
DATABASE MANAGEMENT
SYSTEMS

SOLUTIONS MANUAL

Raghu Ramakrishnan et al.
University of Wisconsin

Madison, WI, USA

2
THE ENTITY-RELATIONSHIP MODEL

Exercise 2.1 Explain the following terms briefly: attribute, domain, entity, relation-
ship, entity set, relationship set, one-to-many relationship, many-to-many relationship,
participation constraint, overlap constraint, covering constraint, weak entity set, aggre-
gation, and role indicator.

Answer 2.1 No answer provided yet.

Exercise 2.2 A university database contains information about professors (identified
by social security number, or SSN) and courses (identified by courseid). Professors
teach courses; each of the following situations concerns the Teaches relationship set.
For each situation, draw an ER diagram that describes it (assuming that no further
constraints hold).

1. Professors can teach the same course in several semesters, and each offering must
be recorded.

2. Professors can teach the same course in several semesters, and only the most
recent such offering needs to be recorded. (Assume this condition applies in all
subsequent questions.)

3. Every professor must teach some course.

4. Every professor teaches exactly one course (no more, no less).

5. Every professor teaches exactly one course (no more, no less), and every course
must be taught by some professor.

6. Now suppose that certain courses can be taught by a team of professors jointly,
but it is possible that no one professor in a team can teach the course. Model this
situation, introducing additional entity sets and relationship sets if necessary.

Answer 2.2 Answer omitted.

5

6 Chapter 2

Exercise 2.3 Consider the following information about a university database:

Professors have an SSN, a name, an age, a rank, and a research specialty.

Projects have a project number, a sponsor name (e.g., NSF), a starting date, an
ending date, and a budget.

Graduate students have an SSN, a name, an age, and a degree program (e.g., M.S.
or Ph.D.).

Each project is managed by one professor (known as the project’s principal inves-
tigator).

Each project is worked on by one or more professors (known as the project’s
co-investigators).

Professors can manage and/or work on multiple projects.

Each project is worked on by one or more graduate students (known as the
project’s research assistants).

When graduate students work on a project, a professor must supervise their work
on the project. Graduate students can work on multiple projects, in which case
they will have a (potentially different) supervisor for each one.

Departments have a department number, a department name, and a main office.

Departments have a professor (known as the chairman) who runs the department.

Professors work in one or more departments, and for each department that they
work in, a time percentage is associated with their job.

Graduate students have one major department in which they are working on their
degree.

Each graduate student has another, more senior graduate student (known as a
student advisor) who advises him or her on what courses to take.

Design and draw an ER diagram that captures the information about the university.
Use only the basic ER model here, that is, entities, relationships, and attributes. Be
sure to indicate any key and participation constraints.

Answer 2.3 The ER diagram is shown in Figure 2.1.

Exercise 2.4 A company database needs to store information about employees (iden-
tified by ssn, with salary and phone as attributes); departments (identified by dno,
with dname and budget as attributes); and children of employees (with name and age
as attributes). Employees work in departments; each department is managed by an

T
h
e

E
n
tity-R

ela
tio

n
sh

ip
M

od
el

7

work_in

Manages project

pid

sponsor

start_date

end_date

budget

Dept

RunsWork_dept

office

dname

dno

Professor

ssn

age

rank

speciality

Major

Work_proj

AdvisorGraduate

senior

grad

ssn

pc_time

age

ssn

deg_prog

name

Supervises

F
ig

u
r
e

2
.1

E
R

D
ia

g
ra

m
fo

r
E

x
ercise

2
.3

8 Chapter 2

employee; a child must be identified uniquely by name when the parent (who is an
employee; assume that only one parent works for the company) is known. We are not
interested in information about a child once the parent leaves the company.

Draw an ER diagram that captures this information.

Answer 2.4 Answer omitted.

Exercise 2.5 Notown Records has decided to store information about musicians who
perform on its albums (as well as other company data) in a database. The company
has wisely chosen to hire you as a database designer (at your usual consulting fee of
$2,500/day).

Each musician that records at Notown has an SSN, a name, an address, and
a phone number. Poorly paid musicians often share the same address, and no
address has more than one phone.

Each instrument that is used in songs recorded at Notown has a name (e.g., guitar,
synthesizer, flute) and a musical key (e.g., C, B-flat, E-flat).

Each album that is recorded on the Notown label has a title, a copyright date, a
format (e.g., CD or MC), and an album identifier.

Each song recorded at Notown has a title and an author.

Each musician may play several instruments, and a given instrument may be
played by several musicians.

Each album has a number of songs on it, but no song may appear on more than
one album.

Each song is performed by one or more musicians, and a musician may perform a
number of songs.

Each album has exactly one musician who acts as its producer. A musician may
produce several albums, of course.

Design a conceptual schema for Notown and draw an ER diagram for your schema. The
following information describes the situation that the Notown database must model.
Be sure to indicate all key and cardinality constraints and any assumptions that you
make. Identify any constraints that you are unable to capture in the ER diagram and
briefly explain why you could not express them.

Answer 2.5 The ER diagram is shown in Figure 2.2.

The Entity-Relationship Model 9

ss
n

M
us

ic
ia

ns

na
m

e

Al
bu

m

co
py

rig
ht

D
at

e

sp
ee

d
al

bu
m

Id
en

tif
ie

r

dn
am

e

In
st

ru
m

en
t

in
st

rId
ke

y
so

ng
Id

So
ng

s tit
le

su
th

or

Pl
ay

s
Ap

pe
ar

s
Pe

rfo
rm

Pr
od

uc
er

tit
le

ad
dr

es
s

H
om

e

L
iv

es

Pl
ac

e
T

el
ep

ho
ne

ph
on

e_
no

Figure 2.2 ER Diagram for Exercise 2.5

10 Chapter 2

Exercise 2.6 Computer Sciences Department frequent fliers have been complaining
to Dane County Airport officials about the poor organization at the airport. As a
result, the officials have decided that all information related to the airport should be
organized using a DBMS, and you’ve been hired to design the database. Your first task
is to organize the information about all the airplanes that are stationed and maintained
at the airport. The relevant information is as follows:

Every airplane has a registration number, and each airplane is of a specific model.

The airport accommodates a number of airplane models, and each model is iden-
tified by a model number (e.g., DC-10) and has a capacity and a weight.

A number of technicians work at the airport. You need to store the name, SSN,
address, phone number, and salary of each technician.

Each technician is an expert on one or more plane model(s), and his or her exper-
tise may overlap with that of other technicians. This information about technicians
must also be recorded.

Traffic controllers must have an annual medical examination. For each traffic
controller, you must store the date of the most recent exam.

All airport employees (including technicians) belong to a union. You must store
the union membership number of each employee. You can assume that each
employee is uniquely identified by the social security number.

The airport has a number of tests that are used periodically to ensure that air-
planes are still airworthy. Each test has a Federal Aviation Administration (FAA)
test number, a name, and a maximum possible score.

The FAA requires the airport to keep track of each time that a given airplane
is tested by a given technician using a given test. For each testing event, the
information needed is the date, the number of hours the technician spent doing
the test, and the score that the airplane received on the test.

1. Draw an ER diagram for the airport database. Be sure to indicate the various
attributes of each entity and relationship set; also specify the key and participation
constraints for each relationship set. Specify any necessary overlap and covering
constraints as well (in English).

2. The FAA passes a regulation that tests on a plane must be conducted by a tech-
nician who is an expert on that model. How would you express this constraint in
the ER diagram? If you cannot express it, explain briefly.

Answer 2.6 Answer omitted.

The Entity-Relationship Model 11

Exercise 2.7 The Prescriptions-R-X chain of pharmacies has offered to give you a
free lifetime supply of medicines if you design its database. Given the rising cost of
health care, you agree. Here’s the information that you gather:

Patients are identified by an SSN, and their names, addresses, and ages must be
recorded.

Doctors are identified by an SSN. For each doctor, the name, specialty, and years
of experience must be recorded.

Each pharmaceutical company is identified by name and has a phone number.

For each drug, the trade name and formula must be recorded. Each drug is
sold by a given pharmaceutical company, and the trade name identifies a drug
uniquely from among the products of that company. If a pharmaceutical company
is deleted, you need not keep track of its products any longer.

Each pharmacy has a name, address, and phone number.

Every patient has a primary physician. Every doctor has at least one patient.

Each pharmacy sells several drugs and has a price for each. A drug could be sold
at several pharmacies, and the price could vary from one pharmacy to another.

Doctors prescribe drugs for patients. A doctor could prescribe one or more drugs
for several patients, and a patient could obtain prescriptions from several doctors.
Each prescription has a date and a quantity associated with it. You can assume
that if a doctor prescribes the same drug for the same patient more than once,
only the last such prescription needs to be stored.

Pharmaceutical companies have long-term contracts with pharmacies. A phar-
maceutical company can contract with several pharmacies, and a pharmacy can
contract with several pharmaceutical companies. For each contract, you have to
store a start date, an end date, and the text of the contract.

Pharmacies appoint a supervisor for each contract. There must always be a super-
visor for each contract, but the contract supervisor can change over the lifetime
of the contract.

1. Draw an ER diagram that captures the above information. Identify any con-
straints that are not captured by the ER diagram.

2. How would your design change if each drug must be sold at a fixed price by all
pharmacies?

3. How would your design change if the design requirements change as follows: If a
doctor prescribes the same drug for the same patient more than once, several such
prescriptions may have to be stored.

12 Chapter 2

ssn

age

Patient

 address

name

Pri_physician Doctor

name

phy_ssn speciality

exp_years

Prescription
quentity

Sell

address phone_num

Pharmacy

Pharm_co

Make

 Drug

formula

trade_name

 date

phone_numname

price
start_date

end_date

text

Contract

supervisor

name

Figure 2.3 ER Diagram for Exercise 2.8

The Entity-Relationship Model 13

Answer 2.7 1. The ER diagram is shown in Figure 2.3.

2. If the drug is to be sold at a fixed price we can add the price attribute to the Drug
entity set and eliminate the Sell relationship set.

3. The date information can no longer be modeled as an attribute of Prescription.
We have to create a new entity set called Prescription date and make Prescription
a 4-way relationship set that involves this additional entity set.

Exercise 2.8 Although you always wanted to be an artist, you ended up being an
expert on databases because you love to cook data and you somehow confused ‘data
base’ with ‘data baste.’ Your old love is still there, however, so you set up a database
company, ArtBase, that builds a product for art galleries. The core of this product
is a database with a schema that captures all the information that galleries need to
maintain. Galleries keep information about artists, their names (which are unique),
birthplaces, age, and style of art. For each piece of artwork, the artist, the year it was
made, its unique title, its type of art (e.g., painting, lithograph, sculpture, photograph),
and its price must be stored. Pieces of artwork are also classified into groups of various
kinds, for example, portraits, still lifes, works by Picasso, or works of the 19th century;
a given piece may belong to more than one group. Each group is identified by a name
(like those above) that describes the group. Finally, galleries keep information about
customers. For each customer, galleries keep their unique name, address, total amount
of dollars they have spent in the gallery (very important!), and the artists and groups
of art that each customer tends to like.

Draw the ER diagram for the database.

Answer 2.8 Answer omitted.

3
THE RELATIONAL MODEL

Exercise 3.1 Define the following terms: relation schema, relational database schema,
domain, relation instance, relation cardinality, and relation degree.

Answer 3.1 A relation schema can be thought of as the basic information describing
a table or relation. This includes a set of column names, the data types associated
with each column, and the name associated with the entire table. For example, a
relation schema for the relation called Students could be expressed using the following
representation:

Students(sid: string, name: string, login: string,
age: integer, gpa: real)

There are five fields or columns, with names and types as shown above.

