
CS 423: Theory of Algorithms
Spring, 2000 Due: Tuesday, April 4
Tarjan

Extra Credit Problems

Extra credit problems are intended to be a little more challenging than the regular prob-
lems. Please work on them entirely on your own (no collaboration). Scores on extra credit
problems may be used to boost your grade or to earn an A+.

1. The purpose of this problem is to fix problem 4, problem set 3, which was taken
from CLR, problem 22.3-4, page 450. Let us redefine the UNION operation so that
it returns the value “true” if its inputs are initially in different sets and “false”
otherwise.

UNION (x, y): If x and y are in different sets, combine these sets into one and return
true; otherwise, merely return false.

We call a UNION successful if it returns true and unsuccessful otherwise. Our
goal is to build a data structure that supports intermixed MAKE-SET, UNION,
and FIND-SET operations with the following amortized time bounds, where n is
the total number of UNION operations:

MAKE-SET: O(1)

UNION; O(1) if successful, O(α(n)) if not.

FIND-SET: O(1) if the operation occurs after all UNION operations, O(α(n)) if not.

Observe that these bounds imply that a sequence of m operations in which all
UNIONs are successful and come before all FIND-SETs takes O(m). Compare this
with the (false) original statement of problem 4, problem set 3.

The data structure is the usual tree structure, with each node having a rank, initially
zero for a node in a single-node tree. We perform FIND-SET in the usual way, with
path compression.

To perform UNION (x, y), we traverse the find paths from x and y concurrently,
taking a step from the current node of smaller rank (breaking a tie arbitrarily), until
reaching a root on one path. Suppose the root reached is r, on the find path from x.
We continue traversing the find path from y until reaching a node s that is either a
root or has rank strictly larger than that of r. If r = s the UNION is unsuccessful;
we compress the paths from x and y to r (making r the parent of every node on
both paths except itself) and return false. Otherwise, if rank(r) < rank (s), we
make s the parent of r, compress the paths from x and y to s, and return true; if
rank (r) ≥ rank(s) we increase rank (r) by 1 if rank (r) = rank (s), we make r
the parent of s (s must be a root), we compress the paths from x and y to r, and
we return true. This method relies on the existence of ranks, and in particular on
maintaining the invariant that ranks strictly increase along find paths.

(a) Give pseudo-code implementaion of UNION.

(b) Prove the amortized bounds claimed above.

2. The purpose of this problem is to add insertions and deletions to linear heaps (see
problem 2, mid-term exercise). Insertions are easy to handle, but deletions are much
tougher.



CS 423: Theory of Algorithms
Spring, 2000 Due: Tuesday, April 4
Tarjan

(a) suppose we modify the make heap operation for linear heaps so that it creates
a new, empty heap, and we add an operation insert (i, a, b, h), which adds a
new item i with key ax + b to linear heap h. Describe how to implement the
linear heap operatoins make heap, insert, and find min, so that the worst-
case times for the operations are O(1) for make heap and O(log n) for an
insert or find min on an n-time heap. Hint: Use a red-black tree to store
the items, sorted on a, with ties broken on b, and items whose keys cannot be
minimum deleted.

(b) Suppose we add to the operations in (a) the operation of deleting an item in a
linear heap, given a pointer to the location in the data structure representing
the item. We also impose a progressivity condition on the find min oper-
ations: successive x-parameters are non-decreasing. Describe and analyze an
implementation of progressive linear heaps with the following amortized time
bounds: O(1) for make heap; O((log n)2) for insert, delete, and find min
on an n-item heap.
Hint: For simplicity, assume that no two items have identical keys. (Identical
keys could be handled by storing all items with the same key in a list at a single
node.) Store the items in the external nodes of a red-black tree, ordered as in
(a). To facilitate searching, store in each internal node a pointer to its successor
(external) node. Define x0, the current x, to be the x-parameter of the most
recent find min operation. Store at each internal node the item among its
descendants with minimum key for x = x0. Finally, for two items i and j,
define the switch value xij to be the value of x for which the keys of i and
j are equal, and −∞ if i and j have equal a-values (so their keys are never
equal). Note that for x < xij one of the keys will be smaller and for x > xij the
other key will be smaller. Store in each internal node the minimum amoung
the switch times of all pairs of items stored in siblings that are its descendents.
Use the switch times to help update the minimum-key items as x0 increases.
Comment: Actually, it is possible to obtain O((log n)2) time bounds in the
worst case for insert and delete and O(log n) worst-case for find min, without
imposing the progressivity condition but the data structure is more complicted
thean the one described in the hint. The latter is a nice illustration of the use of
both heap order and symmetric order in a single balanced tree. Others include
treaps, which are randomized search trees, and priority search trees, which
support 11

2 -dimensional range queries.
Research Problems: (Solve one, and become an author or co-author on a
research paper.)

2(c) Prove or disprove O((log n)2) amortized bounds if a splay-tree is used in 2(b)
instead of a red-black tree.

2(d) Find a data structure that reduces the amortized bounds in 2(b) to O(log n).
(I know an O(log n log log n) solution.)


