
Iterative Modulo Scheduling:

An Algorithm For Software Pipelining

B. Ramakrishna Rau

Loops

Hewlett-Packard Laboratories, 1501 Page Mill Road, Bldg. 3L, Palo Alto, CA 94304

Abstract

Modulo scheduling is a framework within which a wide variety

of algorithms and heuristics may be defined for software
pipelining innermost loops. This paper presents a practical
algorithm, iterative modulo scheduling, that is capable of

dealing with realistic machine models. This paper also

characterizes the algorithm in terms of the quality of the
generated schedules as well the computational expense

incurred.

Keywords: modulo scheduling, instruction scheduling,
software pipelining, loop scheduling.

1 Introduction

It is well known that, as a rule, there is inadequate instrtrction-
level parallelism (ILP) between the operations in a single basic

block and that higher levels of parallelism can only result from
exploiting the ILP between successive basic blocks. Global

acyclic scheduling techniques, such as trace scheduling [13, 23]

and superblock scheduling [19], do so by moving operations

from their original basic blocks to preceding or succeeding

basic blocks. In the case of loops, the successive basic blocks

correspond to the successive iterations of the loop rather than

to a sequence of distinct basic blocks.

Various cyclic scheduling schemes have been developed in

order to achieve higher levels of ILP by moving operations
across iteration boundaries, i.e., either forward to previous

iterations or backward to succeeding iterations. One approach,
“unroll-before-scheduling”, is to unroll the loop some number

of times and to apply a global acyclic scheduling algorithm to
the unrolled loop body [13, 19, 23]. This achieves overlap

between the iterations in the unrolled loop body, but still
maintains a scheduling barrier at the back-edge. The resulting
performance degradation can be reduced by increasing the

extent of the unrolling, but it is at the cost of increased code

size.

Software pipelining [8] refers to a class of global cyclic

scheduling algorithms which impose no such scheduling

barrier. One way of performing software pipelining, the “move-
then-schedule” approach, is to move instructions, one by one,
across the back-edge of the loop, in either the forward or the
backward direction [11, 12, 20, 15, 28]. Although such code
motion can yield improvements in the schedule, it is not always

clear which operations should be moved around the back edge,

in which direction and how many times to get the best results.
The process is somewhat arbitrary and reminiscent of early

attempts at global acyclic scheduling by the ad hoc motion of

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and Its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
MICRO 27- 11/94 San Jose CA USA
Q 1994 ACM 0-89791 -707-3/94/001 1..$3.50

63

code between basic blocks [42]. On the other hand, this

currently represents the only approach to software pipelining
that at least has the potential to handle loops containing

control flow in a near-optimal fashion, and which has actually
been implemented [28]. How close it gets, in practice, to the

optimal has not been studied and, in fact, for this approach,
even the notion of “optimal” has not been defined.

The other approach, the “schedule-then-move” approach, is to
instead focus directly on the creation of a schedule that

maximizes performance, and to subsequently ascertain the code

motions that are implicit in the schedule. Once again, there are
two ways of doing this. The first, “unroll-while-scheduling”, is

to simukaneousIy unroll and schedule the loop until one gets

to a point at which the rest of the schedule would be a
repetition of an existing portion of the schedule [3]. Instead of

further unrolling and scheduling, one can terminate the process

by generating a branch back to the beginning of the repetitive
portion. Recognition of this situation requires that one
maintain the state of the scheduling process, which includes at

least the following information: knowledge of how many
iterations are in execution and, for each one, which operations

have been scheduled, when their results will be available, what

machine resources have been committed to their execution into
the future and are, hence, unavailable, and which register has

been allocated to each result. All of this has to be identical if

one is to be able to branch back to a previously generated
portion of the schedule. Computing, recording and comparing

this state presents certain engineering challenges that have not

yet been addressed by a serious implementation. On the other
hand. by focusing solely on creating a good schedule, with no
scheduling barriers and no ad hoc, a priori decisions regarding

inter-block code motion, such unroll-while-scheduling

schemes have the potential of yielding very good schedules
even on loops containing control flow.

Another “schedule-then-move” approach is modulo scheduling

[34], a framework within which algorithms of this kind may be
defined’. The framework specifies a set of constraints that must

be met in order to achieve a legal modulo schedule. The
objective of modulo scheduling is to engineer a schedule for

one iteration2 of the loop such that when this same schedule is

repeated at regular intervals, no intra- or inter-iteration

dependence is violated, and no resource usage conflict arises
between operations of either the same or distinct iterations. This
constant interval between the start of successive iterations is

termed the initiation interval (II). In contrast to unrolling
approaches, the code expansion is quite limited. In fact, with

the appropriate hardware support, there need be no code

expansion whatsoever [36]. Once the modulo schedule has been

I The Orngnd we of the term “sgfc~ae pipelini~~” by Charleswortb was to refer
to a limited form of modulo scheduhng However, current usage of the term has
broadened Its meanmg to the one Indicated here

2 As we shall see shortly, m cerkun cases It may be benefical to unroll the loop
body a few times prior to modulo scheduhng, In which case, the “single
iteration” that we are discussing here may correspond to multiple iterations of the
orlglnal loop However, unrolhng IS not m essentml part of modulo scheduling

created, all the implied code motions and the complete

structure of the code, including the placement and the target of
the loopback branch, can all be determined [33].

Modulo scheduling an innermost loop consists of a number of

steps, only one of which is the actual modulo scheduling
process.

.

.

●

✎

✎

✎

●

✎

✎

●

✎

In general, the body of the loop is an acyclic control flow
graph. With the use of either profile information or

heuristics, only those control flow paths that are expected

to be frequently executed can be selected as is done with

hyperblock scheduling [25]. This defines the region that is

to be modulo scheduled.

Within this region, memory reference data flow analysis

and optimization are performed in order to eliminate
partially redundant loads and stores [32, 10]. This can

improve the schedule if either a load is on a critical path or

If the memory ports are the critical (most heavily used)
resources.

At this point, the selected region is IF-converted, with the

result that all branches except for the loop-closing branch
disappear [4, 29. 10]. With control flow converted to data

dependence involving predicates [37, 5], the region now

looks like a single basic block.

Anti- and output dependence are minimized by putting
the computation into the dynamic single assignment form

[32].

If control dependence are the limiting factor in schedule
performance, they may be selectively ignored thereby

enabling speculative code motion [41, 24].

Back-substitution of data and control dependence may be
employed to further reduce critical path lengths [38, 10].

Next, the lower bound on the initiation interval is

computed. If this is not an integer, and if the percentage
degradation in rounding it up to the next larger integer is

unacceptably high, the body of the loop may be unrolled

prior to scheduling.

At this point, the actual modulo scheduling is performed.

If rotating registers [37, 5] are absent, the kernel (i.e., the
new loop body after modulo scheduling has been
performed) is unrolled to enable modulo variable
expansion [21].

The appropriate prologue and epilogue code sequences are
generated depending on whether this is a DO-loop,

WHILE-loop or a loop with early exits, and on whether
predicated execution and rotating registers are present in

the hardware [36]. (The schedule for the kernel may be

adapted for the prologue and epilogues. Alternatively, the
prologue and epilogues can be scheduled along with the
rest of the code surrounding the loop while honoring the

constraints imposed by the schedule for the kernel.)

Rotating register allocation [35] (or traditional register
allocation if modulo variable expansion was done) is

performed for the kernel. The prologue and epilogues are
treated along with the rest of the code surrounding the
loop in such a way as to honor the constraints imposed by

the register allocation for the kernel.

● Finally, if the hardware has no predicated execution
capability [37, 5], reverse IF-conversion [46] is employed

to regenerate control flow.

The subject of this paper is the modulo scheduling algorithm
itself, which is at the heart of this entire process. This includes
the computation of the lower bound on the initiation interval.
The reader is referred to the papers cited above for a discussion

of the other steps that either precede or follow the actual
scheduling.