A relational database schema is a collection of relation schemas, describing one or more
relations.

Domain is synonymous with data type. Attributes can be thought of as columns in a
table. Therefore, an attribute domain refers to the data type associated with a column.

A relation instance is a set of tuples (also known as rows or records) that each conform
to the schema of the relation.

The relation cardinality is the number of tuples in the relation.

The relation degree is the number of fields (or columns) in the relation.

Exercise 3.2 How many distinct tuples are in a relation instance with cardinality 22?

Answer 3.2 Answer omitted.

14

The Relational Model 15

Exercise 3.3 Does the relational model, as seen by an SQL query writer, provide
physical and logical data independence? Explain.

Answer 3.3 The user of SQL has no idea how the data is physically represented in the
machine. He or she relies entirely on the relation abstraction for querying. Physical
data independence is therefore assured. Since a user can define views, logical data
independence can also be achieved by using view definitions to hide changes in the
conceptual schema.

Exercise 3.4 What is the difference between a candidate key and the primary key for
a given relation? What is a superkey?

Answer 3.4 Answer omitted.

53831

53832

53650

53688

53666

50000 3.3

3.4

3.2

3.8

1.8

2.0

19

18

18

19

11

12

madayan@music

guldu@music

smith@math

smith@ee

jones@cs

dave@cs

Madayan

Guldu

Smith

Smith

Jones

Dave

 sid age gpaloginname

TUPLES

(RECORDS, ROWS)

FIELDS (ATTRIBUTES, COLUMNS)

Field names

Figure 3.1 An Instance S1 of the Students Relation

Exercise 3.5 Consider the instance of the Students relation shown in Figure 3.1.

1. Give an example of an attribute (or set of attributes) that you can deduce is not
a candidate key, based on this instance being legal.

2. Is there any example of an attribute (or set of attributes) that you can deduce is
a candidate key, based on this instance being legal?

Answer 3.5 Examples of non-candidate keys include the following: {name}, {age}.
(Note that {gpa} can not be declared a non-candidate key from this evidence alone
(even though common sense tells us that clearly more than one student could have the
same grade point average.)

You cannot determine a key of a relation given only one instance of the relation. The
fact that the instance is “legal” is immaterial. A candidate key, as defined here, is a

16 Chapter 3

key, not something that only might be a key. The instance shown is just one possible
“snapshot” of the relation. At other times, the same relation may have an instance (or
snapshot) that contains a totally different set of tuples, and we cannot make predictions
about those instances based only upon the instance that we are given.

Exercise 3.6 What is a foreign key constraint? Why are such constraints important?
What is referential integrity?

Answer 3.6 Answer omitted.

Exercise 3.7 Consider the relations Students, Faculty, Courses, Rooms, Enrolled,
Teaches, and Meets In that were defined in Section 1.5.2.

1. List all the foreign key constraints among these relations.

2. Give an example of a (plausible) constraint involving one or more of these relations
that is not a primary key or foreign key constraint.

Answer 3.7 There is no reason for a foreign key constraint (FKC) on the Students,
Faculty, Courses, or Rooms relations. These are the most basic relations and must be
free-standing. Special care must be given to entering data into these base relations.

In the Enrolled relation, sid and cid should both have FKCs placed on them. (Real
students must be enrolled in real courses.) Also, since real teachers must teach real
courses, both the fid and the cid fields in the Teaches relation should have FKCs.
Finally, Meets In should place FKCs on both the cid and rno fields.

It would probably be wise to enforce a few other constraints on this DBMS: the length
of sid, cid, and fid could be standardized; checksums could be added to these iden-
tification numbers; limits could be placed on the size of the numbers entered into the
credits, capacity, and salary fields; an enumerated type should be assigned to the grade
field (preventing a student from receiving a grade of G, among other things); etc.

Exercise 3.8 Answer each of the following questions briefly. The questions are based
on the following relational schema:

Emp(eid: integer, ename: string, age: integer, salary: real)
Works(eid: integer, did: integer, pct time: integer)
Dept(did: integer, dname: string, budget: real, managerid: integer)

1. Give an example of a foreign key constraint that involves the Dept relation. What
are the options for enforcing this constraint when a user attempts to delete a Dept
tuple?

The Relational Model 17

2. Write the SQL statements required to create the above relations, including appro-
priate versions of all primary and foreign key integrity constraints.

3. Define the Dept relation in SQL so that every department is guaranteed to have
a manager.

4. Write an SQL statement to add ‘John Doe’ as an employee with eid = 101,
age = 32 and salary = 15, 000.

5. Write an SQL statement to give every employee a 10% raise.

6. Write an SQL statement to delete the ‘Toy’ department. Given the referential
integrity constraints you chose for this schema, explain what happens when this
statement is executed.

Answer 3.8 Answer omitted.

sid name login age gpa
53831 Madayan madayan@music 11 1.8
53832 Guldu guldu@music 12 2.0

Figure 3.2 Students with age < 18 on Instance S1

Exercise 3.9 Consider the SQL query whose answer is shown in Figure 3.2.

1. Modify this query so that only the login column is included in the answer.

2. If the clause WHERE S.gpa >= 2 is added to the original query, what is the set of
tuples in the answer?

Answer 3.9 The answers are as follows:

1. Only login is included in the answer:

SELECT login
FROM Students S
WHERE S.age < 18

2. The answer tuple for Madayan is omitted.

Exercise 3.10 Explain why the addition of NOT NULL constraints to the SQL defini-
tion of the Manages relation (in Section 3.5.3) would not enforce the constraint that
each department must have a manager. What, if anything, is achieved by requiring
that the ssn field of Manages be non-null?

18 Chapter 3

Answer 3.10 Answer omitted.

Exercise 3.11 Suppose that we have a ternary relationship R between entity sets A,
B, and C such that A has a key constraint and total participation and B has a key
constraint; these are the only constraints. A has attributes a1 and a2, with a1 being
the key; B and C are similar. R has no descriptive attributes. Write SQL statements
that create tables corresponding to this information so as to capture as many of the
constraints as possible. If you cannot capture some constraint, explain why.

Answer 3.11 The following SQL statement creates Table A:

CREATE TABLE A (a1 CHAR(10),
a2 CHAR(10),
PRIMARY KEY (a1))

Tables B and C are similar to A.

CREATE TABLE R (a1 CHAR(10),
b1 CHAR(10) NOT NULL ,
c1 CHAR(10) ,
PRIMARY KEY (a1),
UNIQUE (b1)
FOREIGN KEY (a1) REFERENCES A,
FOREIGN KEY (b1) REFERENCES B)
FOREIGN KEY (c1) REFERENCES C)

We cannot capture the total participation constraint of A in R. This is because we
cannot ensure that every key a1 appears in R without the use of checks.

Exercise 3.12 Consider the scenario from Exercise 2.2 where you designed an ER
diagram for a university database. Write SQL statements to create the corresponding
relations and capture as many of the constraints as possible. If you cannot capture
some constraints, explain why.

Answer 3.12 Answer omitted.

Exercise 3.13 Consider the university database from Exercise 2.3 and the ER dia-
gram that you designed. Write SQL statements to create the corresponding relations
and capture as many of the constraints as possible. If you cannot capture some con-
straints, explain why.

The Relational Model 19

Answer 3.13 Answer omitted.

Exercise 3.14 Consider the scenario from Exercise 2.4 where you designed an ER
diagram for a company database. Write SQL statements to create the corresponding
relations and capture as many of the constraints as possible. If you cannot capture
some constraints, explain why.

Answer 3.14 Answer omitted.

Exercise 3.15 Consider the Notown database from Exercise 2.4. You have decided
to recommend that Notown use a relational database system to store company data.
Show the SQL statements for creating relations corresponding to the entity sets and
relationship sets in your design. Identify any constraints in the ER diagram that you
are unable to capture in the SQL statements and briefly explain why you could not
express them.

Answer 3.15 The following SQL statements create the corresponding relations.

1. CREATE TABLE Musicians (ssn CHAR(10),
name CHAR(30),
PRIMARY KEY (ssn))

2. CREATE TABLE Instruments (instrId CHAR(10),
dname CHAR(30),
key CHAR(5),
PRIMARY KEY (instrId))

3. CREATE TABLE Plays (ssn CHAR(10),
instrId INTEGER,
PRIMARY KEY (ssn, instrId),
FOREIGN KEY (ssn) REFERENCES Musicians,
FOREIGN KEY (instrId) REFERENCES Instruments)

4. CREATE TABLE Songs Appears (songId INTEGER,
author CHAR(30),
title CHAR(30),
albumIdentifier INTEGER NOT NULL,
PRIMARY KEY (songId),
FOREIGN KEY (albumIdentifier)

References Album Producer,

20 Chapter 3

5. CREATE TABLE Telephone Home (phone CHAR(11),
address CHAR(30),
PRIMARY KEY (phone),
FOREIGN KEY (address) REFERENCES Place,

6. CREATE TABLE Lives (ssn CHAR(10),
phone CHAR(11),
address CHAR(30),
PRIMARY KEY (ssn, address),
FOREIGN KEY (phone, address)

References Telephone Home,
FOREIGN KEY (ssn) REFERENCES Musicians)

7. CREATE TABLE Place (address CHAR(30))

8. CREATE TABLE Perform (songId INTEGER,
ssn CHAR(10),
PRIMARY KEY (ssn, songId),
FOREIGN KEY (songId) REFERENCES Songs,
FOREIGN KEY (ssn) REFERENCES Musicians)

9. CREATE TABLE Album Producer (ssn CHAR(10) NOT NULL,
albumIdentifier INTEGER,
copyrightDate DATE,
speed INTEGER,
title CHAR(30),
PRIMARY KEY (albumIdentifier),
FOREIGN KEY (ssn) REFERENCES Musicians)

Exercise 3.16 Translate your ER diagram from Exercise 2.6 into a relational schema,
and show the SQL statements needed to create the relations, using only key and null
constraints. If your translation cannot capture any constraints in the ER diagram,
explain why.

In Exercise 2.6, you also modified the ER diagram to include the constraint that tests
on a plane must be conducted by a technician who is an expert on that model. Can
you modify the SQL statements defining the relations obtained by mapping the ER
diagram to check this constraint?

Answer 3.16 Answer omitted.

The Relational Model 21

Exercise 3.17 Consider the ER diagram that you designed for the Prescriptions-R-X
chain of pharmacies in Exercise 2.7. Define relations corresponding to the entity sets
and relationship sets in your design using SQL.

Answer 3.17 The statements to create tables corresponding to entity sets Doctor,
Pharmacy, and Pharm co are straightforward and omitted. The other required tables
can be created as follows:

1. CREATE TABLE Pri Phy Patient (ssn CHAR(11),
name CHAR(20),
age INTEGER,
address CHAR(20),
phy ssn CHAR(11),
PRIMARY KEY (ssn),
FOREIGN KEY (phy ssn) REFERENCES Doctor)

2. CREATE TABLE Prescription (ssn CHAR(11),
phy ssn CHAR(11),
date CHAR(11),
quantity INTEGER,
trade name CHAR(20),
pharm id CHAR(11),
PRIMARY KEY (ssn, phy ssn),
FOREIGN KEY (ssn) REFERENCES Patient,
FOREIGN KEY (phy ssn) REFERENCES Doctor)
FOREIGN KEY (trade name, pharm id)

References Make Drug)

3. CREATE TABLE Make Drug (trade name CHAR(20),
pharm id CHAR(11),
PRIMARY KEY (trade name, pharm id),
FOREIGN KEY (trade name) REFERENCES Drug,
FOREIGN KEY (pharm id) REFERENCES Pharm co)

4. CREATE TABLE Sell (price INTGER,
name CHAR(10),
trade name CHAR(10),
PRIMARY KEY (name, trade name),
FOREIGN KEY (name) REFERENCES Pharmacy,
FOREIGN KEY (trade name) REFERENCES Drug)

22 Chapter 3

5. CREATE TABLE Contract (name CHAR(20),
pharm id CHAR(11),
start date CHAR(11),
end date CHAR(11),
text CHAR(10000),
supervisor CHAR(20),
PRIMARY KEY (name, pharm id),
FOREIGN KEY (name) REFERENCES Pharmacy,
FOREIGN KEY (pharm id) REFERENCES Pharm co)

Exercise 3.18 Write SQL statements to create the corresponding relations to the
ER diagram you designed for Exercise 2.8. If your translation cannot capture any
constraints in the ER diagram, explain why.

