Lecture I1: Introduction

COS 126
T '/ Princeton University

%!mﬁ Spring 2001

Randy Wang

Overview

What is COS 1267
. Broad, but technical, intro survey course.

- no prerequisites
(although previous programming very helpful in beginning)

. Basic CS principles.
- hardware, software systems
- programming in C, other languages
- algorithms and data structures
- theory of computation
- applications to solving scientific problems
- critical thinking

What isn't COS 1267?
. A programming course.

The Usual Suspects

Lectures: (Randy Wang)
. Tuesday, Thursday 10:00 - 10:50, Frist 302.

Precepts: (Doug Clark, Matt Webb, Kevin Wayne, Lisa Worthington)
. Friday - tips on assignments, clarify lecture material.
. Monday - review exercises, clarify lecture material.

Undergraduate Coordinator: (Tina McCoy)
. CS Building, Room 410.

Computer Lab Assistants: (many fine Princeton undergrads)
. Public Unix lab in CS 101.
. Lab TA schedule to be posted on Web.

Signing Up for a Precept

Everyone must be enrolled in one precept.
. All pre-registered students already set - see list outside.

. If not in precept, see Kevin after class
or this afternoon at 4:30 - 5in CS 207, 35 Olden Street.

. Introductory precept meets Friday.
. Note: multiple precepts at certain times.
- check course Web site to see which one you are in

Grading

Assignments: 33%
Programming assignments.

. Exercises (solutions provided).
Midterms: 33%

. 2midterms (33% total).
Many questions drawn from exercises.

Final: 34% 35

30

Staff discretion. 5
20

15

Course grades. ©
. No preset curve. 5
. 0

A+ A A- B+ B B- C D F

Last year’s breakdown.

W Assignments B Midterms B Final

Where To Program

Public cluster in Room 101, CS Building.
. 30 Sun Ultra 5 machines running Unix.
Lab run by CIT.

- go to 87 Prospect Ave if you don’t have an account or
don’'t know password

. Supported by CS lab assistants.

Can | work from home?
Use home PC as terminal:
—telnet to arizona
- need X-Windows emulator for GUI
Use home PC as primary computer:
- Linux
- Windows / Mac OS

. All code must work properly on arizona.

Required Readings

Course packet.
Pequod copy (U-Store, 36 University Place).
. Syllabus.
Programming assignments.
Lecture notes.
. Old exams.
Exercises.

. Solutions to exercises.

King.

-".,|:!_'| withoes

E ¥ e

Sedgewick.
. Algorithms and data structures.

Lecture Outline

Programming fundamentals (7 lectures).
Machine architecture (5 lectures).
Advanced programming (3 lectures).
Theory of computation (5 lectures).
Systems (3 lectures).

Perspective (1 lecture).

Survival Guide

Keep up with the course material.

. Attend lectures and precepts.

. Do readings when assigned.

. Do exercises and understand solutions.

. Plan multiple lab sessions for programming assignments.

Visit course home page regularly for announcements and
supplemental information:

coursei nfo. Princeton. EDU courses/ COS126_S2001
www. Princeton. EDU ~cs126 ﬂEl

Survival Guide

Keep in touch.

. Email: your preceptor, instructor.

. Office hours: your preceptor, other preceptors, instructors.
. Discussion group on course web page.

Ask for help when you need it!

. Preceptors, instructors: concepts, programming assignments,
exercises.

. Lab TA’s: Unix support, help with debugging.

END OF ADMINISTRATIVE STUFF

What Is Computer Science?

What is computer science?
1. The science of manipulating "information."”
2. Designing and building systems that do (1).

What CS is not.
. CSis not programming.
. Programming is a useful tool to express CS ideas.

Why we learn CS.
. Appreciate most fundamental underlying principles.
. Understand inherent limitations of computing.
. What can be automated?

Encryption Machine

Goal: design a machine to encrypt and decrypt data.

'SIE[N|D[M|[O|N[E]Y]

encrypt

(W2 [MIR[E[A[F[B[Z]

decrypt

'SIE[N|D[M[O|N[E]Y]

Enigma encryption machine.

. "Unbreakable" German code during WWII.

. Broken by Turing bombe.

. One of first uses of computers.

. Helped win Battle of Atlantic by locating U-boats.

