## Problem Set No. 1

1. Describe a $\Theta(n \lg n)$-time algorithm that, given a set $S$ of $n$ real numbers and another real number $x$, determines whether or not there exist two elements in $S$ whose sum is exactly $x$.
2. Prove that for $i \geq 0$, the $(i+2)$ nd Fibonacci number satisfies $F_{i+2} \geq \phi^{i}$.
3. Show that $\sum_{k=1}^{n} 1 / k^{2}$ is bounded above by a constant.
4. Solve the recurrence $T(n)=2 T(\sqrt{n})+1$ by making a chnage of variables. Do not worry about whether values are integral.

## 5. Finding the missing integer

An array $A[1 \ldots n]$ contains all the integers from 0 to $n$ except one. It would be easy to determine the missing integer in $O(n)$ time by using an auxiliary array $B[0 \ldots n]$ to record which numbers appear in $A$. In this problem, however, we cannot access an entire integer in $A$ with a single operation. The elements of $A$ are represented in binary, and the only operation we can use to access them is "fetch the $j^{\text {th }}$ bit of $A[i], "$ which takes constant time.
Show that if we use only this operation, we can still determine the missing integer in $O(n)$ time.

