

Sign Extension

* To convert from a small signed integer to a larger one, copy the sign bit

+5 -5
4 bits 0101 1011
8 bits 00000101 11111011

* To convert a large signed integer to a smaller one: check trunced bits

+5 -5

8 bits 00000101 11111011
4 bits 0101 1011 OKI!

+20 -20

8 bits 00010100 11101100
4 bits 0100 1100 Bad!

e Hardware does extension, but may not check for truncation; nor does C

short small = -50; long big = smal l;

printf("%l %l\n, small, big); -50 -50

I ong big = 40000; short small = big;

printf("% %\n", small, big); - 25536 40000
char ¢ = 255;

printf("%\n", c); -1

Copyright 11997 Computer Science 217: Number Systems Page 127

October 12, 1999

Floating P oint Number s

* Floating point numbers are like scientific notation

1.386x 10° general form is
—14 tp
-3.0083x 10 M > 10"\ __ exponent
8
4.32x10 &-significand

» Significand restricted to range, e.g., 0<m<1, and fixed number of digits

* Floating point is approx. representation for infinitely many real numbers

mx Bk m s an n-bit significand _or fraction

B isthe base (usually 2)

k is the exponent
e.g. for base 2

0.100011x 2° = (1><2‘1+o><2"2+0x2_3+0><2_4+1><2_5+1><2_6)><26

Copyright 11997 Computer Science 217: Number Systems Page 128

Floating P oint Number s, cont’ d

October 12, 1999

* Normaliz ed floating point numbers make the representation unique
most significant digit is nonzero, e.g., 0.00486x 101 0 0.486x% 10_1
for floating point numbers, B"~1<m<B" or1/B<|m <1
i.e., when B = 2, most significant bit of mis 1

e Example: n = 3B = 2,-1<ks<2

k
-1 0 1 2

1.00 5 1. 2. 4.

1.01 .625 1.25 2.5 5.

" 1.10 .75 15 3. 6.

111 .875 1.75 3.5 7.

125 .25 5 1.
0

| EEDOOUE SN DL SE- 3 3 -

* What about 0.0? Use reserved values of k, e.g.,
1.00, x 2-2 for 0.0, 1.12, x 25 for oo

Copyright 11997 Computer Science 217: Number Systems

IEEE Floating P oint

Page 129

October 12, 1999

* |EEE format uses a hidden bit to increase precision by 1 bit
all normaliz ed floating point numbers have the form 1.f x Ze,

so assume the leading 1 and omit it

* Single precision (float) format

31 2322 0
S e f
sign exponent fraction

-126<e<127, bias = 127,0< f <223

* Values 1.1754943508222875e-38 {0 3.40282346638528860000e+38

k= e-127 f f. p. number
-126< k<127 0< f<223 +1.fx2K
128 0 +oo
128 z0 NaN (signaling/quiet)
-127 0 +0.0

-127 20 +0.f x 2-126 (denormaliz ed)

Copyright (11997 Computer Science 217: Number Systems

Page 130

October 12, 1999

IEEE Floating P oint, cont’ d

* Double precision (double) format

63 5251 0
S e f
sign exponent fraction

—-1022< e< 1023, bias = 10230 < f <252

* Values: 2.2250738585072014e-308 10 1.7976931348623157e+308

k= e-1023 f f. p. number
-1022< k<1023 (0<f<25 +1.fx2k
1024 0 too
1024 z0 NaN (signaling/quiet)
-1023 0 +0.0
-1023 z0

+0.f x 2-102Z(denormaliz ed)

* Biased exponents in the most-significant bits are useful because

integer compare instructions can be used to compare floating point values
a bit string of 0's represents the value 0.0
Copyright 11997

Computer Science 217: Number Systems Page 131