Answer 3.18 Answer omitted.

4
RELATIONAL ALGEBRA AND

CALCULUS

Exercise 4.1 Explain the statement that relational algebra operators can be com-
posed. Why is the ability to compose operators important?

Answer 4.1 Every operator in relational algebra accepts one or more relation in-
stances as arguments and the result is always an relation instance. So the argument
of one operator could be the result of another operator. This is important because,
this makes it easy to write complex queries by simply composing the relational algebra
operators.

Exercise 4.2 Given two relations R1 and R2, where R1 contains N1 tuples, R2 con-
tains N2 tuples, and N2 > N1 > 0, give the minimum and maximum possible sizes
(in tuples) for the result relation produced by each of the following relational algebra
expressions. In each case, state any assumptions about the schemas for R1 and R2
that are needed to make the expression meaningful:

(1) R1∪R2, (2) R1∩R2, (3) R1−R2, (4) R1×R2, (5) σa=5(R1), (6) πa(R1),
and (7) R1/R2

Answer 4.2 Answer omitted.

Exercise 4.3 Consider the following schema:

Suppliers(sid: integer, sname: string, address: string)
Parts(pid: integer, pname: string, color: string)
Catalog(sid: integer, pid: integer, cost: real)

The key fields are underlined, and the domain of each field is listed after the field name.
Thus sid is the key for Suppliers, pid is the key for Parts, and sid and pid together
form the key for Catalog. The Catalog relation lists the prices charged for parts by
Suppliers. Write the following queries in relational algebra, tuple relational calculus,
and domain relational calculus:

23

24 Chapter 4

1. Find the names of suppliers who supply some red part.

2. Find the sids of suppliers who supply some red or green part.

3. Find the sids of suppliers who supply some red part or are at 221 Packer Ave.

4. Find the sids of suppliers who supply some red part and some green part.

5. Find the sids of suppliers who supply every part.

6. Find the sids of suppliers who supply every red part.

7. Find the sids of suppliers who supply every red or green part.

8. Find the sids of suppliers who supply every red part or supply every green part.

9. Find pairs of sids such that the supplier with the first sid charges more for some
part than the supplier with the second sid.

10. Find the pids of parts that are supplied by at least two different suppliers.

11. Find the pids of the most expensive parts supplied by suppliers named Yosemite
Sham.

12. Find the pids of parts supplied by every supplier at less than $200. (If any supplier
either does not supply the part or charges more than $200 for it, the part is not
selected.)

Answer 4.3 In the answers below RA refers to Relational Algebra, TRC refers to
Tuple Relational Calculus and DRC refers to Domain Relational Calculus.

1. RA

πsname(πsid((πpidσcolor=′red′Parts) ./ Catalog) ./ Suppliers)

TRC

{T | ∃T 1 ∈ Suppliers(∃X ∈ Parts(X.color =′ red′ ∧ ∃Y ∈ Catalog

(Y.pid = X.pid ∧ Y.sid = T 1.sid)) ∧ T.sname = T 1.sname)}

DRC

{〈Y 〉 | 〈X, Y, Z〉 ∈ Suppliers∧ ∃P, Q, R(〈P, Q, R〉 ∈ Parts

∧R =′ red′ ∧ ∃I, J, K(〈I, J, K〉 ∈ Catalog ∧ J = P ∧ I = X))}

SQL

Relational Algebra and Calculus 25

SELECT S.sname
FROM Suppliers S, Parts P, Catalog C
WHERE P.color=’red’ AND C.pid=P.pid AND C.sid=S.sid

2. RA
πsid(πpid(σcolor=′red′∨color=′green′Parts) ./ catalog)

TRC

{T | ∃T 1 ∈ Catalog(∃X ∈ Parts((X.color = ‘red′ ∨ X.color = ‘green′)

∧X.pid = T 1.pid) ∧ T.sid = T 1.sid)}

DRC

{〈X〉 | 〈X, Y, Z〉 ∈ Catalog ∧ ∃A, B, C(〈A, B, C〉 ∈ Parts

∧(C =′ red′ ∨ C =′ green′) ∧ A = Y)}

SQL

SELECT C.sid
FROM Catalog C, Parts P
WHERE (P.color = ‘red’ OR P.color = ‘green’)

AND P.pid = C.pid

3. RA

ρ(R1, πsid((πpidσcolor=′red′Parts) ./ Catalog))

ρ(R2, πsidσaddress=′221PackerStreet′Suppliers)

R1 ∪ R2

TRC

{T | ∃T 1 ∈ Catalog(∃X ∈ Parts(X.color = ‘red′ ∧ X.pid = T 1.pid)

∧T.sid = T 1.sid)

∨∃T 2 ∈ Suppliers(T 2.address =′ 221PackerStreet′ ∧ T.sid = T 2.sid)}

DRC

{〈X〉 | 〈X, Y, Z〉 ∈ Catalog ∧ ∃A, B, C(〈A, B, C〉 ∈ Parts

∧C =′ red′ ∧ A = Y)

∨∃P, Q(〈X, P, Q〉 ∈ Suppliers ∧ Q =′ 221PackerStreet′)}

SQL

26 Chapter 4

SELECT S.sid
FROM Suppliers S
WHERE S.address = ‘221 Packer street’

OR S.sid IN (SELECT C.sid
FROM Parts P, Catalog C
WHERE P.color=’red’ AND P.pid = C.pid)

4. RA

ρ(R1, πsid((πpidσcolor=′red′Parts) ./ Catalog))

ρ(R2, πsid((πpidσcolor=′green′Parts) ./ Catalog))

R1 ∩ R2

TRC

{T | ∃T 1 ∈ Catalog(∃X ∈ Parts(X.color = ‘red′ ∧ X.pid = T 1.pid)

∧∃T 2 ∈ Catalog(∃Y ∈ Parts(Y.color =′ green′ ∧ Y.pid = T 2.pid)

∧T 2.sid = T 1.sid) ∧ T.sid = T 1.sid)}

DRC

{〈X〉 | 〈X, Y, Z〉 ∈ Catalog ∧ ∃A, B, C(〈A, B, C〉 ∈ Parts

∧C =′ red′ ∧ A = Y)

∧∃P, Q, R(〈P, Q, R〉 ∈ Catalog ∧ ∃E, F, G(〈E, F, G〉 ∈ Parts

∧G =′ green′ ∧ E = Q) ∧ P = X)}

SQL

SELECT C.sid
FROM Parts P, Catalog C
WHERE P.color = ‘red’ AND P.pid = C.pid

AND EXISTS (SELECT P2.pid
FROM Parts P2, Catalog C2
WHERE P2.color = ‘green’ AND C2.sid = C.sid

AND P2.pid = C2.pid)

5. RA
(πsid,pidCatalog)/(πpidParts)

TRC

{T | ∃T 1 ∈ Catalog(∀X ∈ Parts(∃T 2 ∈ Catalog

(T 2.pid = X.pid ∧ T 2.sid = T 1.sid)) ∧ T.sid = T 1.sid)}

Relational Algebra and Calculus 27

DRC

{〈X〉 | 〈X, Y, Z〉 ∈ Catalog ∧ ∀〈A, B, C〉 ∈ Parts

(∃〈P, Q, R〉 ∈ Catalog(Q = A ∧ P = X))}

SQL

SELECT C.sid
FROM Catalog C
WHERE NOT EXISTS (SELECT P.pid

FROM Parts P
WHERE NOT EXISTS (SELECT C1.sid

FROM Catalog C1
WHERE C1.sid = C.sid

AND C1.pid = P.pid))

6. RA
(πsid,pidCatalog)/(πpidσcolor=′red′Parts)

TRC

{T | ∃T 1 ∈ Catalog(∀X ∈ Parts(X.color 6= ‘red′

∨∃T 2 ∈ Catalog(T 2.pid = X.pid ∧ T 2.sid = T 1.sid))

∧T.sid = T 1.sid)}

DRC

{〈X〉 | 〈X, Y, Z〉 ∈ Catalog ∧ ∀〈A, B, C〉 ∈ Parts

(C 6= ‘red′ ∨ ∃〈P, Q, R〉 ∈ Catalog(Q = A ∧ P = X))}

SQL

SELECT C.sid
FROM Catalog C
WHERE NOT EXISTS (SELECT P.pid

FROM Parts P
WHERE P.color = ‘red’
AND (NOT EXISTS (SELECT C1.sid

FROM Catalog C1
WHERE C1.sid = C.sid AND

C1.pid = P.pid)))

7. RA
(πsid,pidCatalog)/(πpidσcolor=′red′∨color=′green′Parts)

28 Chapter 4

TRC

{T | ∃T 1 ∈ Catalog(∀X ∈ Parts((X.color 6= ‘red′

∧X.color 6= ‘green′) ∨ ∃T 2 ∈ Catalog

(T 2.pid = X.pid ∧ T 2.sid = T 1.sid)) ∧ T.sid = T 1.sid)}

DRC

{〈X〉 | 〈X, Y, Z〉 ∈ Catalog ∧ ∀〈A, B, C〉 ∈ Parts

((C 6= ‘red′ ∧ C 6= ‘green′) ∨ ∃〈P, Q, R〉 ∈ Catalog

(Q = A ∧ P = X))}

SQL

SELECT C.sid
FROM Catalog C
WHERE NOT EXISTS (SELECT P.pid

FROM Parts P
WHERE (P.color = ‘red’ OR P.color = ‘green’)
AND (NOT EXISTS (SELECT C1.sid

FROM Catalog C1
WHERE C1.sid = C.sid AND

C1.pid = P.pid)))

8. RA

ρ(R1, ((πsid,pidCatalog)/(πpidσcolor=′red′Parts)))

ρ(R2, ((πsid,pidCatalog)/(πpidσcolor=′green′Parts)))

R1 ∪ R2

TRC

{T | ∃T 1 ∈ Catalog((∀X ∈ Parts

(X.color 6= ‘red′ ∨ ∃Y ∈ Catalog(Y.pid = X.pid ∧ Y.sid = T 1.sid))

∨∀Z ∈ Parts(Z.color 6= ‘green′ ∨ ∃P ∈ Catalog

(P.pid = Z.pid ∧ P.sid = T 1.sid))) ∧ T.sid = T 1.sid)}

DRC

{〈X〉 | 〈X, Y, Z〉 ∈ Catalog ∧ (∀〈A, B, C〉 ∈ Parts

(C 6= ‘red′ ∨ ∃〈P, Q, R〉 ∈ Catalog(Q = A ∧ P = X))

