
CS 423: Theory of Algorithms Problem Set 3
Spring, 2000 Due: Thursday, March 2

Problem Set No. 3

1. If a MULTIPUSH operation were included in the set of stack operations, would the

O(1) bound on the amortized cost of stack operations continue to hold? (CLR p. 360)

2. Show that if a DECREMENT operation were included in the k-bit counter example, n

operations could cost as much as Θ(nk) time. (CLR p. 360)

3. Consider a redundant binary numbering system, in which each position denotes a power

of two (as in ordinary binary numbering), but in which a digit of 2 is allowed, as

well as 0 and 1. Note that, in such a system, a given number will in general have

many representations, not just one. Suppose we start with the number zero and do an

arbitrary sequence of intermixed increments and decrements. Show that the amortized

cost per operation is O(1). (Compare to problem 2.)

4. Show that any sequence of m MAKE-SET, FIND-SET, and UNION operations, where

all the UNION operations appear before any of the FIND-SET operations, takes only

O(m) time if both path compression and union by rank are used. What happens in the

same situation if only the path-compression heuristic is used? (CLR p. 450)

5. Off-line minimum

The off-line minimum problem asks us to maintain a dynamic set T of elements from

the domain {1, 2, . . . , n} under the operations INSERT and EXTRACT-MIN. We are

given a sequence S of n INSERT and m EXTRACT-MIN calls, where each key in

{1, 2, . . . , n} is inserted exactly once. We wish to determine which key is returned by

each EXTRACT-MIN call. Specifically, we wish to fill in an array extracted [1..m],

where for i = 1, 2, . . . ,m, extracted [i] is the key returned by the ith EXTRACT-MIN

call. The problem is “off-line” in the sense that we are allowed to process the entire

sequence S before determining any of the returned keys. (CLR p. 458)

a. In the following instance of the off-line minimum problem, each INSERT is repre-

sented by a number and each EXTRACT-MIN is represented by the letter E:

4,8,E,3,E,9,2,6,E,E,E,1,7,E,5.

To develop an algorithm for this problem, we break the sequence S into homoge-

neous subsequences. That is, we represent S by

I1,E,I2,E,I3, . . . , Im,E,Im+1,

where each E represents a single EXTRACT-MIN call and each Ij represents a

(possibly empty) sequence of INSERT calls. For each subsequence Ij , we initially



CS 423: Theory of Algorithms Problem Set 3
Spring, 2000 Due: Thursday, March 2

place the keys inserted by these operations into a set Kj , which is empty if Ij is

empty. We then do the following,

OFF-LINE-MINIMUM(m,n)

1 for i← 1 to n

2 do determine j such that i ∈ Kj

3 if j 6= m+ 1

4 then extracted[j] ← i

5 let l be the smallest value greater than j

for which set Kl exists

6 Kl ← Kj ∪Kl, destroying Kj

7 return extracted

b. Argue that the array extracted returned by OFF-LINE-MINIMUM is correct.

c. Describe how to use a disjoint-set data structure to implement OFF-LINE-MINIMUM

efficiently. Give a tight bound on the worst-case running time of your implemen-

tation.

6. Suppose that a node x is inserted into a red-black tree with RB-INSERT and then

immediately deleted with RB-DELETE. Is the resulting red-black tree the same as the

initial red-black tree? Justify your answer. (CLR p. 277)

7. Join operation on red-black trees

The join operation takes two dynamic sets S1 and S2 and an element x such that for

any x1 ∈ S1 and x2 ∈ S2, we have key[x1] ≤key[x1] ≤key[x] ≤key[x2]. It returns a set

S = S1∪{x}∪S2. In this problem, we investigate how to implement the join operation

on red-black trees.

a. Given a red-black tree T , we store its black-height as the field bh[T ]. Argue that

this field can be maintained by RB-INSERT and RB-DELETE without requiring

extra storage in the tree and without increasing the asymptotic running times.

Show that while descending through T , we can determine the black-height of each

node we visit in O(1) time per node visited.

We wish to implement the operation RB-JOIN(T1, x, T2), which destroys T1 and T2 and

returns a red-black tree T = T1 ∪ {x} ∪ T2. Let n be the total number of nodes in T1

and T2.



CS 423: Theory of Algorithms Problem Set 3
Spring, 2000 Due: Thursday, March 2

b. Assume without loss of generality that bh[T1] ≥ bh[T2]. Describe an O(lgn)-time

algorithm that finds a black node y in T1 with the largest key from among those

nodes whose black-height is bh[T2].

c. Let Ty be the subtree rooted at y. Describe how Ty can be replaced by Ty∪{x}∪T2

in O(1) time without destroying the binary-search-tree property.

d. What color should we make x so that red-black properties 1,2, and 4 are main-

tained? Describe how property 3 can be enforced in O(lg n) time.

d. Argue that the running time of RB-JOIN is O(lnn). (CLR p. 278)


