
Lecture T4: Computability

2

Given a set of cards:

■ N card types (can use as many of each type as possible).

■ Each card has a top string and bottom string.

Example 1:

Puzzle:

■ Is it possible to arrange cards so that top and bottom strings are
the same?

A Puzzle ("Post’s Correspondence Problem")

2

AB

B

3

BA

B

1

A

ABA

0

BAB

A
N = 4

3

A Puzzle ("Post’s Correspondence Problem")

Given a set of cards:

■ N card types (can use as many of each type as possible).

■ Each card has a top string and bottom string.

Example 1:

Puzzle:

■ Is it possible to arrange cards so that top and bottom strings are
the same?

Solution 1.
! Yes.

2

AB

B

3

BA

B

1

A

ABA

0

BAB

A

2

AB

B

3

BA

B

1

A

ABA

0

BAB

A

1

A

ABA

N = 4

4

A Puzzle ("Post’s Correspondence Problem")

Given a set of cards:

■ N card types (can use as many of each type as possible).

■ Each card has a top string and bottom string.

Example 2:

Puzzle:

■ Is it possible to arrange cards so that top and bottom strings are
the same?

2

B

A

3

A

B

1

ABA

B

0

A

BAB
N = 4

5

A Puzzle ("Post’s Correspondence Problem")

Given a set of cards:

■ N card types (can use as many of each type as possible).

■ Each card has a top string and bottom string.

Example 2:

Puzzle:

■ Is it possible to arrange cards so that top and bottom strings are
the same?

Solution 2.
! No. First card in solution must contain same letter in

leftmost position.

2

B

A

3

A

B

1

ABA

B

0

A

BAB
N = 4

6

PCP Puzzle Contest

Contest:

■ Additional restriction: string must start with ’S’.

■ Be the first to solve this puzzle!
– extra credit for first correct solution

■ Check solution by putting STRING ONLY (blanks and line breaks
OK) in a file solution.txt, then type

pcp126 < solution.txt

Hopeless challenge for the bored:

■ Write a program that reads a set of Post cards, and determines
whether or not there is a solution.

2

X

A

3

11A

A1

1

X

1X

0

S[

S[11111X][

4

1

1

7

[

[

6

]

]

5

[A

[B

9

B]

A]

10

[1A]E

E

8

B1

1B

7

Overview

Formal language.

■ Rigorously express computational problems.

■ Ex: L = { 2, 3, 5, 7, 11, 13, 17, . . . }

Abstract machines recognize languages.

■ Ex. Is 977 prime? Is 977 in L?

■ Essence of computers.

This lecture:

■ What is an "algorithm"?

■ Is it possible, in principle, to write a program to solve any problem
(recognize any language)?

8

Background

Abstract models of computation help us learn:
■ Nature of machines needed to solve problems.
■ Relationship between problems and machines.
■ Intrinsic difficulty of problems.

As we make machines more powerful, we can recognize more
languages.

■ Are there languages that no machine can recognize?
! more languages than Turing machines so there must be

some weird languages
■ Are there limits on the power of machines that we can imagine?

Pioneering work in the 1930’s. (Princeton = center of universe)
■ Turing, Church, von Neumann, Gödel. (inspiration from Hilbert)
■ Automata, languages, computability, complexity, logic, rigorous

definition of "algorithm."

11

Undecidable Problems

Hilbert’s 10th Problem.

■ “ Devise a process according to which it can be determined by a
finite number of operations whether a given multivariate
polynomial has an integral root.”

■ Example 1: f(x,y,z) = 6x3yz2 + 3xy2 - x3 – 10

! Yes, since f(5, 3, 0) is a root.

■ Example 2: f(x,y) = x 2 + y 2 – 3

! No.

■ Example 3: f(x,y,z) = x n + y n – z n

! No if n ≥ 3 and x, y, z > 0.
(Fermat’s Last Theorem)

Andrew Wiles, 1995

12

Undecidable Problems

Hilbert’s 10th Problem.

