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Class Notes: Depth-First Search

Assume that during a depth-first search the vertices of a graph are numbered from
1 to n in both preorder (the order of first visitation, called discovery order in
the book) and in postorder (the order of unstacking, called finishing order in
the book). Denote by pre(v) and post(v) the preorder and postorder number of v,
respectively, and by nd(v) the number of descendants of v, including v itself.

Descendants Lemma. The following four conditions are equivalent:

(i) Vertex v is an ancestor of vertex w;

(ii) pre (v) ≤ pre(w) < pre(v) + nd (v);

(iii) post (v) − nd(v) < post(w) ≤ post(v);

(iv) pre(v) ≤ pre(w) and post (v) ≥ post(w).

Proof : The proper descendants of v are exactly those vertices added to the stack
while v is on the stack. These vertices receive consecutively increasing preorder
numbers starting with pre(v) + 1, which implies that conditions (i) and (ii) are
equivalent. These vertices also receive consecutively increasing postorder numbers
ending with post(v) − 1, which implies that (i) and (iii) are equivalent. Since (i)
implies (ii) and (iii), (i) also implies (iv). Suppose (iv) is true with v 6= w. Then
pre(v) < pre(w), which implies that w is added to the stack after v, but post(v) >
post(w), which implies that w is popped from the stack before v. Then w must be
added before v is popped, and w must be an ancestor of v, i.e., (iv) implies (i). 2

Lemma 1. (Edge Lemma) An edge (v,w) is of one of the following four kinds.

(i) w is a child of v: (v,w) is a tree edge.

(ii) w is a descendent but not a child of v: (v,w) is a forward edge.
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(iii) w is an ancestor of v: (v,w) is a cycle edge (or backedge).

(iv) w and v are unrelated and v >pre w: (v,w) is a cross edge.

Proof : Suppose (v,w) is an edge and v and w are unrelated. We must show that
v >pre w. Suppose by way of contradiction that v <pre w. Then w is unvisited
when v is stacked. Before v is unstacked, edge (v,w) will be traversed, which means
w will be stacked before v is unstacked, i.e., w is a descendant of v. This is a
contradiction. 2

Lemma 2. (Path Lemma) Any path from v to w with v <pre w contains a com-

mon ancestor of v and w.

Proof : Suppose v and w are unrelated; otherwise the lemma is immediate. Let u
be the nearest common ancestor of v and w, and let x be the child of u that is an
ancestor of v. (If v and w have no common ancestor because they are in separate
dfs trees, let x be the root of the tree containing v; we shall see later that this
case is impossible.) Finally, let S be the set of vertices less than or equal to x in
postorder. Since v and w are unrelated by assumption, v <post w. But this means
that x <post w and hence that w /∈ S. Consider the first edge (y, z) the path from v

to w that leaves set S. This edge has y <post z, which means it is a cycle edge; that
is, y is a descendant of z. Since y ∈ S, y ≤post x, and since z /∈ S, x <post z. But
y ≤post x <post z and y a descendant of z simply that x is a descendent of z, and
hence that z is an ancestor of u and hence of both v and w. (In particular, u must
exist.) 2

Strong Components Consider a directed graph G. Define an equivalence rela-
tion ∼ on the vertices by x ∼ y iff there is a path from x to y and a path from y to
x. It is easy to verify that ∼ is indeed an equivalence relation, i.e. that

(i) x ∼ x for all x,

(ii) x ∼ y implies y ∼ x for all x and y, and

(iii) x ∼ y and y ∼ z implies x ∼ z for all x, y, and z. (Exercise: verify this.)

The subgraphs defined by the equivalence classes of ∼ are called the strong compo-
nents of G.
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Lemma 3. (Component Lemma) The vertices of a strong component form a

subtree of a dfs tree.

Proof : Let S be the vertex set of a strong component. Let r be the smallest vertex
in S in postorder. If x ∈ S, there must be a path in S from x to r, which by the
path lemma must contain a common ancestor of x and r. This ancestor must be r.
Hence every vertex in x ∈ S must be a descendant of r. If y is a descendent of r
and an ancestor of x, the existence of the tree path from r through y to x implies
that y is in the component S. Hence S defines a subtree. 2

Call the smallest vertex in a component (in preorder) the root of the component.
We wish to find strong conponents in O(n+m) time.

Method 1: One-Way Depth-First-Search Strong Components Algorithm

Initialize num = 0, stack = empty.

Perform a depth-first search.

• When visiting a vertex v in preorder:

– set low(v) = pre(v) = num = num+ 1;

– push v onto stack.

• When retreating along an edge (v,w):

– set low(v) = min{low(v), low (w)}.

• When visiting a vertex v in postorder:

– if low(v) = pre(v) then pop vertices off stack down to and including v,
and for each popped vertex w set low(w) =∞. (Vertex v is the root of a
strong component containing all the just-popped vertices.)