Although the modulo scheduling framework was formulated

over a decade ago [34], at least two product compilers have

incorporated modulo scheduling algorithms [30, 10], and any

number of research papers have been written on this topic [16,

21, 41, 39, 44, 45, 18], there exists a vague and unfounded
perception that modulo scheduling is computationally

expensive, too complicated to implement, and that the

resulting schedules are sub-optimal. In large part, this is due to
the fact that there has been little work done to evaluate and
compare alternative algorithms and heuristics for modulo

scheduling from the viewpoints of schedule quality as well as
computational complexity.

This paper takes a first step in this direction by describing a

practical modulo scheduling algorithm which is capable of

dealing with realistic machine models. Also, it reports on a
detailed evaluation of the quality of the schedules generated

and the computational complexity of the scheduling process.
For lack of space, this paper does not even attempt to provide a

comparison of the algorithm described here to other alternative

approaches for software pipelining. Such a comparison will be
reported elsewhere. Also, the goal of this paper is not to justify
software pipelining. The benefits of this, just as with any other

compiler optimization or transformation, are highly dependent
upon the workload that is of interest, Each compiler writer must

make his or her own appraisal of the value of this capability in

the context of the expected workload.

The remainder of this paper is organized as follows. Section 2

discusses the algorithms used to compute the lower bound on

the initiation interval. Section 3 describes the iterative modulo

scheduling algorithm. Section 4 presents experimental data on

the quality of the modulo schedules and on the computational

complexity of the algorithms used, and Section 5 states the
conclusions.

2 The minimum initiation interval (MII)

Modulo scheduling requires that a candidate II be selected

before scheduling is attempted [34]. A smaller II corresponds to
a shorter execution time. The minimum initiation interval
(MII) is a lower bound on the smallest possible value of II for

which a modulo schedule exists. The candidate 11 is initially set

equal to the MH and increased until a modulo schedule is
obtained. The MII can be determined either by a critical
resource that is fully utilized or a critical chain of dependence
running through the loop iterations, The MII can be calculated
through an analysis of the computation graph for the loop

body. One lower bound is derived from the resource usage
requirements of the computation. This is termed the resource-

constrained MII (ResMII). The recurrence-constrained MII
(RecMII) is derived from latency calculations around
elementary circuits in the dependence graph for the loop body.

The MH must be equal to or greater than both the ResMH and

the RecMII. Thus

MII = Max (ResMII, RecMII).

64

Any legal II must be equal to or greater than the MII. It should

be noted that, in the face of recurrences and/or complex patterns

of resource usage, the MII is not necessarily an achievable lower
bound [33].

2.1 The resource-constrained MII (ResMII)

The resource-constrained lower bound on the II, ResMII, is

calculated by totaling, for each resource, the usage
requirements imposed by one iteration of the loop. For this

purpose, we shall consider resources that are at the level of a

pipeline stage of a functional unit, a bus or a field in the

instruction format. The resource usage of a particular opcode is

specified as a list of resources and the attendent times at which

each of those resources is used by the operation relative to the
time of issue of the operation. Figure 1a is a pictorial
representation of the resource usage pattern of a highly
pipelined ALU operation, with an execution latency of four

cycles, which uses the two source operand buses on the cycle of

issue, uses the two pipeline stages of the ALU on the next two
cycles, respectively, and then uses the result bus on its last cycle

of execution. Likewise, Figure lb shows the resource usage

pattern of a multiply operation on the multplier pipeline. This

method of modelling resource usage is termed a reservation
table [9].

From these two reservation tables, it is evident that an ALU
operation (such as an add) and a multiply cannot be scheduled

for issue at the same time since they will collide in their usage

of the source buses. Furthermore, although a multiply may be
issued any number of cycles after an add, an add may not be
issued two cycles after a multiply since this will result in a

collision on the result bus.

When performing scheduling with a realistic machine model, a

data structure similar to the reservation table is employed to

record that a particular resource is in use by a particular

operation at a given time. We shall refer to this as the schedule

reservation table to distinguish it from those for the

individual operations. When an operation is scheduled, its

resource usage is recorded by translating, in time, its own

reservation table by an amount equal to the time at which it is

scheduled, and then overlaying it on the schedule reservation
table. Scheduling it at that time is legal only if the translated
reservation table does not attempt to reserve any resource at a

time when it is already reserved in the schedule reservation
table. When backtracking, an operation may be “unscheduled”

by reversing this process.

The nature of the reservation tables for the opcode repertoire of

a machine determine the complexity both of computing the

ResMH and of scheduling the loop. A simple reservation table

is one which uses a single resource for a single cycle on the

cycle of issue. A block reservation table uses a single resource
for multiple, consecutive cycles starting with the cycle of issue.
Any other type of reservation table is termed a complex
reservation table. Block and complex reservation tables cause
increasing levels of difficulty for the scheduler. Both
reservation tables in Figure 1 are complex. If, however, the

ALU and multiplier possessed their own source and result buses

and if all operations that used these two pipelines used
precisely the same reservation table, then both reservation

tables could be abstracted by simple reservation tables.

A particular operation may be executable on multiple
functional units, in which case it is said to have multiple
alternatives, with a different reservation table corresponding
tc, each one. Furthermore, these functional units might not be

equivalent. For instance, a floating-point multiply might be

executable on two functional units of which only one is
capable of executing divide operations.

Time

o

1

2

3

Time

o

1

2

3

4

5

~ I ALU I Multiplier I

(a)

(b)

Figure 1. Reservation tables for (a) a pipelined add, and (b) a
pipelined multipl~.

The exact ResMII can be computed by performing a bin-
packing of the reservation tables for all the operations. Bin-
packing is a problem which is of exponential complexity.
Complex reservation tables and multiple alternatives make it
worse yet and it is impractical, in general, to compute the

ResMII exactly. Instead, an approximate value must be

computed. Accordingly, the ResMII is computed by first
sorting the operations in the loop body in increasing order of

the number of alternatives, i.e., degrees of freedom. As each

operation is taken in order from this list, the number of times it
uses each resource is added to the usage count for that resource.

For each operation, that alternative is selected which yields the

lowest partial ResMII, i.e., the usage count of the most heavily
used resource at that point. When all operations have been
considered, the usage count for the most heavily used resource
constitutes the ResMII.

2.2 The recurrence-constrained MII (RecMIl)

A loop contains a recurrence if an operation in one iteration of

the loop has a direct or indirect dependence upon the same
operation from a previous iteration, The dependence in
question may either be data dependence (flow, anti- or output)
or control dependence. Clearly, in the chain of dependence
between the two instances of the operation, one or more

65

dependence must be between operations that are in different
iterations. We shall refer to such dependence as inter-iteration

dependencesl. Dependence between operations in the same

iteration are termed intra-iteration dependence. A single

notation can be trsed to represent both types of dependence.

The distance of a dependence is the number of iterations

separating the two operations involved. A dependence with a

distance of O connects operations in the same iteration, a

dependence from an operation in one iteration to an operation

in the next one has a distance of 1, and so on. All undesirable

anti- and output dependence are assumed to have been

eliminated, in apreceeding step, by the use of expanded virtual
registers (EVRS) and dynamic single assignment [32]. Briefly,

an EVR extends the concept of a virtual register to one that can

retain the entire sequence of values written to that EVR. Since

earlier values are never overwritten and destroyed, anti-
dependences can be eliminated, even in cyclic code in which

the same operation is executed repeatedly. (Of course, like
conventional virtual registers, 13VRS cannot be implemented in
hardware. This discrepancy is handled by the register allocator.

Rotating registers [37, 5] provide hardware support for EVRS in

innermost loops, but are not essential.)

Table 1: Formulae for calculating the delay on dependence

edges.