■ “ Devise a process according to which it can be determined by a
finite number of operations whether a given multivariate
polynomial has an integral root.”

! No clear definition of algorithm in 1900's.
! Hilbert did not fathom that the problem might not have a

solution.

■ Problem resolved in very surprising way. �0DWLMDVHYLþ�������

! Undecidable.
! Impossible to write C program for Hilbert’s 10th problem!

■ How can we assert such a mind-boggling statement?

14

Hilbert’s 10th Problem.
Post’s Correspondence Problem.
Halting Problem.

■ Write a C program that reads in another program and its inputs,
and decides whether or not it goes into an infinite loop.

– infinite loop often signifies a bug

■ Program 1.
– 8 6 4 2 4 2 4 2 4 2 4 2 4 2 4
– 9 7 5 3 1

! Halts if x is odd;
infinite loop if x is even.

Undecidable Problems

. . .

while (x > 1) {
if (x > 2)

x = x – 2;
else

x = x + 2;
}

odd.c

15

. . .

while (x > 1) {

if (x % 2 == 0)

x = x / 2;

else

x = 3*x + 1;

}

hailstone.c

Undecidable Problems

Hilbert’s 10th Problem.
Post’s Correspondence Problem.
Halting Problem.

■ Write a C program that reads in another program and its inputs,
and decides whether or not it goes into an infinite loop.

– infinite loop often signifies a bug

■ Program 2.
– 8 4 2 1
– 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

! Unknown whether loop halts for
every integer.

19

Undecidable Problems

Hilbert’s 10th Problem.
Post’s Correspondence Problem.
Halting Problem.
Program Equivalence.
Optimal Data Compression.
Virus Identification.

Impossible to write C program to solve any of these problem!

20

TM : As Powerful As TOY Machine

Turing machines are strictly more powerful than FSA, PDA, LBA
because of infinite tape memory.

■ Power = ability to recognize languages.

Turing machines are at least as powerful as a TOY machine:

■ Encode state of memory, PC, etc. onto Turing tape.

■ Develop TM states for each instruction.

■ Can do because all instructions:
– examine current state
– make well-define changes depending on current state

Works for all real machines.

■ Can simulate at machine level, gate level,

21

TM : Equal Power as TOY and C

Turing machines are equivalent in power to C programs.

■ C program ⇒ TOY program (Lecture A2)

■ TOY program ⇒ TM (previous slide)

■ TM ⇒ C program (TM simulator, Lecture T2)

Works for all real programming languages.

Assumption: TOY machine and C program
have unbounded amount of memory.
Otherwise TM is strictly more powerful.

Is this assumption
reasonable?

22

Church-Turing Thesis

Church-Turing thesis (1936):
Q. Which problems can a Turing machine solve?
A. Any problem that any real computer can solve.

"Thesis" and not a mathematical theorem.
! Can't be proved because we can’t precisely define solving a

problem (computability).

Implications:
■ Provides rigorous definition for algorithm .

! connection between informal notion of algorithm and
precise definition (building a TM)

■ Universality among computational models.
– if a problem can be solved by TM, then it can be solved on

EVERY general-purpose computer.
– if a problem can’t be solved by TM, then it can’t be solve on

ANY physical computer

23

Evidence Supporting Church-Turing Thesis

Imagine TM with more power.

■ Composition of TM’s, multiple heads, more tapes, 2D tapes.

■ Nondeterminism.

Different ways to define "computable."

■ TM, circuits, grammar, λ-calculus, µ-recursive functions.

■ Conway's game of life.

Conventional computers.

■ ENIAC, TOY, Pentium III, . . .

New speculative models of computation.

■ DNA computers, quantum computers, soliton computers.

24

A More Powerful Computer

Post machine (PCP-286).

■ Input: set of Post cards.

