Lecture A4: Sequential Circuits

Sequential vs. Combinational Circuits

Combinational circuits.

- Output determined solely by inputs.

Sequential circuits.

- Feedback loop.
- Output determined by inputs and previous outputs.

Architecture

Lecture A1 - A2: TOY machine.

Lecture A3: Boolean logic and combinational circuits.

- In principle, we could build TOY computer with one gigantic combinational circuit.
- Each circuit element used (at most) once.

Today.

- How to reuse circuit elements.
. How to store bits in "memory."

Next time.
. Glue these components together to make TOY computer.

Flip-Flop

Flip-flop.

- A small and useful sequential circuit.
. "Remembers" one bit.

We will consider many flavors.

Clock

Clock.

- Fundamental abstraction.
- regular on-off pulse
- External analog device.
- Synchronize operations of different circuit elements.
. $\mathbf{8 0 0} \mathbf{~ M H z}$ clock means $\mathbf{8 0 0}$ million pulses per second.

Truth Table and Timing Diagram (for SR Flip-Flop)

Truth table.

- Values vary over time.
- $\mathbf{S}(\mathrm{t}), \mathrm{R}(\mathrm{t}), \mathrm{Q}(\mathrm{t})$ denote value at time t .

Characteristic equation.

```
Q(t+\varepsilon)=S(t) + R'(t)Q(t)
```

(SR = 0)
Sample timing diagram.

Clocked SR Flip-Flop

Clocked SR Flip-Flop.

- Like SR flip-flop but S and R only work if clock is on.

Implementation

Interface

Clocked D Flip-Flop

Clocked D Flip-Flop.

- On clock pulse: if $\mathrm{D}=1$, then set; if $\mathrm{D}=0$, then reset.

Implementation

Interface

Computer Architecture Perspective

Circuits needed to build a computer.

- Combinational circuit components.
- adder, multiplexer, decoder
- Sequential circuit components (build from flip-flops).
- counter
- memory

All are built from AND, OR, NOT gates.

Master Slave Flip-Flop

Master-slave flip-flop (falling edge-trigger).

- Input can only change on falling edge.

Interface

1-Bit Counter

1-bit counter.
. "Clock" whose cycle is twice as long as input.

Implementation

Interface

Q

Cl

N -Bit Counter

N -bit counter.

- Chain N 1-bit counters together.

Register File: 81-bit "words"

Register file: $n=2^{\text {t }}$ bits.

- n bits of memory.
- Address specifies which bit.
- How many bits needed to specify address?
. If write $=1$, input gets copied into addressed bit.
- If write $=\mathbf{0}$, addressed bit appears on output.

TOY registers.
. 8 16-bit words.
. Need 16 copies.

TOY main memory.

- 256 16-bit words.
- Need 16 copies of register file with 256 1-bit words.

Interface (8 1-bit "words")

Memory Overview

Computers have many types of memory.

- Registers.
. Main memory.

Master-slave flip-flop implements 1 bit of memory.

Need mechanism to reference, store, and extract individual bits.
. Multiplexer, decoder.

Bit-slice memory.
. Word size in TOY is 16 bits.
. First: design circuit for memory with 1 bit "words."
. Then: implement 16 -bit word memory with 16 copies.

Register File: n 1-bit "words"

Register file: n registers (words), 1 bit per register.

- Decoder writes input to address bit.
- Multiplexer copies address bit to output.

Register File: nk k-bit words

Register file: n registers (words), k bits per register.
. \mathbf{k} copies of single bit register file ($k=16$ for TOY).

Cheat Sheet

SR flip-flop

1-bit counter

Register File (8 bits)

Register File (8 16-bit words)