Type of Delay Conservative
dependence Delay

Flow dependence Latency (pred) Latency (pred)

Anti-dependence l-Latency (succ) o

output l+ Latency (pred)- Latency (pred)
dependence Latency (succ)

The dependence can be represented as a graph, with each

operation represented by a vertex in the graph and each

dependence represented by a directed edge from an operation

to one of its immediate successor operations. There may be
multiple edges, possibly with opposite directions, between the

same pair of vertices. The dependence distance is indicated as a
label on the edge. Additionally, each edge possesses a second
attribute, which is the delay, i.e., the minimum time interval
that must exist between the start of the predecessor operation

and the start of the successor operation. In general, this is
influenced by the type of the dependence edge and the

execution latencies of the two operations as specified in Table

1. For a classical VLIW processor with non-unit architectural
latencies, the delay for an anti-dependence or output

dependence can be negative if the latency of the successor is

sufficiently large. This is because it is only necessary that the
predecessor start at the same time as or finish before,
respectively, the successor finishes. A more conservative

formula for the computation of the delay, which assumes only
that the latency of the successor is not less than 1. is also shown

in Table 1. This is more appropriate forsuperscalar processors.

The recurrence-constrained lower bound on II, RecMII, is

calculated using this dependence graph. The existence of a
recurrence manifests itself as a circuit in the dependence graph.
Assume that the sum of the delays along some elementary

circuit2 c in the graph is Delay(c) and that the sum of the
distances along that circuit is Distance(c). The existence of such

a circuit imposes the constraint that the scheduled time interval

between an operation on this circuit and the same operation
Distance(c) iterations later must be at least Delay(c). However,

by definition, this time interval is Distance(c)* II.
Consequently, we have the constraint that

Delay(c) - II* Distance(c) <0.

This is the constraint upon the H imposed by this one
recurrence circuit. The RecMII is determined by considering the

worst-case constraint across all circuits. One approach is to

enumerate all the elementary circuits in the graph [40, 26] as
was done in the Cydra 5 compiler, calculate the smallest value

of II that satisfies the above inequality for that circuit, and to
use the largest such value across all circuits.

The second approach, theoneused in this study, isto pose the

problem as aminimal cost-to-time ratio cycle problem [22] as
proposed by Huff [18]. The algorithm ComputeMinDist

computes, for a given II, the MinDist matrix whose [i, j] entry

specifies the minimum permissible interval between the time at

which operation i is scheduled and the time at which operation
j, in the same iteration, is scheduled. If there is no path from i to
j in the dependence graph, the value of the entry is -~. If

MinDist[i, i] is positive for any i, it means that i must be

scheduled later than itself, which is clearly impossible. This
indicates that the II is too small and must be increased until no

diagonal entry is positive. On the other hand, if all the
diagonal entries are negative, it indicates that there is slack
around every recurrence circuit and that the II is larger than it

need be. Since we are interested in finding the minimum legal
II, at least one of the diagonal entries should be equal to O. The

smallest value of II, for which no diagonal entry is positive and

at least one is zero, is the RecMII.

ComputeMinDist begins by initializing MinDist[i, j] with the

minimum permissible time interval between i and j considering

only the edges from i to j. If there is no such edge, MinDlst[i, j]
is initialized to -~. If e is an edge from i to j and If Distance(e)

is zero, then edge e specifies that MinDist[i, j] be at least
Distance(e). If, however, Distance(e) = d >0, then the interval
between the operation i from one iteration and the operation j
from d iterations later must be at least Distance(e). Since the

operation j from the same iteration as i is scheduled d*II cycles

earlier, MinDist[i, j] must be at least as large as Distance(e) -
d* II. Once MinDist has been initialized, the minimal cost-to-

time ratio cycle algorithm is used to compute MinDist.

Since the algorithm ComputeMinDist is 0(N3) and expensive

for large values of N, the number of operations in the loop, it is

desirable that it be invoked at few times as possible. In a

production compiler, since one is interested not in the RecMH
but only in the MII, the initial trial value of II should be the

ResMII. If this yields no positive diagonal entry in the MinDist
matrix, then it IS the MII Otherwise, the candidate MI1 is
incremented until there are no positive entries on the diagonal.
The value of the increment is doubled each time the MII is

incremented. The candidate MII at this point is greater than or
equal to the RecMII. A binary search is performed between this
last, successful candidate MII and the previous unsuccessful

value until the RecMII is found.

1 such dependen~e~ ~e often referred to M loop-mrned dependence.

2 An elementary circuit in a graph IS a path through the graph which starts and
ends at the same vertex (operation) and which does not wslt any vertex on the
c]rcuit more than once,

66

conventional acyclic list scheduling algorithm. The points of

difference are as follows.

procedure ModuloSchedule (BudgetRat io: real) ;

{ BudgetRatio is the ratio of the maximum number of)
{ operation scheduling steps attempted (before giving)
{ up and trying a larger initiation interval) to the)

{ number of operations in the looP.)

begin

{ Initialize the value of II to the)

{ Minim-m Initiation Interval)

II := MII ();

(Perform iterative scheduling, first for II = MII and)
{ then for successively larger values of 11, until all)
{ operations have been scheduled)

Budget : = BudgetRat io*NumberOfOperat ions;
whl le (not I terat iveSchedule (I I, Budget)) do

II := II + 1;

end; { ModuloSchedule }

Figure 2. The procedure ModuloSchedule.

The statistics presented in Section 4 on the number of

operations in a loop show that N can be quite large and, so,
0(N3) complexity is a matter of some concern. This problem

can be addressed by considering small subsets of the overall
dependence graph when computing the RecMII. A strongly

connected component (SCC) of a graph is a maximal set of
vertices and the edges between them such that a path exists in

the graph from every vertex to every other vertex. By

definition, all the operations on a recurrence circuit must be

part of the same SCC. The important observation is that the
RecMII can be computed as the largest of the RecMII values for

each individual SCC in the graph. As the statistics in Section 4

demonstrate, there are very few SCCS that are large, and 0(N3)
is quite a bit more tolerable for the small values of N
encountered when N is the number of operations in a single

Sec.

The same algorithm, ComputeMinDist can be used. The only

difference is that it is fed the dependence graph for one SCC at

a time rather than that for the entire loop. Each time

ComputeMinDist is invoked with a new SCC, the initial

starting value of the candidate MII is the resulting MII as
computed with the previous SCC. For the first SCC, the initial
value of MII is the ResMH.

3 Iterative modulo scheduling

3.1 The basic algorithm

Although a number of iterative algorithms and priority

functions were investigated [33], simple extensions of the

acyclic list scheduling algorithm and the commonly used

height-based priority function proved to be near-best in
schedule quality and near-best in computational complexity.
The need for an iterative algorithm and the intuition

underlying the selected heuristics are explained elsewhere [33].
The iterative modulo scheduling algorithm is shown in Figures

2-4. It assumes that two pseudo-operations, START and STOP,
are added to the dependence graph. START and STOP are made

to be the predecessor and successor, respectively. of all the other
operations in the graph. Procedure ModtrloSchedule calls

IterativeSchedule with successively larger values of H, starting
with an initial value equal to the MH, until the loop has been
scheduled. IterativeSchedule looks very much like the

.

.

.

●

✎

●

In view of the fact that an operation can be unscheduled
and then rescheduled, operation scheduling, rather than
instruction scheduling, is employedl. Also, the acyclic list

scheduling notion that an operation becomes “ready” and
may be scheduled only after its predecessors have been

scheduled, has little value in iterative modulo scheduling

since it is possible for a predecessor operation to be
unscheduled after its successor has been scheduled.

The function HighestPriority Operation, which returns the

unscheduled operation that has the highest priority in
accordance with the priority scheme in use, may return the

same operation multiple times if that operation has been

unscheduled in the interim. This does not occur in acyclic
list scheduling. The priority scheme used is discussed in
Section 3.2.

The calculation of Estart, the earliest start time for an
operation as constrained by its dependence on its

predecessors, is affected by the fact that operations can be

unscheduled. When an operation is picked to be scheduled
next, it is possible that one or more of its predecessors is no

longer scheduled. Moreover, when scheduling the first

operation in a SCC, it must necessarily be the case that at
least one of its predecessors has not yet been scheduled.

The formula for calculating Estart is discussed in Section

3.3.

Adherence to the modulo constraint is facilitated by the

use of a special version of the schedule reservation table

[34]. If scheduling an operation at some particular time

involves the use of resource R at time T, then location

((T mod H),R) of the table is used to record it.
Consequently, the schedule reservation table need only be

as long as the II. Such a reservation table has,

subsequently, been named a modulo reservation table
(MRT) [21].