■ Output.
– YES light if PCP is solvable for these cards
– NO light if PCP has no solution

PCP is strictly more powerful than:

■ Turing machine.

■ TOY machine.

■ C programming language.

■ iMac.

■ Any conceivable super-computer.

Why doesn’t it violate Church-Turing thesis?

25

TM: A General Purpose Machine

Each TM solves one particular problem.

■ Ex: is the integer x prime?

■ Analogy: computer algorithm.

■ Similar to ancient special-purpose computers (Analytic Engine)
prior to von Neumann stored-program computers.

Goal: "general purpose machine" that can solve many problems.

■ Simulate the operations of any special-purpose TM.

■ Analogy: computer than can execute any algorithm.

■ How?
! store REPRESENTATION of a TM inside on tape of a

general-purpose TM
! analogous to von Neumann architecture

26

Representation of a Turing Machine

Special-purpose TM consists of 3 ingredients.

■ TM program.

■ Initial tape contents.

■ Current TM state.

27

10 1 0 .1

Tape 1: encode TM tape

.

Universal Turing Machine

Universal Turing Machine (UTM),

■ A specific TM that simulates operations of any TM.

How to create.

■ Encode 3 ingredients of TM using 3 tapes.

■ UTM simulates the TM.
– read tape 1
– read tape 3
– consult tape 2 for what to do
– write tape 1 if necessary
– move head 1
– write tape 3

U T M

...

01 L 8 .0

Tape 2: encode TM program

.8..

at t e .8

Tape 3: encode TM current state

.s..

28

Universal Turing Machine

Universal Turing Machine (UTM),

■ A specific TM that simulates operations of any TM.

How to create.

■ Encode 3 ingredients of TM using 3 tapes.

■ UTM simulates the TM.

■ Like the fetch-increment-execute cycle of TOY.
! tape 1 = data memory
! tape 2 = program memory
! tape 3 = program counter

■ Can reduce 3-tape TM to single tape one.
! analogous to von Neumann machine where program and

data share same storage

29

Implications of Universal Turing Machine

Existence of UTM has profound implications.

■ "Invention" of general-purpose computer.
– stimulated development of stored-program computers

(von Neumann machines)

■ "Invention" of software.

■ Universal framework for studying limitations of computing devices.

■ Can simulate any machine (including itself)!

31

Halting Problem

Halting problem.

■ Devise a TM that reads in another TM (encoded in binary) and its
initial tape, and determines whether or not that TM would ever
reach a yes or no state.

■ Write a C program that reads in another program and its inputs,
and determines whether or not it goes into an infinite loop.

Halting problem is unsolvable.

■ No TM can solve this problem.

■ Not possible to write a C program either.

We prove that the halting problem is not solvable.

■ Intuition of proof: self-reference.

32

Grelling’s paradox:

■ Divide all adjectives into two categories:
– autological: self-descriptive
– heterological: not self-descriptive

■ How do we categorize heterological?

pentasyllabic

awkwardnessful

recherché

. . .

autological adjectives

bisyllabic

palindromic

edible

. . .

heterological adjectives

Warmup: Grelling’s Paradox

33

Grelling’s paradox:

■ Divide all adjectives into two categories:
– autological: self-descriptive
– heterological: not self-descriptive

■ How do we categorize heterological?
– suppose it’s autological

! No, then heterological should be a heterological word (just
as pentasyllabic is a pentasyllabic word).

pentasyllabic

awkwardnessful

recherché

heterological

autological adjectives

bisyllabic

palindromic

edible

heterological adjectives

Warmup: Grelling’s Paradox

34

Grelling’s paradox:

■ Divide all adjectives into two categories:
– autological: self-descriptive
– heterological: not self-descriptive

■ How do we categorize heterological?
– suppose it’s heterological

! Now, heterological is a self-descriptive word, so it should
go in the autological category.

pentasyllabic

awkwardnessful

recherché

heterological

autological adjectives

bisyllabic

palindromic

edible

heterological

heterological adjectives

Warmup: Grelling’s Paradox

35

Grelling’s paradox:

■ Divide all adjectives into two categories:
– autological: self-descriptive
– heterological: not self-descriptive

■ How do we categorize heterological?
– not possible
– we can’t have words with these meanings!