Proof of correctness of the one-way strong components algorithm

Call a vertex v tagged if low(v) = pre(v) when v is visited in postorder.
When a tagged vertex is visited in postorder, it and all its descendants that are
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still on the stack are popped. Thus the set of popped vertices is exactly the set
of descendants of v that have no tagged ancestor other than v. It follows that if
the tagged vertices are exactly the component roots, then the algorithm correctly
identifies the components. Thus all that remains is to prove that a vertex v is tagged
if and only if it is a component root. We prove this by induction on the postorder
number of v.

For vertex v, let Fv be the set of edges (x, y) such that x is a descendant of v
but y is not. Fv contains only cycle edges and cross edges. Each edge (x, y) ∈ Fv
has y <pre v.

Suppose v is not a component root. Then there must be an edge (x, y) ∈ Fv
such that y is in the same strong component as v, because the root of the component
containing v is not a descendant of v and some edge on the path from v to this root
must be in Fv. Let (x, y) be such an edge, and let u be the nearest common ancestor
of y and v. No vertex on the tree path from u to y, except possibly u itself, can be
a component root. But all vertices on this tree path except u are smaller than v in
postorder, and hence are untagged, by the induction hypothesis. Hence y is on the
stack when the retreat along edge (x, y) occurs. This means that low(x) ≤ pre(y)
after this retreat, and after the retreats along all the tree edges from v to x occur,
low(v) ≤ pre(y). Since pre(y) < pre(v), vertex v is untagged.

Conversely, suppose v is a component root. then for every edge (x, y) ∈ Fv, y
must be in a different strong component than v. Consider an edge (x, y) ∈ Fv. Let
u be the nearest common ancestor of y and v. Vertices y and u cannot be in the
same strong component, for then v would be in the same component as well. Thus
there must be a component root that is not u on the tree path from u to v. By the
induction hypothesis u is tagged, which means that low(y) = ∞ when the retreat
along (x, y) occurs. A proof by induction on the order of retreats shows that for
every descendant z of v, low(z) ≥ pre(v). In particular, low(v) ≥ pre(v) when v is
visited in postorder, which implies low(v) = pre(v), and v is tagged. 2

Method 1′: Alternative One-Way Strong Components Algorithm

This alternative to Method 1 uses a stack of tentative component roots instead
of the low values used in Method 1. Variants of this method were described by
Tarjan’s in unpublished notes in 1982 and by Gabow in a paper in 1999.

4



Initialize num = 0, stacks = empty, roots = empty.

Perform a depth-first search,

• When visiting a vertex v in preorder:

– set pre (v) = num = num +1;

– push v onto stack and onto roots.

• When retreating along an edge (v,w):

– while pre (top (roots)) > pre (v) do pop (roots)

• When visiting a vertex v in postorder:

– if v = top (roots) then pop v off roots and pop vertices off stack down to
and including v, and for each popped vertex w set pre (w) =∞. (Vertex v
is the root of the strong component containing the just-popped vertices.)

Exercise: Prove that Method 1′ is correct.

Exercise: Modify Method 1′ so that a vertex is on only one stack at a time, thereby
saving space (one slot per vertex) while increasing the code length and complexity.

Method 2: (Two-Way Strong Components Algorithm

Step 1. Perform a depth-first search of G, numbering the vertices from 1 to n in
depth-first postorder.

Step 2. Unmark all vertices. Process the vertices in decreasing order with respect
to the numbering computed in Step 1. To process a vertex, test whether v is
unmarked. If so, find all unmarked vertices from which v is reachable by a
path of unmarked vertices, declare these vertices to define a strong component,
and mark them all. The unmarked vertices from which an unmarked vertex
v is reachable can be found by a backward search from v that immediately
retreats from marked vertices. (This search need not be depth-first.)

Exercise: Verify that this algorithm runs in O(n + m) time, if appropriately im-
plemented.
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Proof of Correctness. Let X be a set of vertices declared to be a strong com-
ponent by the algorithm, resulting from a backward search from a vertex v.
X contains only vertices numbered no more than v in postorder. (All higher
numbered vertices are marked before the search from v.) Let w ∈ X.

Claim: w is a descendant of v.

Proof of Claim: Since w is numbered no greater than v and there is a path from
w to v, the path of unmarked vertices from w to v must contain a common
ancestor of w and v, which must be v itself. 2

The claim implies that every vertex in X is reachable from v by a path in the
depth-first spanning tree. All vertices on this path must be unmarked when
the search from v is performed. (Exercise: verify this.)
It follows that X must define a strong component. (Exercise: verify this, by
induction on the number of components so far identified.)

Exercise: Show that if v is the largest-numbered vertex in a strong component, the
component consists exactly of all vertices numbered no greater than v from
which v is reachable by a path of vertices numbered no greater than v.

Problem: Devise a clearer, more succinct proof of correctness of this algorithm.

Method 2 is the method given in the text in Section 23.5. The components are
generated in a topological order. (Exercise: verify this.)

Blocks, Ear Decompositions, Bipolar Numberings (See Problem 23-2,
pages 495–496).

Consider an undirected graph G. We define the blocks (biconnected components)
of G to be the subgraphs of G induced by the equivalence relation ≡ on edges defined
by (x, y) ≡ (w, z) iff (x, y) = (w, z) or (x, y) and (w, z) are on a common simple
cycle. (Exercise: prove that this is an equivalence relation.)