∨∀〈U, V, W 〉 ∈ Parts(W 6= ‘green′ ∨ 〈M, N, L〉 ∈ Catalog

(N = U ∧ M = X)))}

Relational Algebra and Calculus 29

SQL

SELECT C.sid
FROM Catalog C
WHERE (NOT EXISTS (SELECT P.pid

FROM Parts P
WHERE P.color = ‘red’ AND
(NOT EXISTS (SELECT C1.sid

FROM Catalog C1
WHERE C1.sid = C.sid AND

C1.pid = P.pid))))
OR (NOT EXISTS (SELECT P1.pid

FROM Parts P1
WHERE P1.color = ‘green’ AND
(NOT EXISTS (SELECT C2.sid

FROM Catalog C2
WHERE C2.sid = C.sid AND

C2.pid = P1.pid))))

9. RA

ρ(R1, Catalog)

ρ(R2, Catalog)

πR1.sid,R2.sid(σR1.pid=R2.pid∧R1.sid 6=R2.sid∧R1.cost>R2.cost(R1 × R2))

TRC

{T | ∃T 1 ∈ Catalog(∃T 2 ∈ Catalog

(T 2.pid = T 1.pid ∧ T 2.sid 6= T 1.sid

∧T 2.cost < T 1.cost ∧ T.sid2 = T 2.sid)

∧T.sid1 = T 1.sid)}

DRC

{〈X, P 〉 | 〈X, Y, Z〉 ∈ Catalog ∧ ∃P, Q, R

(〈P, Q, R〉 ∈ Catalog ∧ Q = Y ∧ P 6= X ∧ R < Z)}

SQL

SELECT C1.sid, C2.sid
FROM Catalog C1, Catalog C2
WHERE C1.pid = C2.pid AND C1.sid 6= C2.sid

AND C1.cost > C2.cost

30 Chapter 4

10. RA

ρ(R1, Catalog)

ρ(R2, Catalog)

πR1.pidσR1.pid=R2.pid∧R1.sid 6=R2.sid(R1 × R2)

TRC

{T | ∃T 1 ∈ Catalog(∃T 2 ∈ Catalog

(T 2.pid = T 1.pid ∧ T 2.sid 6= T 1.sid)

∧T.pid = T 1.pid)}
DRC

{〈X〉 | 〈X, Y, Z〉 ∈ Catalog ∧ ∃A, B, C

(〈A, B, C〉 ∈ Catalog ∧ B = Y ∧ A 6= X)}
SQL

SELECT C.sid
FROM Catalog C
WHERE EXISTS (SELECT C1.sid

FROM Catalog C1
WHERE C1.pid = C.pid AND C1.sid 6= C.sid)

11. RA

ρ(R1, πsidσsname=′Y osemiteSham′Suppliers)

ρ(R2, R1 ./ Catalog)

ρ(R3, R2)

ρ(R4(1 → sid, 2 → pid, 3 → cost), σR3.cost<R2.cost(R3 × R2))

πpid(R2 − πsid,pid,costR4)

TRC

{T | ∃T 1 ∈ Catalog(∃X ∈ Suppliers

(X.sname =′ Y osemiteSham′ ∧ X.sid = T 1.sid) ∧ ¬(∃S ∈ Suppliers

(S.sname =′ Y osemiteSham′ ∧ ∃Z ∈ Catalog

(Z.sid = S.sid ∧ Z.cost > T1.cost))) ∧ T.pid = T 1.pid)

DRC

{〈Y 〉 | 〈X, Y, Z〉 ∈ Catalog ∧ ∃A, B, C

(〈A, B, C〉 ∈ Suppliers ∧ C =′ Y osemiteSham′ ∧ A = X)

∧¬(∃P, Q, R(〈P, Q, R〉 ∈ Suppliers ∧ R =′ Y osemiteSham′

∧∃I, J, K(〈I, J, K〉 ∈ Catalog(I = P ∧ K > Z))))}

Relational Algebra and Calculus 31

SQL

SELECT C.pid
FROM Catalog C, Suppliers S
WHERE S.sname = ‘Yosemite Sham’ AND C.sid = S.sid

AND C.cost ≥ ALL (Select C2.cost
FROM Catalog C2, Suppliers S2
WHERE S2.sname = ‘Yosemite Sham’

AND C2.sid = S2.sid)

Exercise 4.4 Consider the Supplier-Parts-Catalog schema from the previous ques-
tion. State what the following queries compute:

1. πsname(πsid(σcolor=′red′Parts) ./ (σcost<100Catalog) ./ Suppliers)

2. πsname(πsid((σcolor=′red′Parts) ./ (σcost<100Catalog) ./ Suppliers))

3. (πsname((σcolor=′red′Parts) ./ (σcost<100Catalog) ./ Suppliers)) ∩
(πsname((σcolor=′green′Parts) ./ (σcost<100Catalog) ./ Suppliers))

4. (πsid((σcolor=′red′Parts) ./ (σcost<100Catalog) ./ Suppliers)) ∩
(πsid((σcolor=′green′Parts) ./ (σcost<100Catalog) ./ Suppliers))

5. πsname((πsid,sname((σcolor=′red′Parts) ./ (σcost<100Catalog) ./ Suppliers)) ∩
(πsid,sname((σcolor=′green′Parts) ./ (σcost<100Catalog) ./ Suppliers)))

Answer 4.4 Answer not available yet.

Exercise 4.5 Consider the following relations containing airline flight information:

Flights(flno: integer, from: string, to: string,
distance: integer, departs: time, arrives: time)

Aircraft(aid: integer, aname: string, cruisingrange: integer)
Certified(eid: integer, aid: integer)
Employees(eid: integer, ename: string, salary: integer)

Note that the Employees relation describes pilots and other kinds of employees as well;
every pilot is certified for some aircraft (otherwise, he or she would not qualify as a
pilot), and only pilots are certified to fly.

Write the following queries in relational algebra, tuple relational calculus, and domain
relational calculus. Note that some of these queries may not be expressible in relational
algebra (and, therefore, also not expressible in tuple and domain relational calculus)!
For such queries, informally explain why they cannot be expressed. (See the exercises
at the end of Chapter 5 for additional queries over the airline schema.)

32 Chapter 4

1. Find the eids of pilots certified for some Boeing aircraft.

2. Find the names of pilots certified for some Boeing aircraft.

3. Find the aids of all aircraft that can be used on non-stop flights from Bonn to
Madras.

4. Identify the flights that can be piloted by every pilot whose salary is more than
$100,000.

5. Find the names of pilots who can operate planes with a range greater than 3,000
miles but are not certified on any Boeing aircraft.

6. Find the eids of employees who make the highest salary.

7. Find the eids of employees who make the second highest salary.

8. Find the eids of employees who are certified for the largest number of aircraft.

9. Find the eids of employees who are certified for exactly three aircraft.

10. Find the total amount paid to employees as salaries.

11. Is there a sequence of flights from Madison to Timbuktu? Each flight in the
sequence is required to depart from the city that is the destination of the previous
flight; the first flight must leave Madison, the last flight must reach Timbuktu,
and there is no restriction on the number of intermediate flights. Your query must
determine whether a sequence of flights from Madison to Timbuktu exists for any
input Flights relation instance.

Answer 4.5 In the answers below RA refers to Relational Algebra, TRC refers to
Tuple Relational Calculus and DRC refers to Domain Relational Calculus.

1. RA

πeid(σaname=‘Boeing′ (Aircraft ./ Certified))

TRC

{C.eid | C ∈ Certified ∧
∃A ∈ Aircraft(A.aid = C.aid ∧ A.aname = ‘Boeing′)}

DRC

{〈Ceid〉 | 〈Ceid, Caid〉 ∈ Certified ∧
∃Aid, AN, AR(〈Aid, AN, AR〉 ∈ Aircraft

∧Aid = Caid ∧ AN = ‘Boeing′)}

Relational Algebra and Calculus 33

SQL

SELECT C.eid
FROM Aircraft A, Certified C
WHERE A.aid = C.aid AND A.aname = ‘Boeing’

2. RA

πename(σaname=‘Boeing′ (Aircraft ./ Certified ./ Employees))

TRC
{E.ename | E ∈ Employees ∧ ∃C ∈ Certified

(∃A ∈ Aircraft(A.aid = C.aid ∧ A.aname = ‘Boeing′ ∧ E.eid = C.eid))}

DRC
{〈EN〉 | 〈Eid, EN, ES〉 ∈ Employess∧
∃Ceid, Caid(〈Ceid, Caid〉 ∈ Certified∧
∃Aid, AN, AR(〈Aid, AN, AR〉 ∈ Aircraft∧
Aid = Caid ∧ AN = ‘Boeing′ ∧ Eid = Ceid)}

SQL

SELECT E.ename
FROM Aircraft A, Certified C, Employees E
WHERE A.aid = C.aid AND A.aname = ‘Boeing’ AND E.eid = C.eid

3. RA
ρ(LAtoNY, σfrom=‘L.A.′∧to=‘N.Y.′(Flights))
πaid(σcruisingrange>distance(Aircraft × LAtoNY))

TRC
{A.aid | A ∈ Aircraft ∧ ∃F ∈ Flights

(F.from = ‘L.A.′ ∧ F.to = ‘N.Y.′ ∧ A.cruisingrange > F.distance)}

DRC
{Aid | 〈Aid, AN, AR〉 ∈ Aircraft∧
(∃FN, FF, FT, FDi, FDe, FA(〈FN, FF, FT, FDi, FDe, FA〉 ∈ Flights∧
FF = ‘L.A.′ ∧ FT = ‘N.Y.′ ∧ FDi < AR))}

SQL

34 Chapter 4

SELECT A.aid
FROM Aircraft A, Flights F
WHERE F.from = ‘L.A.’ AND F.to = ‘N.Y.’ AND

A.cruisingrange > F.distance

4. RA
πflno(σdistance<cruisingrange∧salary>100,000(Flights ./ Aircraft ./

Certified ./ Employees)))

TRC {F.flno | F ∈ Flights ∧ ∃A ∈ Aircraft∃C ∈ Certified

∃E ∈ Employees(A.cruisingrange > F.distance ∧ E.salary > 100, 000∧
A.aid = C.aid ∧ E.eid = C.eid)}

DRC
{FN | 〈FN, FF, FT, FDi, FDe, FA〉 ∈ Flights∧
∃Ceid, Caid(〈Ceid, Caid〉 ∈ Certified∧
∃Aid, AN, AR(〈Aid, AN, AR〉 ∈ Aircraft∧
∃Eid, EN, ES(〈Eid, EN, ES〉 ∈ Employees

(AR > FDi ∧ ES > 100, 000∧ Aid = Caid ∧ Eid = Ceid)}

SQL

SELECT E.ename
FROM Aircraft A, Certified C, Employees E, Flights F
WHERE A.aid = C.aid AND E.eid = C.eid AND

distance < cruisingrange AND salary > 100,000

5. RA ρ(R1, πeid(σcruisingrange>3000(Aircraft ./ Certified)))
πename(Employees ./ (R1 − πeid(σaname=‘Boeing′ (Aircraft ./ Certified))))

TRC
{E.ename | E ∈ Employees ∧ ∃C ∈ Certified(∃A ∈ Aircraft

(A.aid = C.aid ∧ E.eid = C.eid ∧ A.cruisingrange > 3000))∧
¬(∃C2 ∈ Certified(∃A2 ∈ Aircraft(A2.aname = ‘Boeing′ ∧ C2.aid =
A2.aid ∧ C2.eid = E.eid)))}

DRC
{〈EN〉 | 〈Eid, EN, ES〉 ∈ Employess∧
∃Ceid, Caid(〈Ceid, Caid〉 ∈ Certified∧
∃Aid, AN, AR(〈Aid, AN, AR〉 ∈ Aircraft∧
Aid = Caid ∧ Eid = Ceid ∧ AR > 3000))∧

Relational Algebra and Calculus 35

¬(∃Aid2, AN2, AR2(〈Aid2, AN2, AR2〉 ∈ Aircraft∧
∃Ceid2, Caid2(〈Ceid2, Caid2〉 ∈ Certified

