
Lecture T2:  Turing Machines
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Overview

Attempt to understand essential nature of computation by studying 
properties of simple machine models. 

Goal:  simplest machine that is "as powerful" as conventional 
computers.

Surprising Fact 1.
! Such machines are not much more complicated than FSAs.

Surprising Fact 2.
! Some problems of interest cannot be solved by ANY 

computer.

3

Adding Power to FSA

FSA advantages:

■ Extremely simple and cheap to build.

■ Well suited to certain important tasks.
– pattern matching, filtering, dishwashers, remote controls, traffic 

lights, sequential circuits

FSA disadvantages:

■ Not sufficiently "powerful" to solve numerous problems of interest.

How can we make FSAs more powerful?

■ NFSA = FSA + "nondeterminism."
(ability to guess the right answer!)
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Nondeterministic Finite State Automata

Nondeterministic FSA (NFSA).

■ Simple machine with N states.

■ Start in state 0.

■ Read a bit.

■ Depending on current state and 
input bit

– move to any of several 
new states

■ Stop when last bit read.

■ Accept if ANY choice of new 
states ends in state X, reject 
otherwise.
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Nondeterministic Finite State Automata

Nondeterministic FSA (NFSA).

■ Simple machine with N states.

■ Start in state 0.

■ Read a bit.

■ Depending on current state and 
input bit

– move to any of several 
new states

■ Stop when last bit read.

■ Accept if ANY choice of new 
states ends in state X, reject 
otherwise.
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Nondeterministic Finite State Automata

Nondeterministic FSA (NFSA).

■ Simple machine with N states.

■ Start in state 0.

■ Read a bit.

■ Depending on current state and 
input bit

– move to any of several 
new states

■ Stop when last bit read.

■ Accept if ANY choice of new 
states ends in state X, reject 
otherwise.
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Which strings are accepted?
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Nondeterministic Finite State Automata

Nondeterministic FSA (NFSA).

■ Simple machine with N states.

■ Start in state 0.

■ Read a bit.

■ Depending on current state and 
input bit

– move to any of several 
new states

■ Stop when last bit read.

■ Accept if ANY choice of new 
states ends in state X, reject 
otherwise.
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NFSA Example 2

Build an NFSA to match all strings whose 5th to last character is ’x’.
■ % egrep ’x....$’ /usr/dict/words

asphyxiate

carboxylic

contextual

inflexible

0 5
x

2 31 4
a - z a - z a - z a - z

a - z
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A Systematic Method for NFSA

Harder to determine whether an NFSA accepts a string than an FSA.

■ For FSA, only one possible path to follow.

■ For NFSA, need to consider many paths.

Systematic method for NFSA.

■ Keep track of ALL possible states that the NFSA could be in for a 
given input.

■ Accept if one of possible ending states is accept state.

Power of nondeterminism is very useful, but is it essential?
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FSA - NFSA Equivalence

Theorem: FSA and NFSA are "equally powerful".

■ Given any NFSA, can construct FSA that accepts same inputs. 

Notation: X ⊆ Y.

■ Y is at least as powerful as X.

■ Machine class Y can be "programmed" to accept all the languages 
that  X can (and maybe more).

Proof  (Part 1): FSA ⊆ NFSA.

■ A FSA is a special type of NFSA.
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FSA - NFSA Equivalence

Theorem: FSA and NFSA are "equally powerful".

■ Given any NFSA, can construct FSA that accepts same inputs. 

Notation: X ⊆ Y.

■ Y is at least as powerful as X.

■ Machine class Y can be "programmed" to accept all the languages 
that  X can (and maybe more).

Proof  (Part 2): NFSA ⊆ FSA.

■ Given a nondeterministic FSA, we give recipe to construct a 
deterministic FSA that recognizes the same language. 

■ One state in FSA for every set of states in the NFSA.

■ N-state NFSA ⇒ 2N state FSA.
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RE – FSA Equivalence

Theorem: FSA and RE are "equally powerful".

■ We’ll spare you the details. J

■ Interested students: see supplemental lecture slides.



13

Pushdown Automata

How can we make FSA’s more powerful?

■ Nondeterminism didn't help.

■ Instead, add "memory" to the FSA.

■ A pushdown stack
(amount of memory is arbitrarily large).

Pushdown Automata (PDA).

■ Simple machine with N states.