Simple Encryption Scheme (One-Time Pad)

Conversion
Convert text input to N bits.

Generate N random bits (secret key).
Take bitwise XOR of two strings.
Convert binary back into text.

char dec binary
A 1 00001
B 2 00010

S .

Y 25 | 11001
z 26 | 11010

[STE[N[D][M]O[NJE]Y] message

|10010|00101|01100100100’01101‘01110‘01100|00101|11001| binary

‘00100 ‘ 11001 ‘ 00001 | 10101 ‘ 01000 ‘ 01111 ‘ 01010 ‘ 00111 ‘ 00101 | random bits

‘10110‘11100‘01101’10001‘00101‘00001‘00110‘00010‘11100’ XOR

(W[? [M{R[E[A[F[B]?] send

Decryption Scheme (One-Time Pad)

Conversion

1. Convert encrypted message to binary. eer | dze | e

A 1 00001
B 2 00010

Y 25 | 11001
z 26 | 11010

‘W’?’M’R|E|A|F|B|?’message

‘10110‘11100‘01101’10001‘00101‘00001‘00110‘00010‘11100’ binary

Decryption Scheme (One-Time Pad)

Conversion
Convert encrypted message to binary.

Use same N random bits (secret key).
Take bitwise XOR of two strings.
Convert back into text.

char dec binary
A 1 00001
B 2 00010

PR

Y 25 | 11001
z 26 | 11010

‘W’?’M’R|E|A|F|B|?’message

‘10110‘11100‘01101’10001‘00101‘00001‘00110‘00010‘11100’ binary

‘00100 ‘ 11001 ‘ 00001 | 10101 ‘ 01000 ‘ 01111 ‘ 01010 ‘ 00111 ‘ 00101 | random bits

| 10010 | 00101 | 01100 ’ 00100 | 01101 ‘ 01110 ‘ 01100 | 00101 | 11001 | XOR

[STE[N[D[M[O[N[E]Y] sens

Why Does It Work?

Notation:

a original message

b random bits (secret key)
A XOR operation

a“b encrypted message
(@a”rb)*b decrypted message

Crucial property: (a”b)*b=a.
. Decrypted message = original message.

Why is crucial property true?

. br"b=0

. a*0=a

- (XM y)rz=xnN(y”2)

. @*"b)*b=ar(b”rb)=ar0=a

Random Numbers

Are these 2000 numbers random?

0100110010000001100010001011101010111100100111100111010010000110111111110010110100110110
1100101001111110101001011000110001110110111000001101000100001010100010011100110111100111
1100000011110111011010000110101110110110000101111011100101100001001111111101101001011110
1010000111001000101100100011010100010111110111110000101101010100001010000000010101010101
1111010111100000101101110110000011100010001111111011110000110100110010100011101011101001
1100000100101010100011011000100100100011000101010011000110111101111010010010111111011000
0111110011000011101000100101000101011111110101101001001111101100101101101111100101001011
1001000001110101010110110001101011001111101000111100100011110110011110010101101010000011
0110011000001100000000011001100110101001101011111100100101101111110100001111010101001010
0000100111011100111101001101001110100000011100110011110110111100011100001000011001110111
1011010110101100011100101010010000010101110111110100111100011000011001010101100100111000
1010110111001001001010111001110010111000000101100110010010000100110111010100111101011100
0010100100010100011001001100000010010001000000100000000001000100010011000100110101011100
0110110101011000001010011001110011111100010110100010100111011000101100000001011101110101
1011010111101000001111101110100101001001101100100001011100110001111110011010010101100010
1000010000010001100110111000101111001101101000111000110010111010001101000000011011101110
0011111000100101100111010110010111110011100001100001000111011111110001111000000011111111
1110000111100010000111011001101000010010011001000000110001000101110101011110010011110011
1010010000110111111110010110100110110110010100111111010100101100011000111011011100000110
1000100001010100010011100110111100111110000001111011101101000011010111011011000010111101
1100101100001001111111101101001011110101000011100100010110010001101010001011111011111000
0101101010100001010000000010101010101111101011110000010110111011000001110001000111111101
1110000110100110010100011101011101001110000010010101010001101100. . .

If not, what is the pattern?

