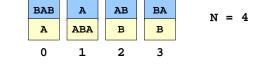
Lecture T4: Computability



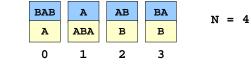
A Puzzle ("Post's Correspondence Problem")

Given a set of cards:

- N card types (can use as many of each type as possible).
- . Each card has a top string and bottom string.

Example 1:

Puzzle:


Is it possible to arrange cards so that top and bottom strings are the same?

A Puzzle ("Post's Correspondence Problem")

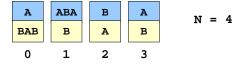
Given a set of cards:

- . N card types (can use as many of each type as possible).
- . Each card has a top string and bottom string.

Puzzle:

Is it possible to arrange cards so that top and bottom strings are the same?

So	lution	1.


A	BA	BAB	AB	A
ABA	в	A	в	ABA
1	3	0	2	1

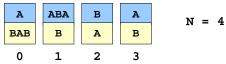
A Puzzle ("Post's Correspondence Problem")

Given a set of cards:

- . N card types (can use as many of each type as possible).
- . Each card has a top string and bottom string.

Example 2:

Puzzle:


Is it possible to arrange cards so that top and bottom strings are the same?

A Puzzle ("Post's Correspondence Problem")

Given a set of cards:

- N card types (can use as many of each type as possible).
- . Each card has a top string and bottom string.

Example 2:

Puzzle:

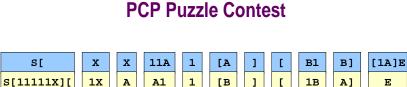
Is it possible to arrange cards so that top and bottom strings are the same?

Solution 2.

CHINE .

Overview

Formal language.


- . Rigorously express computational problems.
- Ex: L = { 2, 3, 5, 7, 11, 13, 17, ... }

Abstract machines recognize languages.

- Ex. Is 977 prime? Is 977 in L?
- Essence of computers.

This lecture:

- . What is an "algorithm"?
- Is it possible, in principle, to write a program to solve any problem (recognize any language)?

5

6 7

8

9

10

Contest:

0

. Additional restriction: string must start with 'S'.

3

. Be the first to solve this puzzle!

1

- extra credit for first correct solution

2

• Check solution by putting STRING ONLY (blanks and line breaks OK) in a file solution.txt, then type

4

pcp126 < solution.txt</pre>

Hopeless challenge for the bored:

• Write a program that reads a set of Post cards, and determines whether or not there is a solution.

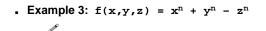
Background

Abstract models of computation help us learn:

- . Nature of machines needed to solve problems.
- . Relationship between problems and machines.
- . Intrinsic difficulty of problems.

As we make machines more powerful, we can recognize more languages.

- Are there languages that no machine can recognize?
- . Are there limits on the power of machines that we can imagine?


Pioneering work in the 1930's. (Princeton = center of universe)

- Turing, Church, von Neumann, Gödel. (inspiration from Hilbert)
- Automata, languages, computability, complexity, logic, rigorous definition of "algorithm."

Undecidable Problems

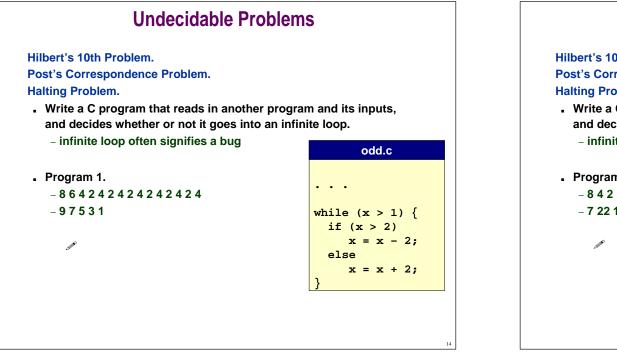
Hilbert's 10th Problem.

- "Devise a process according to which it can be determined by a finite number of operations whether a given multivariate polynomial has an integral root."
- Example 1: $f(x,y,z) = 6x^3yz^2 + 3xy^2 x^3 10$
- Example 2: $f(x,y) = x^2 + y^2 3$

Andrew Wiles, 1995

Undecidable Problems

Hilbert's 10th Problem.


- "Devise a process according to which it can be determined by a finite number of operations whether a given multivariate polynomial has an integral root."

ant

A. P.

- Problem resolved in very surprising way. (Matijasevič, 1970)
- . How can we assert such a mind-boggling statement?