The blocks of G are also the maximal subgraphs of G not containing a cut
vertex. (Exercise: prove this.)

An ear decomposition of G is a partition of the edges of G into simple paths
p1, p2, . . . pk, such that for i ≥ 2, pi is vertex-disjoint from p1, p2, . . . , pi−1, except
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that for the two ends of pi, each of which is on some pj for j < i. A bipolar
numbering of G is a numbering of the vertices of G from 1 to n such that, each
vertex except those numbered 1 and n is adjacent both to a lower-numbered and to
a higher-numbered vertex.

Theorem: The following three conditions are equivalent:

(i) G with the addition of the edge (s, t) is biconnected;

(ii) G has an open ear decomposition such that p1 has ends s and t;

(iii) G has a bipolar numbering with s number 1 and t number n.

Exercise: Prove that (ii) ⇔ (iii) ⇒ (i).

We shall prove that (i)⇒ (ii),(iii) via linear-time algorithms to compute an ear
decomposition and a bipolar numbering. First we give a linear-time algorithm to
find blocks. This algorithm resembles Method 2 for finding strong components, but
it uses an edge stack in place of a vertex stack and the L-values it computes do not
depend upon the manipulation of the stack.

Finding Blocks

Let pre(v) for a vertex v be the preorder number assigned to v by a depth-first
search. Let L(v) for a vertex v be defined by

L(v) = min{pre(w) | there is a path consisting of zero or more

tree edges followed by at most one cycle edge from v to w}.

Lemma: A vertex v is a cut vertex iff either

(i) v is the root of a depth-first spanning tree and v has at least two

children; or

(ii) v is not a root but has a child w such that L(w) ≥ pre(v).

Lemma: An edge (v,w) is a cut edge iff it is a tree edge with v the parent of w

and L(w) ≥ pre w.
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Exercise: Prove these lemmas.

Block-finding algorithm.

Begin with an empty edge stack and perform a depth-first search. When first
visiting a vertex v, compute pre(v) and initialize L(v) = pre(v). When advancing
along an edge (v,w), add (v,w) to the stack. When retreating along an edge (v,w),
if (v,w) is a cycle edge, replace L(v) by min{L(v), pre(w)}. Otherwise, i.e. (v,w) is
a tree edge, replace L(v) by min{L(v), L(w)} and, if L(w) ≥ pre(v), pop all edges
down to and including (v,w) on the stack and declare these edges to define a block.

Exercise: Verify the correctness and O(n+m) running time of this algorithm.

Finding an ear decomposition.

The ear decomposition algorithm consists of three passes. The first pass per-
forms a depth-first search of G with edge (s, t) added, starting at vertex s and first
advancing along edge (s, t). During the search, preorder numbers and L-values are
computed as in the block-finding algorithm. The second pass rearranges the inci-
dence lists so that, for each vertex v, the first edge (v,w) is either a cycle edge
with pre(w) = L(v) or a tree edge with L(w) = L(v). The third pass is another
depth-first search of G beginning with edge (s, t) that constructs a sequence of the
edges other than (s, t) in the order it advances along them. This edge sequence is
partitioned into paths, one per cycle edge, making each cycle edge last on its path.
(Each path consists of zero or more tree edges followed by a cycle edge.) This gives
an open ear decomposition.

Exercise: Verify the correctness and O(n+m) running time of this algorithm.

Hint: Use the lemma characterizing cut vertices. You must show that each edge
sequence in the partition actually forms a path, starting and ending at vertices on
previous paths, that the last edge advanced along is a cycle edge, and that each
path is simple.
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Finding a bipolar numbering.

The bipolar numbering algorithm consists of two passes. The first pass is a
depth-first search of G with edge (s, t) added, beginning at vertex s and first ad-
vancing along edge (s, t). During the search, preorder numbers and L-values are
computed, as well as the parent p(v) of each vertex v in the depth-first spanning
tree. The first pass can if necessary test that G with edge (s, t) added is bicon-
nected. The second pass constructs a list X of the vertices, such that if the vertices
are numbered in the order they occur in X, a bipolar numbering results. The second
pass processes the vertices in preorder. During this pass, each vertex u that is a
proper ancestor of the current vertex v has a sign that is minus if u precedes v in X
and plus if u follows v in X. Initially X = [s, t] and s has sign minus. The second
pass consists of repeating the following step for each vertex v /∈ {s, t} in preorder:

• If sign(L((v)) = plus , insert v after p(v) in L and set sign(p(v)) = minus ;

• If sign(L(v)) = minus , insert v before p(v) in L and set sign(p(v)) = plus .

Exercise: Verify the correctness and O(n+m) running time of this algorithm. You
must show that (i) the signs assigned to vertices that are proper ancestors of the
current vertex have the claimed meaning, and (ii) if vertices are numbered in the
order they occur in L, a bipolar numbering results.

Exercise: Determine the relationship between the ear decomposition algorithm and
the bipolar numbering algorithm.
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