■ Start in state 0.

■ Read a bit, check bit at top of stack.

■ Depending on current state/input bit/stack bit:
– move to new state
– push the input onto stack, or pop topmost element from stack

■ Stop when last bit is read.

■ Accept if stack is EMPTY, reject otherwise.

top of stack

read head

different accept / 
reject mechanism
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Pushdown Automata

PDA for deciding whether input is of form 0N1N .

■ N  0’s followed by N 1’s for some N.

■ ε,  01, 0011, 000111, 00001111, ...

■ Use notation x/y/z

■ If input is x and top of stack is y, then do z.

0 1

0/0/push

0/ε/push

1/0/pop

1/0/pop
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Pushdown Automata

How can we make FSA more powerful?

■ PDA = FSA + stack.

Did it help?

■ More powerful, can recognize:
– all bit strings with an equal number of 0’s and 1’s

– all bit strings of the form 0N1N

– all "balanced" strings in alphabet:  (, {, [, ], }, )

■ Still can’t recognize language of all palindromes.
– amanaplanacanalpanama

– 11*181=1991=181*11 

– murderforajarofredrum

■ More powerful machines still needed.
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Turing Machine

new accept / 
reject mechanism

read / write head
Turing Machine.

■ Simple machine with N states.

■ Start in state 0.

■ Input on an arbitrarily large TAPE that
can be read from *and* written to.

■ Read a bit from tape.

■ Depending on current state and input bit
– write a bit to tape
– move tape right or left
– move to new state

■ Stop if enter yes or no state.

■ Accept if yes, reject if no or does not terminate.
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Some Examples

Build Turing machines that accepts following languages:

■ Equal number of 0’s and 1’s.
#1100#, #0011#, #011101110000#

■ Even length palindromes of 0’s and 1’s.
#0110#, #110011#, #10111000011101# 

■ Power of two 1’s.
#1#, #11#, #1111#, #11111111# 

Notation.
■ x/y/z: if TM head contains character x, then change it 

to y, and move head in direction z.

■ # special character.
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C Program to Simulate Turing Machine

Three character alphabet (0 is ’blank’).

Position on tape. 
■ head

Input:  description of machine (9 integers per state s).
■ next[i][s] = t : if currently in state s and input character read 

in is i, then transition to state t.

■ out[i][s] = w : if currently in state s and input character read in 
is i, then write w to current tape position.

■ move[i][s] = ±1 : if currently in state s and input character is i, 
then move head one position to left or right.

■ tape[i] is ith character on tape initially.

Details missing:

■ Might run off end of tape.
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C Program to Simulate Turing Machine

#define MAX_TAPE_SIZE   2000
#define STATES   100
#define ACCEPT_STATE      99
. . .
int next[3][STATES], out[3][STATES], move[3][STATES];
char tape[MAX_TAPE_SIZE]; 
int in, d, state = 0, head = MAX_TAPE_SIZE / 2;

. . . /* read in machine from file */

while (scanf("%1d", &d) != EOF)
tape[head++] = d;

while (state != ACCEPT_STATE) {
in = tape[cursor];
state      = next[in][state];
tape[head] =  out[in][state];
head      += move[in][state];

}

turing.c

read in tape
(consists of 0, 1, 2)

simulate Turing machine 
until accept state reached
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Nondeterministic Turing Machine

TM with extra ability:

■ Choose one of several possible transition states given current tape 
contents and state.

■ No more powerful than deterministic TM.

■ Faster than TM?  (Stay tuned for NP-Completeness). 

Exercise:

■ Nondeterministic TM to recognize language of all bit strings of the 
form ww for some w.

– 110110
– 100011110001111
– 001100011100001111001100011100001111
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Abstract Machine Hierarchy

Each machine is strictly more powerful than the previous.

■ Power = can recognize more languages.

Are there limits to machine power?

Corresponding hierarchy exists for languages.

■ Essential connection between machines and languages.
(See Lecture T3.)

Nondeterminism
adds power?

NoFinite state automata

Machine

YesPushdown automata

UnknownLinear bounded automata

NoTuring machine
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Summary

Abstract machines are foundation of all modern computers.

■ Simple computational models are easier to understand.

■ Leads to deeper understanding of computation.

Goal:  simplest machine "as powerful" as conventional computers.

Abstract machines.