∧Aid2 = Caid2 ∧ Eid = Ceid2 ∧ AN2 = ‘Boeing′)))}
SQL

SELECT E.ename
FROM Certified C, Employees E, Aircraft A
WHERE A.aid = C.aid AND E.eid = C.eid AND A.cruisingrange > 3000
AND E.eid NOT IN (SELECT C2.eid
FROM Certified C2, Aircraft A2
WHERE C2.aid = A2.aid AND A2.aname = ‘Boeing’)

6. RA
The approach to take is first find all the employees who do not have the
highest salary. Subtract these from the original list of employees and what
is left is the highest paid employees.
ρ(E1, Employees)
ρ(E2, Employees)
ρ(E3, πE2.eid(E1 ./E1.salary>E2.salary E2)
(πeidE1) − E3

TRC

{E1.eid | E1 ∈ Employees∧¬(∃E2 ∈ Employees(E2.salary > E1.salary))}

DRC
{〈Eid1〉 | 〈Eid1, EN1, ES1〉 ∈ Employess∧
¬(∃Eid2, EN2, ES2(〈Eid2, EN2, ES2〉 ∈ Employess ∧ ES2 > ES1))}

SQL

SELECT E.eid
FROM Employees E
WHERE E.salary = (Select MAX (E2.salary)

FROM Employees E2)

7. RA
The approach taken is similar to the solution for the previous exercise. First
find all the employees who do not have the highest salary. Remove these from
the original list of employees and what is left is the highest paid employees.
Remove the highest paid employees from the original list. What is left is the

36 Chapter 4

second highest paid employees together with the rest of the employees. Then
find the highest paid employees of this new list. This is the list of the second
highest paid employees. ρ(E1, Employees)
ρ(E2, Employees)
ρ(E3, πE2.eid(E1 ./E1.salary>E2.salary E2)
ρ(E4, E2 ./ E3)
ρ(E5, E2 ./ E3)
ρ(E6, πE5.eid(E4 ./E1.salary>E5.salary E5)
(πeidE3) − E6

TRC
{E1.eid | E1 ∈ Employees ∧ ∃E2 ∈ Employees(E2.salary > E1.salary

∧¬(∃E3 ∈ Employees(E3.salary > E2.salary)))}

DRC
{〈Eid1〉 | 〈Eid1, EN1, ES1〉 ∈ Employess∧
∃Eid2, EN2, ES2(〈Eid2, EN2, ES2〉 ∈ Employess(ES2 > ES1)
∧¬(∃Eid3, EN3, ES3(〈Eid3, EN3, ES3〉 ∈ Employess(ES3 > ES2))))}

SQL

SELECT E.eid
FROM Employees E
WHERE E.salary = (SELECT MAX (E2.salary)

FROM Employees E2
WHERE E2.salary 6= (SELECT MAX (E3.salary)

FROM Employees E3))

8. This cannot be expressed in relational algebra (or calculus) because there is no
operator to count, and this query requires the ability to count upto a number that
depends on the data. The query can however be expressed in SQL as follows:

SELECT Temp.eid
FROM (SELECT C.eid AS eid, COUNT (C.aid) AS cnt,

FROM Certified C
GROUP BY C.eid) AS Temp

WHERE Temp.cnt = (SELECT MAX (Temp.cnt)
FROM Temp)

9. RA
The approach behind this query is to first find the employees who are certified
for at least three aircraft (they appear at least three times in the Certified

Relational Algebra and Calculus 37

relation). Then find the employees who are certified for at least four aircraft.
Subtract the second from the first and what is left is the employees who are
certified for exactly three aircraft.

ρ(R1, Certified)
ρ(R2, Certified)
ρ(R3, Certified)
ρ(R4, Certified)
ρ(R5, πeid(σ(R1.eid=R2.eid=R3.eid)∧(R1.aid 6=R2.aid 6=R3.aid)(R1 × R2 × R3)))
ρ(R6, πeid(σ(R1.eid=R2.eid=R3.eid=R4.eid)∧(R1.aid 6=R2.aid 6=R3.aid 6=R4.aid)

(R1 × R2 × R3 × R4)))
R5 − R6

TRC
{C1.eid | C1 ∈ Certified ∧ ∃C2 ∈ Certified(∃C3 ∈ Certified

(C1.eid = C2.eid ∧ C2.eid = C3.eid∧
C1.aid 6= C2.aid ∧ C2.aid 6= C3.aid ∧ C3.aid 6= C1.aid∧
¬(∃C4 ∈ Certified

(C3.eid = C4.eid ∧ C1.aid 6= C4.aid∧
C2.aid 6= C4.aid ∧ C3.aid 6= C4.aid))))}

DRC
{〈CE1〉 | 〈CE1, CA1〉 ∈ Certified∧
∃CE2, CA2(〈CE2, CA2〉 ∈ Certified∧
∃CE3, CA3(〈CE3, CA3〉 ∈ Certified∧
(CE1 = CE2 ∧ CE2 = CE3∧
CA1 6= CA2 ∧ CA2 6= CA3 ∧ CA3 6= CA1∧
¬(∃CE4, CA4(〈CE4, CA4〉 ∈ Certified∧
(CE3 = CE4 ∧ CA1 6= CA4∧
CA2 6= CA4 ∧ CA3 6= CA4))))}

SQL

SELECT C1.eid
FROM Certified C1, Certified C2, Certified C3
WHERE (C1.eid = C2.eid AND C2.eid = C3.eid AND

C1.aid 6= C2.aid AND C2.aid 6= C3.aid AND C3.aid 6= C1.aid)
EXCEPT
SELECT C4.eid
FROM Certified C4, Certified C5, Certified C6, Certified C7,
WHERE (C4.eid = C5.eid AND C5.eid = C6.eid AND C6.eid = C7.eid AND

C4.aid 6= C5.aid AND C4.aid 6= C6.aid AND C4.aid 6= C7.aid AND
C5.aid 6= C6.aid AND C5.aid 6= C7.aid AND C6.aid 6= C7.aid)

38 Chapter 4

This could also be done in SQL using COUNT.

10. This cannot be expressed in relational algebra (or calculus) because there is no
operator to sum values. The query can however be expressed in SQL as follows:

SELECT SUM (E.salaries)
FROM Employees E

11. This cannot be expressed in relational algebra or relational calculus or SQL. The
problem is that there is no restriction on the number of intermediate flights. All
of the query methods could find if there was a flight directly from Madison to
Timbuktu and if there was a sequence of two flights that started in Madison and
ended in Timbuktu. They could even find a sequence of n flights that started in
Madison and ended in Timbuktu as long as there is a static (i.e., data-independent)
upper bound on the number of intermediate flights. (For large n, this would of
course be long and impractical, but at least possible.) In this query, however, the
upper bound is not static but dynamic (based upon the set of tuples in the Flights
relation).

In summary, if we had a static upper bound (say k), we could write an algebra
or SQL query that repeatedly computes (upto k) joins on the Flights relation. If
the upper bound is dynamic, then we cannot write such a query because k is not
known when writing the query.

12. This cannot be expressed in relational algebra (or calculus). If we had the con-
straint that every employee has a unique salary, then the query could be expressed
with much difficulty in relational algebra and calculus. To do this, the 20 highest
paid employees would removed from the list one by one and saved as in questions
6 and 7. Then the saved tuples could be added together with union. In practice,
this is tedious. In SQL however, ORDER BY could be used to list the employees
in sorted order by salary, and the user could see the top 20 rows. (Of course, this
could be done in SQL even without the constraint mentioned above.)

Exercise 4.6 What is relational completeness? If a query language is relationally
complete, can you write any desired query in that language?

Answer 4.6 Answer omitted.

Exercise 4.7 What is an unsafe query? Give an example and explain why it is im-
portant to disallow such queries.

Relational Algebra and Calculus 39

Answer 4.7 An unsafe query is a query in relational calculus that has an infinite
number of results. An example of such a query is:

{S | ¬(S ∈ Sailors)}

The query is for all things that are not sailors which of course is everything else. Clearly
there is an infinite number of answers, and this query is unsafe. It is important to
disallow unsafe queries because we want to be able to get back to users with a list of
all the answers to a query after a finite amount of time.

5
SQL: QUERIES, PROGRAMMING,

TRIGGERS

Exercise 5.1 Consider the following relations:

Student(snum: integer, sname: string, major: string, level: string, age: integer)
Class(name: string, meets at: time, room: string, fid: integer)
Enrolled(snum: integer, cname: string)
Faculty(fid: integer, fname: string, deptid: integer)

The meaning of these relations is straightforward; for example, Enrolled has one record
per student-class pair such that the student is enrolled in the class.

Write the following queries in SQL. No duplicates should be printed in any of the
answers.

1. Find the names of all Juniors (Level = JR) who are enrolled in a class taught by
I. Teach.

2. Find the age of the oldest student who is either a History major or is enrolled in
a course taught by I. Teach.

3. Find the names of all classes that either meet in room R128 or have five or more
students enrolled.

4. Find the names of all students who are enrolled in two classes that meet at the
same time.

5. Find the names of faculty members who teach in every room in which some class
is taught.

6. Find the names of faculty members for whom the combined enrollment of the
courses that they teach is less than five.

7. Print the Level and the average age of students for that Level, for each Level.

40

SQL: Queries, Programming, Triggers 41

8. Print the Level and the average age of students for that Level, for all Levels except
JR.

9. Find the names of students who are enrolled in the maximum number of classes.

10. Find the names of students who are not enrolled in any class.

11. For each age value that appears in Students, find the level value that appears most
often. For example, if there are more FR level students aged 18 than SR, JR, or
SO students aged 18, you should print the pair (18, FR).

Answer 5.1 The answers are given below:

1. SELECT DISTINCT S.Sname
FROM Student S, Class C, Enrolled E, Faculty F
WHERE S.snum = E.snum AND E.cname = C.name AND C.fid = F.fid AND

F.fname = ‘I.Teach’ AND S.level = ‘JR’

2. SELECT MAX(S.age)
FROM Student S
WHERE (S.major = ‘History’)

OR S.num IN (SELECT E.snum
FROM Class C, Enrolled E, Faculty F
WHERE E.cname = C.name AND C.fid = F.fid

AND F.fname = ‘I.Teach’)

3. SELECT C.name
FROM Class C
WHERE C.room = ‘R128’

OR C.name IN (SELECT E.cname
FROM Enrolled E
GROUP BY E.cname
HAVING COUNT (*) >= 5)

4. SELECT DISTINCT S.sname
FROM Student S
WHERE S.snum IN (SELECT E1.snum

FROM Enrolled E1, Enrolled E2, Class C1, Class C2
WHERE E1.snum = E2.snum AND E1.cname <> E2.cname
AND E1.cname = C1.name
AND E2.cname = C2.name AND C1.time = C2.time)

5. SELECT DISTINCT F.fname
FROM Faculty F
WHERE NOT EXISTS ((SELECT *

42 Chapter 5

FROM Class C)
EXCEPT
(SELECTC1.room
FROM Class C1
WHERE C1.fid = F.fid))

6. SELECT DISTINCT F.fname
FROM Faculty F
WHERE 5 > (SELECT E.snum

FROM Class C, Enrolled E
WHERE C.name = E.cname
AND C.fid = F.fid)

7. SELECT S.level, AVG(S.age)
FROM Student S
GROUP BY S.level

8. SELECT S.level, AVG(S.age)
FROM Student S
WHERE S.level <> ‘JR’
GROUP BY S.level

9. SELECT DISTINCT S.sname
FROM Student S
WHERE S.snum IN (SELECT E.snum

FROM Enrolled E
GROUP BY E.snum
HAVING COUNT (*) >= ALL (SELECT COUNT (*)

FROM Enrolled E2
GROUP BY E2.snum))

10. SELECT DISTINCT S.sname
FROM Student S
WHERE S.snum NOT IN (SELECT E.snum

FROM Enrolled E)

Exercise 5.2 Consider the following schema:

Suppliers(sid: integer, sname: string, address: string)
Parts(pid: integer, pname: string, color: string)
Catalog(sid: integer, pid: integer, cost: real)

The Catalog relation lists the prices charged for parts by Suppliers. Write the following
queries in SQL:

SQL: Queries, Programming, Triggers 43

1. Find the pnames of parts for which there is some supplier.

2. Find the snames of suppliers who supply every part.

3. Find the snames of suppliers who supply every red part.

4. Find the pnames of parts supplied by Acme Widget Suppliers and by no one else.

5. Find the sids of suppliers who charge more for some part than the average cost of
that part (averaged over all the suppliers who supply that part).