Since resource reservations are made on a MRT, a conflict

at time T implies conflicts at all times T + k* II. So, it is
sufficient to consider a contiguous set of candidate times

that span an interval of II time slots. Therefore, MaxTime,

which is the largest time slot that will be considered, is set

to MinTime + 11- 1, whereas in acyclic list scheduling it is
effectively set to infinity.

FmdTimeSlot picks the time slot at which the currently
selected operation will be scheduled. If MaxTime is
infinite (and if a regular, linear schedule reservation table

is employed), as it will be for acyclic scheduling, the
functioning of FindTime Slot is just as it would be for list

scheduling; the while-loop always exits having found a

legal, conflict-free time slot. Since a MRT is used with
modulo scheduling, MaxTime is at most (MinTime + H -
1). It is possible for the while-loop to terminate without

having found a conflict-free time slot. At this point, it is
clear that it is not possible to schedule the current
operation without unscheduling one or more operations.

The method for selecting which operations to unscheduled
is discussed in Section 3.4.

1 Instmctlon ~cheduhng operates by plckmg a current time and scheduhng as

many operations as possible at that time before moving on to the next time slot
In contrast, operation scheduhng picks an operation and schedules it at whatever
ume slot IS both legal and most desmable. EKher style of scheduhng can be used
in Iterative modulo scheduling, but the latter seems more natural.

67

function IterativeSchedule (II, Budget: integer) : boolean;

{ Budget is the manmm number of operations scheduled)

{ before giving UP and tming a larger Lnlt i at ion)
{ interval. II is the current value of the initiation)
{ interval for which modulo scheduling IS being)
{ attempted. 1

var
Operation, Estart: integer;
MinTime, MaxTime, TimeSlot. integer;

begin
(compute height-based priorities }

HeightR;

{ schedule START operation at time O)
schedule (STAHT, O) ;
Budget : = Budget - 1;

(Mark all other operations as)
{ having never been scheduled)

for Operation : = 2 to NunrberOfCperations do
NeverScheduled [Cperationl = true;

{ Continue iterative scheduling until either all)

(operations have been scheduled, or the budget is)
{ exhausted.)

while (the list of unscheduled operations is not empty)
and (Budget > 0) do

begin

(Pick the highest priority operation }
{ from the prioritized list)

Operation : = HighestPriorltyOperatlon() ;

{ Estart is the earliest start time for)
{ operation as constrained by currently)

{ scheduled predecessors)
Estart : = CalculateEarlyStart (Operation) ;

MmTlme : = Estart;
MaxTime : = MinTime + II - 1;

{ Select time at which Operation }
{ is to be scheduled)

TimeSlot : = FindTimeSlot (Operation, MinTime,
MaxT ime) ;

(The procedure Schedule schedules Operation at)
{ time TimeSlot. In so doing, it displaces all)

{ previously scheduled nodes that conflict with)
{ it either due to resource conflicts or)
{ dependence constraints. It also sets)
{ NeverScheduled[Operatlonl equal to faL5e.)

Schedule (Operation, TimeSlot) ;
Budget : = Budget - 1;

snd; { while)

IterativeSchedule :. (the list of unscheduled
operations is empty) ;

end; { Iterat iveSchedule }

Figure 3. The function IterativeSchedule.

3.2 Computation of the scheduling priority

As is the case for acyclic list scheduling, there is a limitless
number of priority functions that can b: devised for modulo

scheduling. Most of the ones used have been such as to give
priority, one way or other, to operations that are on a recurrence

circuit over those that are not [16, 21, 10]. This, to reflect that
fact that it is more difficult to schedule such operations since

all but the first one scheduled in a SCC are subject to a

deadline. Instead, we shall use a priority function that is a direct

extension of the height-based priority [17, 31] that is popular
in acyclic list scheduling [1].

function FindTimeSlot (Operation, MinTlme,
MaxTime: integer) integer;

var
CurrTime, SchedSlot: integer;

begin
CurrTime : = MinTime;
SchedSlot :. null;
while (SchedSlot = null) and (CurrTime <. MaxTlme) do

if ResourceConflict (Operation, CurrTime) then

{ There is a resource conflict at)
{ CurrTime. Try the next time slot. }

CurrTime : = CurrTime + 1
else
{ There is no resource conflict at CurrTime.)
(Select this time slot .Note that dependence)

{ conflicts with successor operations are)
{ Ignored. Dependence constraints due to)
{ predecessor operations were honored in)
{ the computation of MinTime.)

SchedSlot : = CurrTlme;

If a legal slot was not found, then pick (in
decreasing order of priority) the first available I
option from the following)

)
- MmTlme, either If this IS the first time that)

Operation is being scheduled, or if MinTime is }
greater than PrevScheduleTime [Operation] , (where }
PrevSchedul eTlme [OPerat Ion] Is the t Lme at which)

Operation was last scheduled))
- PrevSchedul eTime [Operat ion] + 1)

If SchedSlot . null then
if (NeverScheduled [Operation]) or

(MinTime . PrevScheduleTime [oPerat Ion]) then
SchedSlot : = MinTime

else
SchedSlot :. PrevScheduleTime [Operation] + 1;

FindTimeSlot : = SchedSlot;

snd; { FmdTlmeSlot)

Figure 4. The function FindTimeSlot,

Extending the height-based priority function for use in

iterative ~odulo sch~duling req~ires that we take into account

inter-iteration dependence. Consider a successor Q of

operation P with a dependence edge from P to Q having a

distance of D. Assume that the operation Q that is in the same
iteration as P has a height-based priority of H. Now, P’s

successor is actually D iterations later, and the STOP pseudo-

operation D iterations later is II*D cycles later than the STOP

pseudo-operation in the same iteration So, the height-based
priority of successor Q is effectively H-II*D. The priority
function used for iterative modulo scheduling, HeightR(), is

obtained by solving the system of implicit equations in
Figure 5a.

If the MinDist matrix for the entire dependence graph has been

computed, HeightR(P) is directly available as
MinDist[P, STOP]. A less costly procedure is to iteratively
solve the above implicit set of equations for HeightR(), An

algorithm that is based on that for identifying the SCCS of a
graph during a depth-first traversal of the graph [2] was
employed Thlsalgorithm is described elsewhere [33].

68

{

o, if Pis the STOP pseudo-op,

HeightR(P) =
Max (HeightR(Q) + Delay (P,Q) - H* Distance(P,Q)), otherwise.

Q . SUCC(P)

(a)

[

o, if Q is unscheduled
Estart(P) = Max

Qe Pred(P) Max(O, SchedTime(Q) + Delay (Q,P) - II* Distance(Q,P)), otherwise)

(b)

Figure 5. (a) The equation for the height-based priority, (b) The equation for Estart.

HeightR() has a couple of good properties. As we shall see in

Section 4, a large fraction of the loops are quite simple in their
structure. For such loops there is a very good chance of

scheduling them in one pass, but only if the operations are

scheduled in topological sort order. HeightR() ensures this,

Second, HeightR() gives higher priority to operations in those

SCCS which have less slack. This makes HeightR() an effective

heuristic in loops which have multiple, non-trivial SCCS.

3.3 Calculation of the range of candidate time slots

The MRT enforces correct schedules from a resource usage
viewpoint. Correctness, from the viewpoint of dependence

constraints imposed by predecessors, is taken care of by
computing and using Estart, the earliest time that the operation
in question may be scheduled while honoring the its

dependence on its predecessors. In the context of recurrences

and iterative modulo scheduling, it is impossible to guarantee
that all of an operation’s predecessors have been scheduled, and

have remained scheduled, when the time comes to schedule the
operation in question. So, Estart is calculated considering only

those immediate predecessors that are currently scheduled. The
early start time for operation P is given by the equation in

Figure 5b, where Pred(P) is the set of immediate predecessors of
P and SchedTime(Q) is the time at which Q has been scheduled.