Undecidable Problems		
ert's 10th Problem.		
t's Correspondence Problem.		
ing Problem.		
Write a C program that reads in another progra and decides whether or not it goes into an infi	• •	
– infinite loop often signifies a bug	hailstone.c	
Program 2.		
- 8 4 2 1	•••	
- 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1	while $(x > 1)$ {	
	if (x % 2 == 0)	
all the second sec	x = x / 2;	
	else	
	erpe	
	x = 3*x + 1;	

Undecidable Problems

Hilbert's 10th Problem. Post's Correspondence Problem. Halting Problem. Program Equivalence. Optimal Data Compression.

Virus Identification.

Impossible to write C program to solve any of these problem!

TM : As Powerful As TOY Machine

Turing machines are strictly more **powerful** than FSA, PDA, LBA because of infinite tape memory.

. Power = ability to recognize languages.

Turing machines are at least as powerful as a TOY machine:

- . Encode state of memory, PC, etc. onto Turing tape.
- . Develop TM states for each instruction.
- Can do because all instructions:
 - examine current state
 - make well-define changes depending on current state

Works for all real machines.

. Can simulate at machine level, gate level,

TM : Equal Power as TOY and C

Turing machines are equivalent in power to C programs.

- C program \Rightarrow TOY program (Lecture A2)
- TOY program ⇒ TM
 TM ⇒ C program
- (TM simulator, Lecture T2)

(previous slide)

Works for all real programming languages.

Is this assumption reasonable?

Assumption: TOY machine and C program have unbounded amount of memory. Otherwise TM is strictly more powerful.

Church-Turing Thesis

Church-Turing thesis (1936):

- Q. Which problems can a Turing machine solve?
- A. Any problem that any real computer can solve.

"Thesis" and not a mathematical theorem.

Implications:

a P

- Provides rigorous definition for algorithm.
- . Universality among computational models.
 - if a problem can be solved by TM, then it can be solved on EVERY general-purpose computer.
 - if a problem can't be solved by TM, then it can't be solve on ANY physical computer

Evidence Supporting Church-Turing Thesis

Imagine TM with more power.

- . Composition of TM's, multiple heads, more tapes, 2D tapes.
- Nondeterminism.

Different ways to define "computable."

- TM, circuits, grammar, $\lambda\text{-calculus},\,\mu\text{-recursive functions}.$
- <u>Conway's game of life.</u>

Conventional computers.

• ENIAC, TOY, Pentium III, ...

New speculative models of computation.

. DNA computers, quantum computers, soliton computers.

A More Powerful Computer

PCP-286

Post machine (PCP-286).

- . Input: set of Post cards.
- . Output.
 - YES light if PCP is solvable for these cards
 - NO light if PCP has no solution

PCP is strictly more powerful than:

- . Turing machine.
- . TOY machine.
- . C programming language.
- iMac.
- . Any conceivable super-computer.

Why doesn't it violate Church-Turing thesis?

TM: A General Purpose Machine

Each TM solves one particular problem.

- . Ex: is the integer x prime?
- . Analogy: computer algorithm.
- Similar to ancient special-purpose computers (Analytic Engine) prior to von Neumann stored-program computers.

Goal: "general purpose machine" that can solve many problems.

- . Simulate the operations of any special-purpose TM.
- Analogy: computer than can execute any algorithm.
- . How?
 - THE R

Representation of a Turing Machine

Special-purpose TM consists of 3 ingredients.

- . TM program.
- Initial tape contents.
- . Current TM state.

Universal Turing Machine

1 1 0 1

0 L 8

а

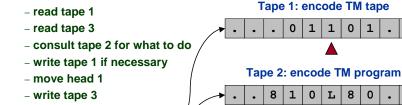
s t

Tape 3: encode TM current state

t

е

0


8

Universal Turing Machine (UTM),

. A specific TM that simulates operations of any TM.

How to create.

- Encode 3 ingredients of TM using 3 tapes.
- . UTM simulates the TM.

Universal Turing Machine

Universal Turing Machine (UTM),

. A specific TM that simulates operations of any TM.

How to create.

- . Encode 3 ingredients of TM using 3 tapes.
- . UTM simulates the TM.
- Like the fetch-increment-execute cycle of TOY.

Can reduce 3-tape TM to single tape one.

Implications of Universal Turing Machine

Existence of UTM has profound implications.

UTM

- "Invention" of general-purpose computer.
 - stimulated development of stored-program computers (von Neumann machines)
- Invention of software.
- Universal framework for studying limitations of computing devices.
- . Can simulate any machine (including itself)!

Halting Problem

Halting problem.

- . Devise a TM that reads in another TM (encoded in binary) and its initial tape, and determines whether or not that TM would ever reach a yes or no state.
- . Write a C program that reads in another program and its inputs, and determines whether or not it goes into an infinite loop.

Halting problem is unsolvable.

- . No TM can solve this problem.
- . Not possible to write a C program either.

We prove that the halting problem is not solvable.

Intuition of proof: self-reference.