6. For each part, find the sname of the supplier who charges the most for that part.

7. Find the sids of suppliers who supply only red parts.

8. Find the sids of suppliers who supply a red part and a green part.

9. Find the sids of suppliers who supply a red part or a green part.

Answer 5.2 Answer omitted.

Exercise 5.3 The following relations keep track of airline flight information:

Flights(flno: integer, from: string, to: string, distance: integer,
departs: time, arrives: time, price: integer)

Aircraft(aid: integer, aname: string, cruisingrange: integer)
Certified(eid: integer, aid: integer)
Employees(eid: integer, ename: string, salary: integer)

Note that the Employees relation describes pilots and other kinds of employees as well;
every pilot is certified for some aircraft, and only pilots are certified to fly. Write each
of the following queries in SQL. (Additional queries using the same schema are listed
in the exercises for Chapter 4.)

1. Find the names of aircraft such that all pilots certified to operate them earn more
than 80,000.

2. For each pilot who is certified for more than three aircraft, find the eid and the
maximum cruisingrange of the aircraft that he (or she) is certified for.

3. Find the names of pilots whose salary is less than the price of the cheapest route
from Los Angeles to Honolulu.

4. For all aircraft with cruisingrange over 1,000 miles, find the name of the aircraft
and the average salary of all pilots certified for this aircraft.

5. Find the names of pilots certified for some Boeing aircraft.

44 Chapter 5

6. Find the aids of all aircraft that can be used on routes from Los Angeles to
Chicago.

7. Identify the routes that can be piloted by every pilot who makes more than
$100,000.

8. Print the enames of pilots who can operate planes with cruisingrange greater than
3,000 miles, but are not certified on any Boeing aircraft.

9. A customer wants to travel from Madison to New York with no more than two
changes of flight. List the choice of departure times from Madison if the customer
wants to arrive in New York by 6 p.m.

10. Compute the difference between the average salary of a pilot and the average
salary of all employees (including pilots).

11. Print the name and salary of every nonpilot whose salary is more than the average
salary for pilots.

Answer 5.3 The answers are given below:

1. SELECT DISTINCT A.aname
FROM Aircraft A
WHERE A.Aid IN (SELECT C.aid

FROM Certified C, Employees E
WHERE C.eid = E.eid AND
NOT EXISTS (SELECT *

FROM Employees E1
WHERE E1.eid = E.eid AND E1.salary < 80000))

2. SELECT C.eid, MAX (A.cruisingrange)
FROM Certified C, Aircraft A
WHERE C.aid = A.aid
GROUP BY C.eid
HAVING COUNT (*) > 3

3. SELECT DISTINCT E.aname
FROM Employee E
WHERE E.salary < (SELECT MIN (F.price)
FROM Flights F
WHERE F.from = ‘LA’ AND F.to = ‘Honolulu’)

4. Observe that aid is the key for Aircraft, but the question asks for aircraft names;
we deal with this complication by using an intermediate relation Temp:

SQL: Queries, Programming, Triggers 45

SELECT Temp.name, Temp.AvgSalary
FROM (SELECT A.aid, A.aname AS name,

AVG (E.salary) AS AvgSalary
FROM Aircraft A, Certified C, Employes E
WHERE A.aid = C.aid AND

C.eid = E.eid AND A.cruisingrange > 1000
GROUP BY A.aid, A.aname) AS Temp

5. SELECT DISTINCT E.ename
FROM Employees E, Certified C, Aircraft A
WHERE E.eid = C.eid AND

C.aid = A.aid AND
A.aname = ‘Boeing’

6. SELECT A.aid
FROM Aircraft A
WHERE A.cruisingrange > (SELECT MIN (F.distance)

FROM Flights F
WHERE F.from = ‘L.A.’ AND F.to = ‘Chicago’)

7. SELECT DISTINCT F.from, F.to
FROM Flights F
WHERE NOT EXISTS (SELECT *

FROM Employees E
WHERE E.salary > 100000
AND
NOT EXISTS (SELECT *

FROM Aircraft A, Certified C
WHERE A.cruisingrange > F.distance
AND E.eid = C.eid
AND A.eid = C.aid))

8. SELECT DISTINCT E.ename
FROM Employees E, Certified C, Aircraft A
WHERE C.eid = E.eid
AND C.aid = A.aid
AND A.cruisingrange > 3000
AND E.eid NOT IN (SELECT C1.eid
FROM Certified C1, Aircraft A1
WHERE C1.aid = A1.aid
AND A1.aname = ‘Boeing’)

46 Chapter 5

9. SELECT F.departs
FROM Flights F
WHERE F.flno IN ((SELECT F0.flno

FROM Flights F0
WHERE F0.from = ‘Madison’ AND F0.to = ‘NY’ AND

AND F0.arrives < 1800)
UNION
(SELECT F0.flno
FROM Flights F0, Flights F1
WHERE F0.from = ‘Madison’ AND F0.to <> ‘NY’ AND
AND F0.to = F1.from AND F1.to = ‘NY’

F1.departs > F0.arrives AND
F1.arrives < 1800)

UNION
(SELECT F0.flno

FROM Flights F0, Flights F1, Flights F2
WHERE F0.from = ‘Madison’
WHERE F0.to = F1.from
AND F1.to = F2.from
AND F2.to = ‘NY’
AND F0.to <> ‘NY’
AND F1.to <> ‘NY’
AND F1.departs > F0.arrives
AND F2.departs > F1.arrives
AND F2.arrives < 1800))

10. SELECT Temp1.avg - Temp2.avg
FROM (SELECT AVG (E.salary) AS avg

FROM Employees E
WHERE E.eid IN (SELECT DISTINCT C.eid

FROM Certified C)) AS Temp1,
(SELECTAVG (E1.salary) AS avg
FROM Employees E1) AS Temp2

11. SELECT E.ename, E.salary
FROM Employees E
WHERE E.eid NOT IN (SELECT DISTINCT C.eid

FROM Certified C)
AND E.salary > (SELECT AVG (E1.salary)

FROM Employees E1
WHERE E1.eid IN

(SELECT DISTINCT C1.eid
FROM Certified C1))

SQL: Queries, Programming, Triggers 47

Exercise 5.4 Consider the following relational schema. An employee can work in
more than one department; the pct time field of the Works relation shows the percent-
age of time that a given employee works in a given department.

Emp(eid: integer, ename: string, age: integer, salary: real)
Works(eid: integer, did: integer, pct time: integer)
Dept(did: integer, budget: real, managerid: integer)

Write the following queries in SQL:

1. Print the names and ages of each employee who works in both the Hardware
department and the Software department.

2. For each department with more than 20 full-time-equivalent employees (i.e., where
the part-time and full-time employees add up to at least that many full-time
employees), print the did together with the number of employees that work in
that department.

3. Print the name of each employee whose salary exceeds the budget of all of the
departments that he or she works in.

4. Find the managerids of managers who manage only departments with budgets
greater than $1,000,000.

5. Find the enames of managers who manage the departments with the largest bud-
get.

6. If a manager manages more than one department, he or she controls the sum of all
the budgets for those departments. Find the managerids of managers who control
more than $5,000,000.

7. Find the managerids of managers who control the largest amount.

Answer 5.4 Answer omitted.

Exercise 5.5 Consider the instance of the Sailors relation shown in Figure 5.1.

1. Write SQL queries to compute the average rating, using AVG; the sum of the
ratings, using SUM; and the number of ratings, using COUNT.

2. If you divide the sum computed above by the count, would the result be the same
as the average? How would your answer change if the above steps were carried
out with respect to the age field instead of rating?

48 Chapter 5

sid sname rating age
18 jones 3 30.0
41 jonah 6 56.0
22 ahab 7 44.0
63 moby null 15.0

Figure 5.1 An Instance of Sailors

3. Consider the following query: Find the names of sailors with a higher rating than
all sailors with age < 21. The following two SQL queries attempt to obtain the
answer to this question. Do they both compute the result? If not, explain why.
Under what conditions would they compute the same result?

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS (SELECT *

FROM Sailors S2
WHERE S2.age < 21

AND S.rating <= S2.rating)

SELECT *
FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating

FROM Sailors S2
WHERE S2.age < 21)

4. Consider the instance of Sailors shown in Figure 5.1. Let us define instance S1 of
Sailors to consist of the first two tuples, instance S2 to be the last two tuples, and
S to be the given instance.

(a) Show the left outer join of S with itself, with the join condition being sid=sid.

(b) Show the right outer join of S with itself, with the join condition being
sid=sid.

(c) Show the full outer join of S with itself, with the join condition being sid=sid.

(d) Show the left outer join of S1 with S2, with the join condition being sid=sid.

(e) Show the right outer join of S1 with S2, with the join condition being sid=sid.

(f) Show the full outer join of S1 with S2, with the join condition being sid=sid.

Answer 5.5 The answers are shown below:

SQL: Queries, Programming, Triggers 49

4. (a)

sid sname rating age sid sname rating age

18 jones 3 30.0 18 jones 3 30.0
41 jonah 6 56.0 41 jonah 6 56.0
22 ahab 7 44.0 22 ahab 7 44.0
63 moby null 15.0 63 moby null 15.0

1. SELECT AVG (S.rating) AS AVERAGE
FROM Sailors S

SELECT SUM (S.rating)
FROM Sailors S

SELECT COUNT (S.rating)
FROM Sailors S

2. The result using SUM and COUNT would be smaller than the result using AV-
ERAGE if there are tuples with rating = NULL. This is because all the aggregate
operators, except for COUNT, ignore NULL values. So the first approach would
compute the average over all tuples while the second approach would compute the
average over all tuples with non-NULL rating values. However, if the aggregation
is done on the age field, the answers using both approaches would be the same
since the age field does not take NULL values.

3. Only the first query is correct. The second query returns the names of sailors with
a higher rating than at least one sailor with age < 21. Note that the answer to
the second query does not necessarily contain the answer to the first query. In
particular, if all the sailors are at least 21 years old, the second query will return an
empty set while the first query will return all the sailors. This is because the NOT
EXISTS predicate in the first query will evaluate to true if its subquery evaluates
to an empty set, while the ANY predicate in the second query will evaluate to
false if its subquery evaluates to an empty set. The two queries give the same
results if and only if one of the following two conditions hold:

The Sailors relation is empty, or

There is at least one sailor with age > 21 in the Sailors relation, and for
every sailor s, either s has a higher rating than all sailors under 21 or s has
a rating no higher than all sailors under 21.

Exercise 5.6 Answer the following questions.