(or we can’t partition adjectives into these two groups)

pentasyllabic

awkwardnessful

recherché

heterological

autological adjectives

bisyllabic

palindromic

edible

heterological

heterological adjectives

Warmup: Grelling’s Paradox

36

Halting Problem Proof

Assume the existence of Halt(f,x) that takes as input: any function f
and its input x, and outputs yes if f(x) halts, and no otherwise.

■ Proof by contradiction.

■ Note: Halt(f, x) always returns yes or no.
(infinite loop not possible)

#define YES 1
#define NO 0

int Halt(char f[], char x[]) {
if (???)

return YES;
else

return NO;
}

Halt(f, x)

function f and its input
x encoded as strings

37

Halting Problem Proof

Assume the existence of Halt(f,x) that takes as input: any function f
and its input x, and outputs yes if f(x) halts, and no otherwise.

■ Construct program Strange(f) as follows:
– calls Halt(f, f)
– halts if Halt(f, f) outputs no
– goes into infinite loop if Halt(f, f) outputs yes

■ In other words:
– if f(f) does not halt then Strange(f) halts
– if f(f) halts then Strange(f) does not halt

void Strange(char f[]) {
if (Halt(f, f) == NO)

return;
else

while(1)
; // infinite loop

}

Strange(f)

f is a string so legal to
use for either input

38

Halting Problem Proof

Assume the existence of Halt(f,x) that takes as input: any function f
and its input x, and outputs yes if f(x) halts, and no otherwise.

■ Construct program Strange(f) as follows:
– calls Halt(f, f)
– halts if Halt(f, f) outputs no
– goes into infinite loop if Halt(f, f) outputs yes

■ In other words:
– if f(f) does not halt then Strange(f) halts
– if f(f) halts then Strange(f) does not halt

■ Call Strange with ITSELF as input.
– if Strange(Strange) does not halt then Strange(Strange) halts
– if Strange(Strange) halts then Strange(Strange) does not halt

■ Either way, a contradiction. Hence Halt(f,x) cannot exist.

39

Consequences

Halting problem is "not artificial."

■ Undecidable problem reduced to simplest form to simplify proof.

■ Closely related to practical problems.
– Hilbert’s 10th problem, Post’s correspondence problem,

program equivalence, optimal data compression

How to show new problem X is undecidable?

■ Use fact that Halting problem is undecidable.

■ Design algorithm to solve Halting problem, using (alleged)
algorithm for X as a subroutine.

■ See Reduction in Lecture T6.

40

Implications

Practical:

■ Work with limitations.

■ Recognize and avoid unsolvable problems.

■ Learn from structure.
– same theory tells us about efficiency of algorithms (see T5)

Philosophical (caveat: ask a philosopher):

■ We "assume" that any step-by-step reasoning will solve any
technical or scientific problem.

■ "Not quite" says the halting problem.

■ Anything that is like (could be) a computer has the same flaw:
! logic (Gödel)
! physical machines (rods/gears)
! human brain?
! matter, universe???

41

Summary

What is an algorithm?

■ Informally, step-by-step procedure for solving a problem.

■ Formally, Turing machine.

Turing’s key ideas:

■ Computing is same as manipulating symbols.
– can encode numbers as strings

■ Existence of general-purpose computer (UTM).
– programmable machine

What is a general-purpose computer (UTM)?

■ Can be "programmed" to implement any algorithm.

■ iMac, Dell, Sun UltraSparc, TOY (assuming unlimited memory).

Is it possible, in principle, to write a program to solve any problem?

■ No.

