Problem Set No. 5

1. Construct an example of a directed graph with a distinguished vertex s whose minimum spanning tree rooted at s is different from its shortest path tree rooted at s.
2. For a connected undirected graph, a bottleneck minimum spanning tree is a spanning tree whose maximum edge cost is minimum.
(a) Show that any minimum spanning tree is a bottleneck minimum spanning tree, but a bottleneck spanning tree need not be a minimum spanning tree.
(b) Describe and analyze an $O(m)$-time algorithm to find a bottleneck minimum spanning tree. Hint: Use median-finding and graph contraction.
3. (CLR 23.1-6, p. 468) When an adjacency-matrix representation is used, most graph algorithms require time $\Theta\left(V^{2}\right)$, but there are some exceptions. Show that determining whether a directed graph contains a sink-a vertex with in-degree $|V|-1$ and out-degree 0 -can be determined in time $O(V)$, even if an adjacency-matrix representation is used.
4. (CLR 23.5-7, p. 494) A directed graph $G=(V, E)$ is said to be semiconnected if, for any two vertices $u, v \in V$, we have $u \leadsto v$ or $v \leadsto u$. Give an efficient algorithm to determine whether or not G is semiconnected. Prove that your algorithm is correct, and analyze its running time.
5. (Heuristic Search) Let G be a graph with two distinguished vertices s and t and an edge cost $c(v, w)$ for each edge (v, w). Assume that G has no negative cycles (though it may have negative edge costs). We wish to find a shortest path from s to t by heuristic search, using a distance estimate $e(v)$ which is intended to be an easy-to-compute approximation to the actual distance from v to the destination t. We use the labeling and scanning algorithm as described in class. To choose the next vertex to scan, we pick a vertex $v \in L$ with minimum $d(v)+e(v)$. Specifically, the algorithm is as follows:

Initialize $L=\{s\}, d(s)=0, d(v)=\infty$ for $v \neq s$.
while $L \neq \phi$ do begin
delete from L a vertex v with $d(v)+e(v)$ minimum;
if $v=t$ then stop else

```
for \((v, w)\) an edge do begin if \(d(v)+c(v, w)<d(w)\) then begin
    \(d(w)=d(v)+c(v, w) ; p(w)=v ;\)
    if \(w \notin L\) then insert \(w\) into \(L\)
end end end
```

We call an estimate e safe if $e(t)=0$ and $e(v) \leq c(v, w)+e(w)$ for every edge (v, w).
(a) Prove that if e is a safe estimate, then $e(v)$ is a lower bound on the distance from v to t, for every vertex v.
(b) Prove that if e is a safe estimate, the heuristic search algorithm will delete each vertex from L at most once, and will terminate with $d(t)$ equal to the correct distance from s to t, with the parent pointers from t indicating a shortest path from s to t (backwards).
(c) Prove that if e and f are two safe estimates such that $e(v) \leq f(v)$ for every v, then heuristic search run with f will delete no more vertices from L than heuristic search run with e.
(d) Describe how to implement heuristic search so that the total running time is $O(k \log k+l)$, where k is the number of vertices inserted into L and l is the total number of edges leading out of such vertices. (Assume $e(v)$ is computable in $O(1)$ time for any v. .) Hint: Use an F-heap. You will also need to avoid explicitly initializing $d(v)=\infty$ for all vertices $v \neq s$, since the number of such vertices may be much larger than k. How can you do this?
6. (extra credit) Give a family of graphs (with some negative-cost edges) on which Dijkstra's shortest path algorithm (shortest-first scanning) runs in exponential time.