1. Explain the term impedance mismatch in the context of embedding SQL com-
mands in a host language such as C.

50 Chapter 5

(b)

sid sname rating age sid sname rating age

18 jones 3 30.0 18 jones 3 30.0
41 jonah 6 56.0 41 jonah 6 56.0
22 ahab 7 44.0 22 ahab 7 44.0
63 moby null 15.0 63 moby null 15.0

(c)

sid sname rating age sid sname rating age

18 jones 3 30.0 18 jones 3 30.0
41 jonah 6 56.0 41 jonah 6 56.0
22 ahab 7 44.0 22 ahab 7 44.0
63 moby null 15.0 63 moby null 15.0

(d)
sid sname rating age sid sname rating age

18 jones 3 30.0 null null null null
41 jonah 6 56.0 null null null null

(e)
sid sname rating age sid sname rating age

null null null null 22 ahab 7 44.0
null null null null 63 moby null 15.0

(f)

sid sname rating age sid sname rating age

18 jones 3 30.0 null null null null
41 jonah 6 56.0 null null null null
null null null null 22 ahab 7 44.0
null null null null 63 moby null 15.0

SQL: Queries, Programming, Triggers 51

2. How can the value of a host language variable be passed to an embedded SQL
command?

3. Explain the WHENEVER command’s use in error and exception handling.

4. Explain the need for cursors.

5. Give an example of a situation that calls for the use of embedded SQL, that is, in-
teractive use of SQL commands is not enough, and some host language capabilities
are needed.

6. Write a C program with embedded SQL commands to address your example in
the previous answer.

7. Write a C program with embedded SQL commands to find the standard deviation
of sailors’ ages.

8. Extend the previous program to find all sailors whose age is within one standard
deviation of the average age of all sailors.

9. Explain how you would write a C program to compute the transitive closure of
a graph, represented as an SQL relation Edges(from, to), using embedded SQL
commands. (You don’t have to write the program; just explain the main points
to be dealt with.)

10. Explain the following terms with respect to cursors: updatability, sensitivity, and
scrollability.

11. Define a cursor on the Sailors relation that is updatable, scrollable, and returns
answers sorted by age. Which fields of Sailors can such a cursor not update?
Why?

12. Give an example of a situation that calls for dynamic SQL, that is, even embedded
SQL is not sufficient.

Answer 5.6 Answer omitted.

Exercise 5.7 Consider the following relational schema and briefly answer the ques-
tions that follow:

Emp(eid: integer, ename: string, age: integer, salary: real)
Works(eid: integer, did: integer, pct time: integer)
Dept(did: integer, budget: real, managerid: integer)

1. Define a table constraint on Emp that will ensure that every employee makes at
least $10,000.

52 Chapter 5

2. Define a table constraint on Dept that will ensure that all managers have age > 30.

3. Define an assertion on Dept that will ensure that all managers have age > 30.
Compare this assertion with the equivalent table constraint. Explain which is
better.

4. Write SQL statements to delete all information about employees whose salaries
exceed that of the manager of one or more departments that they work in. Be
sure to ensure that all the relevant integrity constraints are satisfied after your
updates.

Answer 5.7 The answers are given below:

1. Define a table constraint on Emp that will ensure that every employee makes at
least 10,000

CREATE TABLE Emp (eid INTEGER,
ename CHAR(10),
age INTEGER ,
salary REAL,
PRIMARY KEY (eid),
CHECK (salary >= 10000))

2. Define a table constraint on Dept that will ensure that all managers have age >

30

CREATE TABLE Dept (did INTEGER,
buget REAL,
managerid INTEGER ,
PRIMARY KEY (did),
FOREIGN KEY (managerid) REFERENCES Emp,
CHECK ((SELECT E.age FROM Emp E, Dept D)

WHERE E.eid = D.managerid) > 30)

3. Define an assertion on Dept that will ensure that all managers have age > 30

CREATE TABLE Dept (did INTEGER,
budget REAL,
managerid INTEGER ,
PRIMARY KEY (did))

CREATE ASSERTION managerAge
CHECK ((SELECT E.age

FROM Emp E, Dept D
WHERE E.eid = D.managerid) > 30)

SQL: Queries, Programming, Triggers 53

Since the constraint involves two relations, it is better to define it as an assertion,
independent of any one relation, rather than as a check condition on the Dept
relation. The limitation of the latter approach is that the condition is checked
only when the Dept relation is being updated. However, since age is an attribute
of the Emp relation, it is possible to update the age of a manager which violates the
constraint. So the former approach is better since it checks for potential violation
of the assertion whenever one of the relations is updated.

4. To write such statements, it is necessary to consider the constraints defined over
the tables. We will assume the following:

CREATE TABLE Emp (eid INTEGER,
ename CHAR(10),
age INTEGER,
salary REAL,
PRIMARY KEY (eid))

CREATE TABLE Works (eid INTEGER,
did INTEGER,
pcttime INTEGER,
PRIMARY KEY (eid, did),
FOREIGN KEY (did) REFERENCES Dept,
FOREIGN KEY (eid) REFERENCES Emp,
ON DELETE CASCADE)

CREATE TABLE Dept (did INTEGER,
buget REAL,
managerid INTEGER ,
PRIMARY KEY (did),
FOREIGN KEY (managerid) REFERENCES Emp,
ON DELETE SET NULL)

Now, we can define statements to delete employees who make more than one of
their managers:

DELETE
FROM Emp E

WHERE E.eid IN (SELECT W.eid
FROM Work W, Emp E2, Dept D
WHERE W.did = D.did
AND D.managerid = E2.eid
AND E.salary > E2.salary)

Exercise 5.8 Consider the following relations:

Student(snum: integer, sname: string, major: string,

54 Chapter 5

level: string, age: integer)
Class(name: string, meets at: time, room: string, fid: integer)
Enrolled(snum: integer, cname: string)
Faculty(fid: integer, fname: string, deptid: integer)

The meaning of these relations is straightforward; for example, Enrolled has one record
per student-class pair such that the student is enrolled in the class.

1. Write the SQL statements required to create the above relations, including appro-
priate versions of all primary and foreign key integrity constraints.

2. Express each of the following integrity constraints in SQL unless it is implied by
the primary and foreign key constraint; if so, explain how it is implied. If the
constraint cannot be expressed in SQL, say so. For each constraint, state what
operations (inserts, deletes, and updates on specific relations) must be monitored
to enforce the constraint.

(a) Every class has a minimum enrollment of 5 students and a maximum enroll-
ment of 30 students.

(b) At least one class meets in each room.

(c) Every faculty member must teach at least two courses.

(d) Only faculty in the department with deptid=33 teach more than three courses.

(e) Every student must be enrolled in the course called Math101.

(f) The room in which the earliest scheduled class (i.e., the class with the smallest
meets at value) meets should not be the same as the room in which the latest
scheduled class meets.

(g) Two classes cannot meet in the same room at the same time.

(h) The department with the most faculty members must have fewer than twice
the number of faculty members in the department with the fewest faculty
members.

(i) No department can have more than 10 faculty members.

(j) A student cannot add more than two courses at a time (i.e., in a single
update).

(k) The number of CS majors must be more than the number of Math majors.

(l) The number of distinct courses in which CS majors are enrolled is greater
than the number of distinct courses in which Math majors are enrolled.

(m) The total enrollment in courses taught by faculty in the department with
deptid=33 is greater than the number of Math majors.

(n) There must be at least one CS major if there are any students whatsoever.

(o) Faculty members from different departments cannot teach in the same room.

SQL: Queries, Programming, Triggers 55

Answer 5.8 Answer omitted.

Exercise 5.9 Discuss the strengths and weaknesses of the trigger mechanism. Con-
trast triggers with other integrity constraints supported by SQL.

Answer 5.9 Answer not available yet.

Exercise 5.10 Consider the following relational schema. An employee can work in
more than one department; the pct time field of the Works relation shows the percent-
age of time that a given employee works in a given department.

Emp(eid: integer, ename: string, age: integer, salary: real)
Works(eid: integer, did: integer, pct time: integer)
Dept(did: integer, budget: real, managerid: integer)

Write SQL-92 integrity constraints (domain, key, foreign key, or CHECK constraints; or
assertions) or SQL:1999 triggers to ensure each of the following requirements, consid-
ered independently.

1. Employees must make a minimum salary of $1,000.

2. Every manager must be also be an employee.

3. The total percentage of all appointments for an employee must be under 100%.

4. A manager must always have a higher salary than any employee that he or she
manages.

5. Whenever an employee is given a raise, the manager’s salary must be increased to
be at least as much.

6. Whenever an employee is given a raise, the manager’s salary must be increased
to be at least as much. Further, whenever an employee is given a raise, the
department’s budget must be increased to be greater than the sum of salaries of
all employees in the department.

Answer 5.10 Answer omitted.

7
STORING DATA: DISKS AND FILES

Exercise 7.1 What is the most important difference between a disk and a tape?

Answer 7.1 Tapes are sequential devices that do not support direct access to a desired
page. We must essentially step through all pages in order. Disks support direct access
to a desired page.

Exercise 7.2 Explain the terms seek time, rotational delay, and transfer time.

Answer 7.2 Answer omitted.

Exercise 7.3 Both disks and main memory support direct access to any desired lo-
cation (page). On average, main memory accesses are faster, of course. What is the
other important difference (from the perspective of the time required to access a desired
page)?

Answer 7.3 The time to access a disk page is not constant. It depends on the location
of the data. Accessing to some data might be much faster than to others. It is different
for memory. Access to memory is uniform for most computer systems.

Exercise 7.4 If you have a large file that is frequently scanned sequentially, explain
how you would store the pages in the file on a disk.

Answer 7.4 Answer omitted.

Exercise 7.5 Consider a disk with a sector size of 512 bytes, 2,000 tracks per surface,
50 sectors per track, 5 double-sided platters, average seek time of 10 msec.

1. What is the capacity of a track in bytes? What is the capacity of each surface?
What is the capacity of the disk?

65

66 Chapter 7

2. How many cylinders does the disk have?

3. Give examples of valid block sizes. Is 256 bytes a valid block size? 2,048? 51,200?

4. If the disk platters rotate at 5,400 rpm (revolutions per minute), what is the
maximum rotational delay?

5. Assuming that one track of data can be transferred per revolution, what is the
transfer rate?

Answer 7.5 1.

bytes/track = bytes/sector × sectors/track = 512 × 50 = 25K

bytes/surface = bytes/track × tracks/surface = 25K × 2000 = 50, 000K

bytes/disk = bytes/surface× surfaces/disk = 50, 000K × 10 = 500, 000K

2. The number of cylinders is the same as the number of tracks on each platter,
which is 2000.

3. The block size should be a multiple of the sector size. We can see that 256 is not
a valid block size while 2048 and 51200 are.

4. If the disk platters rotate at 5400rpm, the time required for a rotation, which is
the maximum rotational delay, is

1
5400

× 60 = 0.011seconds

. The average rotational delay is half of the rotation time, 0.006 seconds.

5. The capacity of a track is 25K bytes. Since one track of data can be transferred
per revolution, the data transfer rate is

25K

0.011
= 2, 250Kbytespersec

Exercise 7.6 Consider again the disk specifications from Exercise 7.5 and suppose
that a block size of 1,024 bytes is chosen. Suppose that a file containing 100,000
records of 100 bytes each is to be stored on such a disk and that no record is allowed
to span two blocks.

1. How many records fit onto a block?

2. How many blocks are required to store the entire file? If the file is arranged
sequentially on disk, how many surfaces are needed?

3. How many records of 100 bytes each can be stored using this disk?

Storing Data: Disks and Files 67

4. If pages are stored sequentially on disk, with page 1 on block 1 of track 1, what
is the page stored on block 1 of track 1 on the next disk surface? How would
your answer change if the disk were capable of reading/writing from all heads in
parallel?