Dependence with predecessor operations are honored by not

scheduling an operation before its Estart. Dependence with

successors operations are honored by virtue of the fact that

when an operation is scheduled, all operations that conflict

with it, either because of resource usage or due to dependence
conflicts, are unscheduled. When these operations are scheduled

subsequently, and Estart is computed for them, the dependence

constraints are observed. At any point in time, the partial

schedule for the currently scheduled operations fully honors all

constraints between these scheduled operations.

It is pointless and redundant to consider more than II

contiguous time slots starting with Estart. If a legal time slot is

not found in this range because of resource conflicts, it will not
be found outside this range. Therefore, MaxTime is set equal to

Estart + H -1.

3.4 Selection of operations to be unscheduled

Assume that a time slot is found, between MinTime and

MaxTime, that does not result in a resource conflict with any

currently scheduled operation. The only operations that will
need to be unscheduled are those immediate successors with
whom there is a dependence conflict. However, no operation

need be unscheduled because of a resource conflict.

On the other hand, if every time slot from MinTime to
MaxTime results in a resource conflict then we must make two
decisions. First, we must choose a time slot in which to schedule

the current operation and, second, we must choose which

currently scheduled operations to displace from the schedule.

The first decision is made with an eye to ensuring forward
progress; in the event that the current operation was previously

scheduled, it will not be rescheduled at the same time. This
avoids a situation where two operations keep displacing each

other endlessly from the schedule. If Estart is less than the

previous schedule time, the operation is scheduled at Estart, If

not, it is scheduled one cycle later than it was scheduled

previously,

Regardless of which time slot we choose to schedule the

operation, one or more operations will have to be unscheduled

because of resource conflicts. In the event that there are

multiple alternatives for scheduling an operation the choice of

alternative determines which operations are unscheduled.
Ideally, we would like to select that alternative which displaces

the lowest priority operations. Instead of attempting to make

this determination directly, all operations are unscheduled
which conflict with the use of any of the alternatives. The

current operation is then scheduled using one of the

alternatives. The displaced operations will then be rescheduled,

perhaps at the very same time, in the order specified by the
priority function.

4 Experimental results

4.1 The experimental setup

The experimental input to the research scheduler was obtained

from the Perfect Club benchmark suite [6], the Spec

benchmarks [43] and the Livermore Fortran Kernels (LFK) [27]

using the Fortran77 compiler for the Cydra 5. The Cydra 5

compiler examines every innermost loop as a potential
candidate for modulo scheduling. Candidate loops are rejected
if they are not DO-loops, if they can exit early, if they contain

procedure calls, or if they contain more than 30 basic blocks
prior to IF-conversion [1 O]. For those loops that would have

been modulo scheduled by the Cydra 5 compiler, the
intermediate representation, just prior to modulo scheduling

but after load-store elimination, recurrence back-substitution

and IF-conversion, was written out to a file that was then read in

by the research scheduler. The input set to the research
scheduler consisted of 1327 loops (1002 from the Perfect Club,
298 from Spec, and 27 from the LFK).

In the Cydra 5, 64-bit precision arithmetic was implemented on
its 32-bit data paths by using each stage of the pipelines for two
consecutive cycles. This results in a large number of block and

complex reservation tables which, while they amplify the need

69

for iterative scheduling, are unrepresentative of future

microprocessors with 64-bit datapaths. A compiler switch was

used to force all computation into 32-bit precision so that,
from the scheduler’s point of view, the computation and the

reservation tables better reflect a machine with 64-bit

datapaths. The scheduling experiments were performed using
the detailed, precise reservation tables for the Cydra 5 as well as

the actual latencies (Table 2). The one exception is the load
latency which was assumed to be 20 cycles rather than the 26

cycles that the Cydra 5 compiler uses for modulo scheduled
loops.

Table 2. Relevant details of the machine model used by the

scheduler in these experiments.

Functional Unit Number Operations Latency

Memory port 2 Load 20
Store
Predicate setheset ;

Address ALU 2 Address add I 3
subtract

Adder 1 Integer/FLP 4
addlsubtract

Multiplier 1 Integer/FLP 5
mul~iply 22
Integer/FLP divide 26
FLP square-root

Instruction I 1 I Branch 13

4.2 Program statistics

Presented in Table 3 are various statistics on the nature of the

loops in the benchmarks utilized. The first column lists the

measurement,, the second column lists the minimum value that

the measurement can possibly yield, and the remaining
columns provide various aspects of the distribution statistics

for the quantity measured. The third column lists the frequency

with which the minimum possible value was encountered, the

fourth and the fifth columns specify the median and the mean
of the distribution, respectively, and the last column indicates

the maximum value that was encountered for that measurement.

As can be seen from Table 3, the number of operations per loop

is generally quite small but there is at least one loop which has

163 operations. The fact that the median is less than the mean
indicates a distribution that is heavily skewed towards small

values, but having a long tail. The MII behaves in much the

same way, as does the lower bound on the length of the modulo
schedule for a single iteration of the loop. The lower bound on

the modulo schedule length for a given II is the larger of

MinDist[START, STOP] and the actual schedule length

achieved by acyclic list scheduling. The large number of small

loops appears to be due to the presence in the benchmarks of a
large number of initialization loops.

Examining the distribution statistics in Table 3 for the

quantity Max(O, RecMII-ResMII) we find an even more
pronounced skew towards small values (mean = 4.54, maximum
= 115). What is noteworthy is that for 84% of all loops this

value is O, for 90% it is less than or equal to 20, and for 95~0 it
is less than or equal to 28. This has implications for the average

computational complexity of the MH calculation; 84% of the

time the RecMII is equal to or less than the ResMII and

ComputeMinDist need only be invoked once per SCC in the
loop.

A non-trivial SCC is one containing more than one operation.

From a scheduling perspective, an operation from a trivial SCC
need be treated no differently than one which is not in an SCC

as long as the II is greater than or equal to the RecMII implied

by the reflexive dependence edge. A loop can be more difficult
to schedule if the number of non-trivial SCCS in it is large.

Statistically, there tend to be very few SCCS per loop. In fact,

77~0 of the loops, the vectorizable ones, have no non-trivial
SCCS. These statistics affect the average complexity of

computing the MII.

Table 3. Distribution statistics for various measurements.

Measurement Minimum Frequency of Median Mean Maximum

Possible Minimum Value

Value Possible Value

Number of operations 4 0.004 12.00 19.54 163.00

MII 1 0.286 3.00 11.41 163.00

Minimum Modulo Schedule Length 4 0.045 31.00 35.79 211.00

max(O, RecMII - ResMII) o 0.840 0.00 4.54 115.00

Number of non-trivial SCCS o 0.773 0.00 0.32 6.00

Number of nodes per SCC 1 0.930 1.00 1.30 42.00

II - MII o 0.960 0.00 0.10 20.00

III MII 1 0.960 1.00 1.01 1.50

Schedule Length (ratio) 1 0.484 1.02 1.07 2.03

Execution Time (ratio) 1 0.539 1.00 1.05 1.50

Number of nodes scheduled (ratio) 1 0.900 1.00 1.03 4.33

70

The number of operations per SCC plays a role in determining

the average computational complexity of computing the

RecMII and the MII. The distribution is heavily skewed towards

small values. 93~0 of all SCCS consist of a single operation

(typically, the add that increments the value of an address into

an array), !XYO have 2 operations or less and 99~0 consist of 8

operations or less. These statistics, along with those for the

distribution of the difference between RecMII and ResMII,
suggest that the complexity of calculating the RecMII may be
expected to be small even though ComputeMinDist is O(N3) in

complexity. The analysis in Section 4.4 bears this out.

4.3 Characterization of iterative modulo scheduling

The total time spent executing a given loop (possibly over

multiple visits to the loop) is given by

Entry Freq*SL + (LoopFreq-EntryFreq) *II

where EntryFreq is the number of times the loop is entered,

LoopFreq is the number of times the loop body is traversed,
and SL is the schedule length for one iteration. The first two

quantities are obtained by profiling the benchmark programs.