■ FSA:  simplest machine that is still interesting.
– pattern matching, sequential circuits (Lecture T1)
– can’t recognize:  equal number of 0’s and 1’s

■ PDA:  add read/write memory in the form of a stack.
– compiler design (Lecture T3)
– can’t recognize:  palindromes

■ TM:  add memory in the form of an arbitrarily large array. 
– general purpose computers (Lecture T4)
– can’t recognize:  stay tuned

Lecture T2:  Extra Slides
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FSA, NFSA, and RE Are Equivalent

Theorem: FSA, NFSA, and RE are "equally powerful".

■ NFSA  ⊆ FSA

Proof  sketch (part 2): FSA ⊆ RE

■ Goal:  given an FSA, find a RE that matches all strings accepted by 
the FSA and no other strings.

■ Main idea:  consider
– paths from start state(s) to accept state(s): 00 | 01

– directed cycles: (1*)(00 | 01)(11 | 10)*

0 1

1

1

0



26

Theorem: FSA, NFSA, and RE are "equally powerful".

■ NFSA  ⊆ FSA  ⊆ RE

Proof  sketch (part 3): RE  ⊆ NFSA

■ Goal:  given a RE, construct a NFSA that accepts all strings 
matched by the RE, and rejects all others.

■ Use the following rules to construct NFSA:

FSA, NFSA, and RE Are Equivalent

a

a

A B

AB

A

B

A | B

A

A*

ε

ε
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0

FSA, NFSA, and RE Are Equivalent

Example.

■ RE:  01(00 | 101)*

0

101

10

0

1

01

1

00 

28

FSA, NFSA, and RE Are Equivalent

Example.

■ RE:  01(00 | 101)*

00 | 101

0

1
0

0

1

0

01

1
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FSA, NFSA, and RE Are Equivalent

Example.

■ RE:  01(00 | 101)*

0

(00 | 101)*

1
0

0

1

ε

ε

ε - transition:  jump states without 
reading a character to next state

0

01

1
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FSA, NFSA, and RE Are Equivalent

Example.

■ RE:  01(00 | 101)*

0

01(00 + 101)*

1
0

0

1

ε

ε

0 1
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FSA, NFSA, and RE Are Equivalent

Theorem: FSA, NFSA, and RE are "equally powerful".

■ NFSA  ⊆ FSA  ⊆ RE  ⊆ NFSA

Equivalence of languages and machine models is essential in the 
theory of computation.
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Nondeterminism Does Help PDA’s

Nondeterministic pushdown automata (NPDA).

■ Same as PDA, except depending on current state/input bit/stack bit
– move to ANY OF SEVERAL new states
– push the input onto stack, or pop top-most element from 

stack

NPDA to recognize all (even length) palindromes.

■ Bit string is the same forwards and backwards.

0/0/pop

1/1/pop0

0/0/push
0/1/push
1/ε/push
1/0/push
1/1/push
1/ε/push

1

0/0/push
0/1/push

0/ε/push
1/0/push
1/1/push

1/ε/push
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Nondeterminism Does Help PDA’s

Nondeterministic pushdown automata (NPDA).

■ Same as PDA, except depending on current state/input bit/stack bit
– move to ANY OF SEVERAL new states
– push the input onto stack, or pop top-most element from 

stack

NPDA to recognize all (even length) palindromes.

■ Bit string is the same forwards and backwards.

Nondeterministic PDA more powerful than deterministic PDA.

■ PDA ⊆ NPDA trivially.

■ PDA cannot recognize language of all (even length) palindromes, 
but NPDA can.

■ Therefore PDA ⊂ NPDA .
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Pushdown Automata

How can we make FSA more powerful?

■ NPDA = FSA + stack + nondeterminism.

Did it help?

■ Can recognize language of all palindromes.

■ Can’t recognize some languages:
– equal number of 0’s 1’s and 2’s
– 0N 1N 2N

– bit strings with a power of two 1’s

■ Need still more powerful machines.
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Linear Bounded Automata

Turing machine.

■ No limit on length of tape.

Linear bounded automata (LBA).

■ A single tape TM that can only write on the portion of the tape 
containing the input.

■ Note:  allowed to increase alphabet size if desired.

LBA is strictly less powerful than TM.

■ There are languages that can be recognized by TM but not a LBA.

■ We won’t dwell on LBA in this course.