5. What is the time required to read a file containing 100,000 records of 100 bytes each
sequentially? Again, how would your answer change if the disk were capable of
reading/writing from all heads in parallel (and the data was arranged optimally)?

6. What is the time required to read a file containing 100,000 records of 100 bytes each
in some random order? Note that in order to read a record, the block containing
the record has to be fetched from disk. Assume that each block request incurs the
average seek time and rotational delay.

Answer 7.6 Answer omitted.

Exercise 7.7 Explain what the buffer manager must do to process a read request for
a page. What happens if the requested page is in the pool but not pinned?

Answer 7.7 When a page is requested the buffer manager does the following:

1. The buffer pool is checked to see if it contains the requested page. If the page is
not in the pool, it is brought in as follows:

(a) A frame is chosen for replacement, using the replacement policy.

(b) If the frame chosen for replacement is dirty, it is flushed (the page it contains
is written out to disk).

(c) The requested page is read into the frame chosen for replacement.

2. The requested page is pinned (the pin count of its frame is incremented) and its
address is returned to the requestor.

Note that if the page is not pinned,it could be removed from buffer pool even if it is
actually needed in main memory.

Exercise 7.8 When does a buffer manager write a page to disk?

Answer 7.8 Answer omitted.

Exercise 7.9 What does it mean to say that a page is pinned in the buffer pool? Who
is responsible for pinning pages? Who is responsible for unpinning pages?

68 Chapter 7

Answer 7.9 1. Pinning a page means the pin count of its frame is incremented.
Pinning a page guarantees higher-level DBMS software that the page will not be
removed from the buffer pool by the buffer manager. That is, another file page
will not be read into the frame containing this page until it is unpinned by this
requestor.

2. It is the buffer manager’s responsibility to pin a page.

3. It is the responsibility of the requestor of that page to tell the buffer manager to
unpin a page.

Exercise 7.10 When a page in the buffer pool is modified, how does the DBMS ensure
that this change is propagated to disk? (Explain the role of the buffer manager as well
as the modifier of the page.)

Answer 7.10 Answer omitted.

Exercise 7.11 What happens if there is a page request when all pages in the buffer
pool are dirty?

Answer 7.11 If there are some unpinned pages, the buffer manager chooses one by
using a replacement policy, flushes this page, and then replaces it with the requested
page.

If there are no unpinned pages, the buffer manager has to wait until an unpinned page
is available (or signal an error condition to the page requestor).

Exercise 7.12 What is sequential flooding of the buffer pool?

Answer 7.12 Answer omitted.

Exercise 7.13 Name an important capability of a DBMS buffer manager that is not
supported by a typical operating system’s buffer manager.

Answer 7.13 1. Pinning a page to prevent it from being replaced.

2. Ability to explicitly force a single page to disk.

Exercise 7.14 Explain the term prefetching. Why is it important?

Answer 7.14 Answer omitted.

Storing Data: Disks and Files 69

Exercise 7.15 Modern disks often have their own main memory caches, typically
about one MB, and use this to do prefetching of pages. The rationale for this technique
is the empirical observation that if a disk page is requested by some (not necessarily
database!) application, 80 percent of the time the next page is requested as well. So
the disk gambles by reading ahead.

1. Give a nontechnical reason that a DBMS may not want to rely on prefetching
controlled by the disk.

2. Explain the impact on the disk’s cache of several queries running concurrently,
each scanning a different file.

3. Can the above problem be addressed by the DBMS buffer manager doing its own
prefetching? Explain.

4. Modern disks support segmented caches, with about four to six segments, each of
which is used to cache pages from a different file. Does this technique help, with
respect to the above problem? Given this technique, does it matter whether the
DBMS buffer manager also does prefetching?

Answer 7.15 1. The pre-fetching done at the disk level varies widely across different
drives and manufacturers, and pre-fetching is sufficiently important to a DBMS
that one would like to be independent of specific hardware support.

2. If there are many queries running concurrently, the request of a page from different
queries can be interleaved. In the worst case, it cause the cache miss on every
page request, even with disk pre-fetching.

3. If we have pre-fetching offered by DBMS buffer manager, the buffer manager can
predict the reference pattern more accurately. In particular, a certain number
of buffer frames can be allocated per active scan for pre-fetching purposes, and
interleaved requests would not compete for the same frames.

Exercise 7.16 Describe two possible record formats. What are the trade-offs between
them?

Answer 7.16 Answer omitted.

Exercise 7.17 Describe two possible page formats. What are the trade-offs between
them?

Answer 7.17 Two possible page formats are: consecutive slots and slot directory

The consecutive slots organization is mostly used for fixed length record formats. It
handles the deletion by using bitmaps or linked lists.

70 Chapter 7

The slot directory organization maintains a directory of slots for each page, with a
¡record offset, record length¿ pair per slot.

The slot directory is an indirect way to get the offset of a entry. Because of this indirec-
tion, deletion is easy. It is accomplished by setting the length field to 0. And records
can easily be moved around on the page without changing their external identifier.

Exercise 7.18 Consider the page format for variable-length records that uses a slot
directory.

1. One approach to managing the slot directory is to use a maximum size (i.e., a
maximum number of slots) and to allocate the directory array when the page is
created. Discuss the pros and cons of this approach with respect to the approach
discussed in the text.

2. Suggest a modification to this page format that would allow us to sort records (ac-
cording to the value in some field) without moving records and without changing
the record ids.

Answer 7.18 Answer omitted.

Exercise 7.19 Consider the two internal organizations for heap files (using lists of
pages and a directory of pages) discussed in the text.

1. Describe them briefly and explain the trade-offs. Which organization would you
choose if records are variable in length?

2. Can you suggest a single page format to implement both internal file organiza-
tions?

Answer 7.19 1. The list of pages in shown in Fig 3.7. The directory of pages is
shown in Fig 3.8.

2. The linked-list approach is a little simpler, but finding a page with sufficient free
space for a new record (especially with variable length records) is harder. We have
to essentially scan the list of pages until we find one with enough space, whereas
the directory organization allows us to find such a page by simply scanning the
directory, which is much smaller than the entire file. The directory organization
is therefore better, especially with variable length records.

3. A page format with previous and next page pointers would help in both cases.
Obviously, such a page format allows us to build the linked list organization; it is
also useful for implementing the directory in the directory organization.

Storing Data: Disks and Files 71

Exercise 7.20 Consider a list-based organization of the pages in a heap file in which
two lists are maintained: a list of all pages in the file and a list of all pages with free
space. In contrast, the list-based organization discussed in the text maintains a list of
full pages and a list of pages with free space.

1. What are the trade-offs, if any? Is one of them clearly superior?

2. For each of these organizations, describe a page format that can be used to im-
plement it.

Answer 7.20 Answer omitted.

Exercise 7.21 Modern disk drives store more sectors on the outer tracks than the
inner tracks. Since the rotation speed is constant, the sequential data transfer rate is
also higher on the outer tracks. The seek time and rotational delay are unchanged.
Considering this information, explain good strategies for placing files with the following
kinds of access patterns:

1. Frequent, random accesses to a small file (e.g., catalog relations).

2. Sequential scans of a large file (e.g., selection from a relation with no index).

3. Random accesses to a large file via an index (e.g., selection from a relation via the
index).

4. Sequential scans of a small file.

Answer 7.21 1. Place the file in the middle tracks. Sequential speed is not an issue
due to the small size of the file, and the seek time is minimized by placing files in
the center.

2. Place the file in the outer tracks. Sequential speed is most important and outer
tracks maximize it.

3. Place the file and index on the inner tracks. The DBMS will alternately access
pages of the index and of the file, and so the two should reside in close proximity
to reduce seek times. By placing the file and the index on the inner tracks we also
save valuable space on the faster (outer) tracks for other files that are accessed
sequentially.

4. Place small files in the inner half of the disk. A scan of a small file is effectively
random I/O because the cost is dominated by the cost of the initial seek to the
beginning of the file.

8
FILE ORGANIZATIONS AND INDEXES

Exercise 8.1 What are the main conclusions that you can draw from the discussion
of the three file organizations?

Answer 8.1 The main conclusion about the three file organizations is that all three
file organizations have their own advantages and disadvantages. No one file organiza-
tion is uniformly superior in all situations. The choice of appropriate structures for a
given data set can have a significant impact upon performance. An unordered file is
best if only full file scans are desired. A hashed file is best if the most common opera-
tion is an equality selection. A sorted file is best (of the three alternatiaves considered
in this chapter) if range selections are desired.

Exercise 8.2 Consider a delete specified using an equality condition. What is the
cost if no record qualifies? What is the cost if the condition is not on a key?

Answer 8.2 Answer omitted.

Exercise 8.3 Which of the three basic file organizations would you choose for a file
where the most frequent operations are as follows?

1. Search for records based on a range of field values.

2. Perform inserts and scans where the order of records does not matter.

3. Search for a record based on a particular field value.

Answer 8.3 1. Using these fields as the search key, we would choose a sorted file
organization.

2. Heap file would be the best fit in this situation.

3. Using this particular field as the searach key, choosing a hashed file would be the
best.

72

File Organizations and Indexes 73

Exercise 8.4 Explain the difference between each of the following:

1. Primary versus secondary indexes.

2. Dense versus sparse indexes.

3. Clustered versus unclustered indexes.

If you were about to create an index on a relation, what considerations would guide
your choice with respect to each pair of properties listed above?

Answer 8.4 Answer omitted.

Exercise 8.5 Consider a relation stored as a randomly ordered file for which the only
index is an unclustered index on a field called sal. If you want to retrieve all records
with sal > 20, is using the index always the best alternative? Explain.

Answer 8.5 No. In this case, the index is unclustered, each qualifying data entries
could contain an rid that points to a distinct data page, leading to as many data page
I/Os as the number of data entries that match the range query. At this time,using
index is worse than file scan.

Exercise 8.6 If an index contains data records as ‘data entries’, is it clustered or
unclustered? Dense or sparse?

Answer 8.6 Answer omitted.

Exercise 8.7 Consider Alternatives (1), (2) and (3) for ‘data entries’ in an index, as
discussed in Section 8.3.1. Are they all suitable for secondary indexes? Explain.

Answer 8.7 Yes.All the three alternatives allow duplicate data entries.

Exercise 8.8 Consider the instance of the Students relation shown in Figure 8.1,
sorted by age: For the purposes of this question, assume that these tuples are stored
in a sorted file in the order shown; the first tuple is in page 1, slot 1; the second tuple
is in page 1, slot 2; and so on. Each page can store up to three data records. You can
use 〈page-id, slot〉 to identify a tuple.

List the data entries in each of the following indexes. If the order of entries is significant,
say so and explain why. If such an index cannot be constructed, say so and explain
why.

1. A dense index on age using Alternative (1).

74 Chapter 8

sid name login age gpa

53831 Madayan madayan@music 11 1.8
53832 Guldu guldu@music 12 2.0
53666 Jones jones@cs 18 3.4
53688 Smith smith@ee 19 3.2
53650 Smith smith@math 19 3.8

Figure 8.1 An Instance of the Students Relation, Sorted by age

2. A dense index on age using Alternative (2).

3. A dense index on age using Alternative (3).

4. A sparse index on age using Alternative (1).

5. A sparse index on age using Alternative (2).

6. A sparse index on age using Alternative (3).

7. A dense index on gpa using Alternative (1).

8. A dense index on gpa using Alternative (2).

9. A dense index on gpa using Alternative (3).

10. A sparse index on gpa using Alternative (1).

11. A sparse index on gpa using Alternative (2).

12. A sparse index on gpa using Alternative (3).

Answer 8.8 Answer omitted.