This formula for execution time assumes that no time is spent in
processor stalls due to cache faults or other causes. Except in the

case of loops with very small trip counts, the coefficient of II is
far larger than that of SL, and the execution time is determined
primarily by the value of H. Consequently, II is the primary
metric of schedule quality and SL is the secondary metric.

Let DeltaII refer to the difference between the achieved II and

the MII. Table 3 shows that for 96?10 of all loops the lower

bound of MII is achieved. Of the 1327 loops scheduled, 32 had

a DeltaII of 1, 8 had a DeltaII of 2, and 11 had a DeltaII that was
greater than 2. Of these, all but two had a DekaII of 6 or less,

and those two had a DeltaII of 20. Iterative modulo scheduling
is quite successful in achieving optimal values of II. (It is worth

noting that MH is not necessarily an achievable lower bound

on II. The difference of the achieved II from the true, but
unknown, minimum possible II may be even less than that

indicated by these statistics.) These statistics also have
implications for the average computational complexity of

iterative modulo scheduling since the number of candidate MII
values considered is proportional to log2(DeltaII).

These statistics also indicate that it is not beneficial to evaluate

HeightR() symbolically, as a function of II, as is suggested by

Lam for computing Estart [21]. In either case. symbolic

computation is more expensive than a numerical computation.
The advantage of the symbolic computation is that the re-

evaluation of HeightR(), when the 11 is increased, is far less

expensive than recalculating it numerically. However, the

statistics on DeltaII show that this benefit would be derived for
only 4~o of the loops, whereas the higher cost of symbolic

evaluation would be incurred on all the loops.

A somewhat more meaningful measure of schedule quality is

the ratio of the achieved II to MII, i.e., the relative non-

optimality of the H over the lower bound. The distribution

statistics for this metric are shown in Table 3. Again, 96% of the
loops have no degradation, 99% have a ratio of 1.1 or less, and
the maximum ratio is 1.5.

The secondary measure of schedule quality is the length of the
schedule for one iteration. The distribution statistics for the
ratio of the achieved schedule length to the lower bound
described earlier are shown in Table 3. For all but 5 loops, this
ratio is no more than 1.5. (Note that this lower bound, too, is
not necessarily achievable.)

In the final analysis, the best measure of schedule quality is the

execution time which is computed by using the above formula.

By using the lower bounds for SL and H in that formula, a

lower bound on the execution time is obtained. Only 597 of

the 1327 loops end up being executed for the input data sets

used to profile the benchmark programs. Only these loops were

considered when gathering execution time statistics. The

distribution statistics for the ratio of the actual execution time
to the lower bound are shown in Table 3 .54~0 of the loops

achieved the lower bound on execution time. All the loops

together would only take 2.8% longer to execute than the
lower bound. (Again, it is worth noting that we are comparing

the actual execution time to a lower bound that is not

necessarily achievable.)

Code quality must be balanced against the computational

effort involved in generating a modulo schedule. It is

reasonable to view the computational complexity of acyclic

list scheduling as a lower bound on that for modulo

scheduling, and it was a goal, when selecting the scheduling
heuristics, to approach this lower bound in terms of the number

of operation scheduling steps required and the computational

cost of each step. In particular, since each operation is
scheduled precisely once in acyclic list scheduling, this is the
goal for modulo scheduling as well. At tbe same time, the

modulo scheduling algorithm must be capable of coping with
the complications caused by the presence of recurrences as well
as block and complex reservation tables [33]. Consequently,

this goal might not quite be achievable.

The last row in Table 3 provides some statstics on the

scheduling inefficiency, i.e., the number of times an operation

is scheduled as a ratio of the number of operations in the loop,
given that the II corresponds to the smallest value for which a

schedule was found. Under these circumstances, iterative
modulo scheduling is quite efficient. For 90% of the loops,

each operation is scheduled precisely once, the average value of
the ratio is 1.03 and the largest value is 4.33. These statistics
speak to the efficiency of the function IterativeSchedule. When

considering the efficiency of the procedure ModuloSchedule,
one must also take into account the scheduling effort expended
for the unsuccessful values of II.

In procedure ModuloSchedule, the parameter BudgetRatio

determines how hard IterativeSchedule tries to find a schedule
for a candidate II before giving up. BudgetRatio multiplied by

the number of operations in the loop is the value of the
parameter Budget in IterativeSchedule. Budget is the limit on
the number of operation scheduling steps performed before

giving up on that candidate II.

In collecting the experimental data reported on above,
BudgetRatio was set at 6, well above the largest value actually

needed by any loop (which was 4.33). This was done in order to

understand how well modulo scheduling can perform, in the
best case, in terms of schedule quality. However, this large a
BudgetRatio might not be the best choice. Generally, in order

to find a schedule for a smaller value of II one must use a larger
BudgetRatio. Too small a BudgetRatio results in having to try

successively larger values of II until a schedule is found at a
larger II than necessary. Not only does this yield a poorer
schedule, but it also increases the computational complexity

since a larger number of candidate values of H are attempted,
and IterativeSchedule, on all but the last, successful invocation,

expends its entire budget each time.

On the other hand, once the BudgetRatio has been increased
enough that the minimum achievable II has been reached,

71

further increasing BudgetRatio cannot be beneficial in terms of it, we can, conservatively, assume that they are equal. So, the

schedule quality. However, it can increase the computational cost of iterative modulo scheduling is 2.18 (i.e., 1.59 + 0.59)
complexity if the minimum achievable 11 is larger than the MH. times that of acyclic list scheduling, since the latter schedules

In this case, a certain number of unsuccessful values of H must each operation precisely once, and no operations are ever

necessarily be attempted. Increasing BudgetRatio only means unscheduled.
that more compile time is spent on attempts that are destined to

be unsuccessful. This suggests the possibility that there is some
This data enables an interesting comparison with “unroll-

optimum value of BudgetRatio for which the execution time is
before-scheduling” schemes which rely on unrolling the body

near optimal and the computational complexity is also near its
of the original loop prior to scheduling [13, 19, 23] and the

minimal value.
“unroll-while-scheduling” schemes which unroll concurrently

with scheduling [14, 7, 3]. To be competitive with iterative

modulo scheduling, those schemes would need to get within

2.8% of the (possibly unachievable) lower bound on execution

time without unrolling the loop body to more than 2.18 times
—Execution T]me Ddation — .— Scheduhng Inefticlency its original size. In fact, “unroll-before-scheduling” schemes

0.06
typically unroll the loop body many tens of times [23], leading

.3(I3 to a computational complexity far greater than that of iterative

,250
modulo scheduling. Furthermore, the “unroll-while-

Z
‘g g one scheduling” algorithms have the task of looking for a repeated

58
.g~ 004 ,2 CO+J

scheduling state at every step. In the context of non-unit

gti latencies and non-trivial reservation tables, this can be veryc%
$2

a expensive. Unfortunately, the complexity of such approaches
003 . 7 .150

❑ having never been characterized makes a dmect comparison

002 * .lCO
with iterative modulo scheduling impossible.

100 1.50 200 2.50 3,00 3.50 4,00

BudgetRatm 4.4 Computational complexity of iterative modulo
scheduling

Figure6. Variation ofexecution time andschedttling cost We now examine the statistical computational complexity of
with the parameter BudgetRatio. iterative modulo scheduling as a function of the number of

operations, N, in the loop. Iterative modulo scheduling

Figure 6 shows the dilation in the aggregate execution time involves a number of steps, the complexity of each of which is

over all the loops (as a fraction of the lower bound) and the listed in Table 4. First, the SCCS must be identified. This can be

aggregate scheduling inefficiency as a function of the done in O(N+E) time, where E is the number of edges in the

BudgetRatio. The aggregate scheduling inefficiency is the ratio dependence graph [2]. Although, in general, E is O(N2), for the

of the total number of operation scheduling steps performed in dependence graphs under consideration here, one might expect

IterativeSchedule, across the entire set of loops, to the total that the in-degree of each vertex is not a function of N and that

number of operations in all the loops. Ideally, the scheduling E is O(N). One can use linear regression to perform a least mean

inefficiency would be 1 and the execution time dilation would square error fit to the data with a polynomial in N. The best fit

be O. For each loop, a feasible II was found by performing a polynomial for E is given by 3.0036N. On the average there

sequential search starting with II equal to MH. As surmised, are about three edges in the graph per operation. This is higher

execution time dilation decreases monotonically with than what one might expect because of the additional predicate

BudgetRatio from 5.2%, down to 2.9% at a BudgetRatio of input that each operation possesses. Since E is O(N), so is the

1.75, and more gradually thereafter. The scheduling complexity of identifying the SCCS.

inefficiency, however, first decreases from 2.65 down to 1.55 at

a BudgetRatio of 1.75 and then begins to increase slowly. Table 4. Computational complexity of various sub-activities

At a BudgetRatio of around 2, both the execution time dilation
involved in iterative modulo scheduling.