Warmup: Grelling's Paradox

Grelling's paradox:

- . Divide all adjectives into two categories:
 - autological: self-descriptive
 - heterological: not self-descriptive

autological adjectives pentasyllabic awkwardnessful recherché

heterological adjecti
bisyllabic
palindromic
edible

ves

. How do we categorize heterological?

Warmup: Grelling's Paradox

Grelling's paradox:

- Divide all adjectives into two categories:
 - autological: self-descriptive
 - heterological: not self-descriptive

autological adjectives	
pentasyllabic	
awkwardnessful	
recherché	
heterological	

- . How do we categorize heterological?
 - suppose it's heterological

0.0

Warmup: Grelling's Paradox

Grelling's paradox:

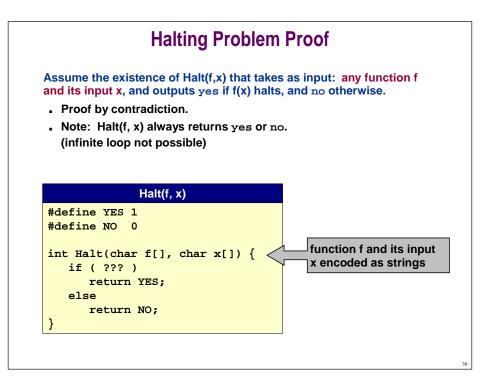
- . Divide all adjectives into two categories:
 - autological: self-descriptive
 - heterological: not self-descriptive

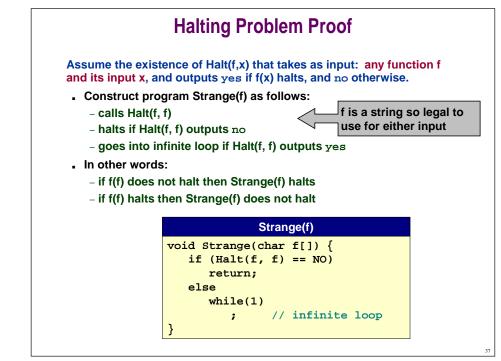
autological adjectives	heterological adjectives
pentasyllabic	bisyllabic
awkwardnessful	palindromic
recherché	edible
heterological	
notorogioan	

- . How do we categorize heterological?
 - suppose it's autological

A P

Warmup: Grelling's Paradox


adjectives


Grelling's paradox:

- . Divide all adjectives into two categories:
 - autological: self-descriptive
 - heterological: not self-descriptive

autological adjectives		heterological
pentasyllabic		bisyllabic
awkwardnessful		palindromic
recherché		edible
heterological		heterological

- How do we categorize heterological?
 - not possible
 - we can't have words with these meanings!
 - (or we can't partition adjectives into these two groups)

Halting Problem Proof

Assume the existence of Halt(f,x) that takes as input: any function f and its input x, and outputs yes if f(x) halts, and no otherwise.

- . Construct program Strange(f) as follows:
 - calls Halt(f, f)
 - halts if Halt(f, f) outputs no
 - goes into infinite loop if Halt(f, f) outputs yes
- . In other words:
 - if f(f) does not halt then Strange(f) halts
 - if f(f) halts then Strange(f) does not halt
- . Call Strange with ITSELF as input.
 - if Strange(Strange) does not halt then Strange(Strange) halts
 - if Strange(Strange) halts then Strange(Strange) does not halt
- Either way, a contradiction. Hence Halt(f,x) cannot exist.

Consequences

Halting problem is "not artificial."

- . Undecidable problem reduced to simplest form to simplify proof.
- . Closely related to practical problems.
 - Hilbert's 10th problem, Post's correspondence problem, program equivalence, optimal data compression

How to show new problem X is undecidable?

- . Use fact that Halting problem is undecidable.
- Design algorithm to solve Halting problem, using (alleged) algorithm for X as a subroutine.
- . See Reduction in Lecture T6.

Implications

Practical:

- . Work with limitations.
- . Recognize and avoid unsolvable problems.
- . Learn from structure.
 - same theory tells us about efficiency of algorithms (see T5)

Philosophical (caveat: ask a philosopher):

- We "assume" that any step-by-step reasoning will solve any technical or scientific problem.
- . "Not quite" says the halting problem.
- . Anything that is like (could be) a computer has the same flaw:

 - CH R
 - C N

Summary

What is an algorithm?

- Informally, step-by-step procedure for solving a problem.
- Formally, Turing machine.

Turing's key ideas:

- Computing is same as manipulating symbols.
 - can encode numbers as strings
- Existence of general-purpose computer (UTM).
 programmable machine

What is a general-purpose computer (UTM)?

- . Can be "programmed" to implement any algorithm.
- iMac, Dell, Sun UltraSparc, TOY (assuming unlimited memory).

Is it possible, in principle, to write a program to solve any problem?

. No.