Linear Feedback Shift Register

How might the "random number machine" be built?
. "Linear feedback shift register.”
. "Linear congruential generator."
- see Assignment 1

Some terminology

. Bit: Oor 1.

. Cell: storage element that holds 1 bit.

. Register: array of cells.

. Shift register: when clock ticks, bits propagate one position to left.

Linear Feedback Shift Register

Linear feedback shift register.
. Machine consists of 11 bits.
. Bit values change at discrete time points.
. Bit values at time T+1 determined by bit values at time T.
- new bits 1 - 10 are old bits 0-9
- new bit 0 is XOR of previous bits 3 and 10
- output bit 0

‘alo|ag|a8|a7|a6|a5|a4|a3|a2|al|a0‘ Time T

ENENESENENENENENEN -
<) 8 7 6 £) 4 3 2 1 310 Time T+1

LFBSR Demo E

The Science Behind It

Are the bits really random?
rd

How did the computer scientist die in the shower?
e
Will bit pattern repeat itself?

e

Will the machine work equally well if we XOR bits 4 and 10?
e

How many cells do | need to guarantee a certain level of security?
e

Properties of Shift Register "Machine"

Clocked.

Control: start, stop, load.

Data: initial values of bits (seed).

Built from simple components.
. "Clock" (regular electrical pulse).
. Shift register cell remembers value until clock "ticks."
. Some wires "input", some "output.”

Scales to handle huge problems.
. 10 cells yields 1 thousand "random" bits.
. 20 cells yields 1 million "random" bits.
. 30 cells yields 1 billion "random" bits.
. BUT, need to understand abstract machine!
- higher math needed to know XOR taps

Properties of Computers

Same basic principles as LFBSR:
. Clocked.
. Control: start, stop, load.
Data: initial values of bits.
. Built from simple components.
. Scales to handle huge problems.

Abstraction aids in understanding.

Simulating The Abstract Machinein C

Produces exactly same bits as LFBSR.

#i ncl ude <stdio. h>
#defi ne N 100 You'll understand this
program by next week.

int main(void) {

int i, new,

int b10 =0, b9 =1, b8 =1, b7 =0, b6 =1, b5 = 0;
int b4 =0, b3 =0, b2 =0, bl =1, b0 = 0;

for (i =0; i <N i++) { ‘AmeansXORinC

new = b3 ~ bl0;
b10 = b9; b9 = b8; b8 = b7; b7 = b6; b6 = bb5;
b5 = b4; b3 = b2; b2 = bl; bl = b0; b0 = new,
printf("%", new);
return O: 0100110010000001100010001011101010111100
’ 1001111001110100100001101111111100101101
} 00110110110010100121111101010010110001100
011101101110000011010001000010101000 . . .

Simulating The Abstract Machine

C program to produce "random" bits.

Any "general purpose" machine can be used to simulate any abstract
machine. Implications are:

. Test out new programs.
. Use old programs.
. Understand fundamental limitations of computers.

Layers of Abstraction: LFBSR

Layers of abstraction (recurring theme).
. Precisely defined for simple machine.
Use it to build more complex one.
. Develop complex systems by building increasingly more
complicated machines.
. Improve systems by substituting new (better) implementations of
abstract machines at any level.

LFBSR layers of abstraction.
. Simple piece of hardware.

. Generate "random" bits. — |

. Use "random" bits for encryption.

. Use encryption for Internet commerce. \

p

Layers of Abstraction: Computer

"Computer" layers of abstraction.
. Complex piece of hardware.
- CPU, keyboard, printer, storage devices

. Machine language programming.
-0'sand1’s

. Software systems.
- editor (emacs): create, modify files
- compiler (gcc): transform program to machine instruction
- operating system (Unix): invoke programs

. Windowing system (X).
—illusion of multiple computer systems

Simulating The Abstract Machine

C program to produce "random" bits using bit operations.

#i ncl ude <stdi o. h>
#define N 100

int main(void) {
int i, new, fill = 01502; < octal constant
for (i =0; i <N i++) {
new = ((fill >> 10) & 1) ~ ((fill >> 3) & 1);

fill = (fill << 1) + new,
printf("%\n", new;
}
return O;
}
>> shift right & "and" (1if both bits 1, 0 otherwise)

<< shift left N "exclusive or" (1 if bits are different)