(2.8%) and the scheduling inefficiency (1.59) are down very Activity Worst-case Empirical
close to their respective minimum values. If the set of computational computational

benchmark loops used is viewed as representative of the actual complexity complexity

workload, a BudgetRatio of 2 would be the optimum value to SCC identification O(N+E) O(N)
use when performing modulo scheduling for a processor with

ResMII calculation
the machine model used in this study. (For the Perfect, Spec and

O(N) O(N)

LFK benchmarks individually, the optimum values for MII calculation O(N)

BudgetRatio are 2, 1.75 and 1.5, respectively.) If either the HeightR calculation O(NE) O(N)
workload or the machine model are substantially different, a Iterative scheduling NP-complete 0(N2)
similar ex~eriment would need to be conducted to ascertain the
optimum value for BudgetRatio.

We see that we have come reasonably close to our goal of The ResMII calculation first sorts the operations in increasing

getting near-optimal performance at the same expense as order of the number of alternatives, and then inspects the

acyclic list scheduling. Using a BudgetRatio of 2, we schedule resource usage of each alternative for each operation exactly

on the average 1.59 operations per operation in the loop body. once. The complexity of the first step is O(N) using radix sort

This means that, on the average, 0.59 operations are and so is that of the second step, since the number of

unscheduled for every operation in the loop. Although the cost alternatives per operation is not a function of N.

of unscheduling an operation is less than the cost of scheduling

72

The computational complexity of the RecMII calculation is a

function of the number of non-trivial SCCS in the loop, the

number of operations in each SCC and the extent by which the

RecMII is larger than the ResMII. It is difficult to characterize

the worst-case complexity of this computation as a function of
N since one might expect many of the above factors to be

uncorrelated with N. This is borne out by the measured data.
The empirical complexity obtained via a curve-fit is given by
11.9133N + 3.0474.

This is the expected number of times the innermost loop of

ComputeMinDist is executed for a loop with N operations.

However, the standard deviation of the residual error is 1842.7

which is larger than the predicted value over the measured

range of N. In other words, the computational

complexity variable that is largely uncorrelated with N. To the
extent that it is correlated, the empirical computational

complexity of the MH calculation is linear in N.

The worst-case complexity of the algorithm for computing
HeightR() is O(NE). The LMS curve-fit to the data shows that
the expected number of times that the innermost loop of this
algorithm is executed is given by 4.5021 N. Empirically, the

complexity of computing the scheduling priority is O(N).

The iterative modulo scheduling, itself, spends its time in two
innermost loops. First, for each operation scheduled, all its

immediate predecessors must be examined to calculate Estart.

The expected number of times that this loop is executed, as a

function of N, is 3.3321N. Second, for each operation

scheduled, the loop in FindTimeSlot examines at most 11 time

slots. The expected number of times this loop is executed is
given by 0.0587N2 + 0.2001N + 0.5000.

Although the worst-case complexity of iterative scheduling is

exponential in N, the empirical computational complexity of
iterative scheduling is 0(N2). From Table 4 we conclude that

the statistical complexity of iterative modulo scheduling is

0(N2) since no sub-activity is worse than 0(N2).

5 Conclusion

In this paper we have presented an algorithm for modulo

scheduling: iterative modulo scheduling. We have also

presented a relatively simple priority function, HeightR() for
use by the modulo scheduler. Our experimental findings are

that iterative modulo scheduling, using the HeightR()

scheduling priority function, and when assigned a BudgetRatio
of 2

● requires the scheduling of only 5$J~o more operations than

does acyclic list scheduling,

● generates schedules that are optimal in II for 96% of the

loops, and

● results in a near-optimal aggregate execution time for all
the loops combined that is only 2,8?70 larger than the lower
bound.

Iterative modulo scheduling generates near-optimal schedules.
Furthermore, despite the iterative nature of this algorithm, it is
quite economical in the amount of effort expended to achieve

these near-optimal schedules. In particular, it is far more
efficient than any cyclic or acyclic scheduling algorithm for
loop schettuling which makes use of unrolling or code

replication. If such algorithms replicate more than 118% of the
loop body (which is @st over m copy of the loop body) they

will be more expensive computationally.

Modulo scheduling is a style of software pipelining which can

provide very good cyclic schedules for innermost loops while

keeping down the size of the resulting code, Along with IF-

conversion, profile-based hyperblock selection, reverse IF-

conversion, speculative code motion and modulo variable
expansion, modulo scheduling can generate extremely good
code for a wide class of loops (DO-loops, WHILE-loops and

loops with early exits, with loop bodies that are arbitrary,
acyclic control flow graphs, and dependence that result in the
presence of data and control recurrences) for machines with or

without predicates and with or without rotating registers.

Acknowledgements

This paper, and the underlying research, have benefited from

the ongoing discussions with and suggestions from Vinod

Kathail, Mike Schlansker and Sadun Anik. Vinod added to the
Cydra 5 compiler the capability to write out the intermediate
representation of software pipelineable loops for use as input to

the research scheduler. The constructive comments, of one of
the anonymous reviewers, were particularly helpful.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Adam, T. L., Chandy, K. M., and Dickson, J.R. A comparison
of list schedules for parallel processing systems.
Communications of the ACM 17, 12 (December 1974),
685-690.
Aho, A. V., Hopcroft, J.E., and Unman, J.D. The Design
and Analysls of Computer Algorithms. Addison-Wesley,
Reading, Massachusetts, 1974.
Aiken, A., and Nicolau, A. A realistic resource-constrained
software pipelining algorithm. In Advances in Languages
and Compilers for Parallel Processing, Nicolau, A.,
Gelernter, D., Gross, T., and Padua, D., (Editor).
Pitmaflhe MIT Press, London, 1991, 274-290.
Allen, J.R,, Kennedy, K., Porterfield, C., and Warren, J.
Conversion of control dependence to data dependence. In
Proc. Tenth Annual ACM Symposium on Principles of
Programming Languages, (January 1983), 177-189.
Beck, G, R., Yen, D. W. L., and Anderson, T.L. The Cydra 5
mini-supercomputer: architecture and implementation,
The Journal of Supercomputing 7, 1/2 (May 1993), 143-
180.
Berry, M., Chen, D., Kuck, D., Lo, S., Pang, Y., Pointer, L.,
Roloff, R., Samah, A., Clementi, E., Chin, S., Schneider, D.,
Fox, G., Messina, P., Walker, D., Hsiung, C., Schwarzmeier,
J., Lue, L., Orszag, S., Seidl, F., Johnson, O., Goodrum, R.,
and Martin, J. The Perfect Club Benchmarks: Effective
Performance Evaluation of Supercomputers. The
International Journal of Supercomputer Applications 3,
3 (Fall 1989), 5-40.
Bodin, F., and Charot, F. Loop optimization for horizontal
microcode machines. In Proc. 1990 International
Conference on Supercomputing, (Amsterdam, 1990), 164-
176.
Charlesworth, A.E. An approach to scientific array
processing: the architectural design of the AP- 120B/FPS-
164 Family. Computer 14, 9 (1981), 18-27.
Davidson, E. S., Shar, L. E., Thomas, A. T., and Patel, J.H.
Effective control for pipelined computers. In Proc.
COMPCON ’90, (San Francisco, February 1975), 181-184,
Dehnert, J.C., and Towle, R.A. Compiling for the Cydra 5.
The Journal of Supercompatr’rrg 7, 1/2 (May 1993), 181-
228.
Ebcioglu, K. A compilation technique for software
pipelining of loops with conctitlonal jumps. In Proc. ZOrn
Annual Workshop on Microprogramming, (Colorado
Springs, Colorado, December 1987), 69-79.
Ebcioglu, K., and Nakatani, T. A new compilation
technique for parallelizing loops with unpredictable

73

branches on a VLIW architecture. In Languages and
Compilers for Parallel Computing, Gelernter, D.,
Nicolau, A., and Padua, D., (Editor). PitmaruThe MIT Press,
London, 1989, 213-229.

13. Fisher, J.A. Trace scheduling: a technique for global
microcode compaction. IEEE Transactions on
Computers C-30, 7 (July 1981), 478-490.

14. Fisher, J.A., Landskov, D., and Shriver, B.D. Microcode
compaction: looking backward and looking forward. In
Proc. 1981 National Computer Conference, (1981), 95-
102.

15. Gasperoni, F., and Schwiegelshohn, U. Scheduling loops
on parallel processors: a simple algorithm with close to
optimum performance. In Proc. International Conference
CONPAR ’92, (1992), 625-636.

16. Hsu, P.Y.T. Highly Concurrent Scalar Processing. Ph.D
thesis, University of Illinois, Urbana-Champaign, 1986.

17. Hu, T.C. Parallel sequencing and assembly line problems
Operations Research 9, 6 (1961), 841-848.

18. Huff, R.A. Lifetime-sensitive modulo scheduling. In Proc.
SIGPLAN ’93 Conference on Programming Language
Design and Implementation, (Albuquerque, New Mexico,
June 1993), 258-267.

19. Hwu, W. W., Mahlke, S.A., Chen, W. Y., Chang, P.P., Warter,
N. J., Bringmann, R. A., Ouellette, R. G., Hank, R. E.,
Kiyohara, T., Haab, G. E., Helm, J.G., and Lavery, D.M.
The superblock: an effective technique for VLIW and
superscalar compilation. The Journal of Supercomputing
7, 1/2 (May 1993), 229-248.

20. Jain, S. Circular scheduling: a new technique to perform
software pipelining. In Proc. ACM SIGPLAN ’91
Conference on Programming Language Design and
Implementation, (June 1991), 219-228.

21. Lam, M. Software pipelining: an effective scheduling
technique for VLIW machines. In Proc. ACM SIGPLAN
’88 Conference on Programming Language Design and
Implementation, (June 1988), 318-327.

22. Lawler, E.L. Combinatorial Optimization: Networks and
Matroids. Holt, Rinehart and Winston, 1976.

23. Lowney, P G,, Freudenberger, S. M., Karzes, T. J.,
Liechtenstein, W. D., Nix, R. P., O’Donnell, J. S., and
Ruttenberg, J.C. The Multiflow trace scheduling compiler.
The Journal of Supercomputing 7, 1/2 (May 1993), 51-
142.

24. Mahlke, S.A., Chen, W. Y., Bringmann, R. A., Hank, R. E.,
Hwu, W. W., Rau, B. R., and Schlansker, M.S. Sentinel
scheduling: a model for compiler-controlled speculative
execution. ACM Transactions on Computer Systems 11,
4 (November 1993), 376-408.

25. Mahlke. S. A., Lin, D. C., Chen, W. Y., Hank, R. E., and
Bringmann, R.A. Effective compiler support for predicated
execution using the hyperblock. In Proc. 25th Annual
International Symposium on Microarchitecture, (1992),
45-54.

26. Mateti, P., and Dee, N. On algorithms for enumerating all
circuits of a graph. SIAM Journal of Computing 5, 1
(1976), 90-99.

27. McMahon, F.H. The Livermore Fortran kernels: a
computer test of the numerical performance range.
Technical Report UCRL-53745. Lawrence Livermore
National Laboratory. Livermore, California,, 1986.

28. Moon, S.-M., and Ebcioglu, K. An efflclent resource-
constrained global scheduling technique for superscalar
and VLIW processors. In Proc. 25th Annual International
Symposium on A4icroarchitecture, (Portland, Oregon,
December 1992).

29. Park, J, C. H., and Schlansker, M.S. On predicated
execution. Technical Report HPL-91 -58. Hewlett Packard
Laboratories, 1991.

30. Ramakrishnan, S. Software pipelining in PA-RISC
compilers. Hewlett-Packard Journal, (July 1992), 39-45.

31. Ramamoorthy, C. V., Chandy, K. M., and Gonzalez, M.J.
Optimal scheduling strategies in a multiprocessor system.

IEEE Transactions on Computers C-21, 2 (February
1972), 137-146,

32. Rau, B.R. Data flow and dependence analysis for
instruction level parallelism. In Fourth International
Workshop on Languages and Compilers for Parallel
Computing, Banerjee, U., Gelernter, D., Nicolau, A., and
Padua, D., (Editor). Springer-Verlag, . 1992, 236-250.

33. Rau, B.R. Iterative Modtrlo Scheduling. HPL Techmcal
Report. Hewlett-Packard Laboratories, 1994.

34. Rau, B. R., and Glaeser, C.D. Some scheduling techniques
and an easily schedulable horizontal architecture for high
performance scientific computing. In Proc. Fourteenth
Annual Worksho~ on Microurox?rammine. (October
1981), 183-198. ‘

. . -..

35. Rau, B R., Lee, M., Tirumalai, P., and Schlansker, M.S.
Rexister allocation for software DiDehed looDs. In Proc.
SI~PLAN’92 Conference on f’;ogrammin~ Language
Design and Implementation, (San Francisco, June 17-19
1992].

36. Rau, B. R., Schlansker, M. S., and Tirumalai, P.P. Code
generation schemas for modrtlo scheduled loops. In Proc.
25th Annual International Symposium on
Microarchitecture, (Portland, Oregon, December 1992),
158-169.

37. Rau, B. R., Yen, D. W. L., Yen, W., and Towle, R.A. The Cydra
5 departmental supercomputer: design philosophies,
decisions and trade-offs. Comuuter 22, 1 (Januarv 1989).
12-35.

38. Schlansker, M., and Kathail, V. Acceleration of first and
higher order recurrences on processors with instruction
level parallelism. In Proc. Sixth Annual Workshop on
Languages and Compilers for Parallel Computing,
(Portland, Oregon, August 1993).

39. Su, B., and Wang, J. GURPR*: a new global software
pipelining algorithm. In Proc. 24th Annual tnternatconal
Symposium on Microarchitecture, (Albuquerque, New
Mexico, November 199 1), 212-216.

40. Tiernan, J.C. An efficient search algorithm to find the
elementary circuits of a graph. Communications of the
ACM 13, (1970), 722-726.

41. Tirumalai, P., Lee, M., and Schlansker, M,S. Parallelization
of loops with exits on pipelined architectures. In Proc.
Supercomputing ’90, (November 1990), 200-212.

42. Tokoro, M., Takizuka, T., Tamura, E., and Yamaura, 1. A
technique of global optimization of microprograms. In
Proc. 1 lth Annual Workshop on Microprogramming,
(Asilomar, California, November 1978), 41-50,

43, Uniejewski, J. SPEC Benchmark Suite: Designed for
Today’s Advanced Systems. SPEC Newsletter 1, 1 (Fall
1989).

44. Van Dongen, V., Gao, G. R., and Ning, Q, A polynomial
time method for optimal software pipelining. In Proc,
International Conference CONPAR ’92, (1992).

45. Warter, N. J., Lavery, D. M., and Hwu, W.W. The benefit of
predicated execution for software pipelining. In Proc,
26th Annual Hawaii International Conference on System
Sciences, (Hawaii, 1993).

46. Warter, N. J., Mahlke, S.A., Hwu, W. W., and Rau, B.R.
Reverse if-conversion. In Proc. SIGPLAN ’93 Conference
on Programming Language Design and Implementation,
(Albuquerque, New Mexico, June 1993), 290-299,

74

