
Modulo Scheduling of Loops in Control-Intensive
Non-Numeric Programs

Daniel M. Lavery Wen-mei W. Hwu

Center for Reliable and High-Performance Computing
University of Illinois, Urbana-Champaign, IL 61801

lavery@crhc.uiuc.edu, hwu@crhc.uiuc.edu

Abstract

Much of the previous work on module scheduling has tar-
geted numeric programs, in which, often, the majority of
the loops are well-behaved loop-counter-based loops without
early exits. In control-intensive non-numeric programs, the
loops frequently have characteristics that make it more dif-
ficult to effectively apply modulo scheduling. These charac-
teristics include multiple control flow paths, loops that are
not based on a loop counter, and multiple exits. In these
loops, the presence of unimportant paths with high resource
usage or long dependence chains can penalize the important
paths. A path that contains a hazard such as another nested
loop can prohibit modulo scheduling of the loop. Control
dependences can severely restrict the overlap of the blocks
within and across iterations.

This paper describes a set of methods that allow effec-
tive module scheduling of loops with multiple exits. The
techniques include removal of control dependences to enable
speculation, extensions to modulo variable expansion, and a
new epilogue generation scheme. These methods can be used
with superblock and hyperblock techniques to allow modulo
scheduling of the selected paths of loops with arbitrary con-
trol flow. A case study is presented to show how these meth-
ods, combined with superblock techniques, enable modulo
scheduling to be effectively applied to control-intensive non-
numeric programs. Performance results for several SPEC
CINT92 benchmarks and Unix utility programs are reported
and demonstrate the applicability of modulo scheduling to
this class of programs.

1. Introduction

The scheduling of instructions in loops is of great interest
because many programs spend the majority of their execu-
tion time in loops. It is often necessary for the scheduler
to overlap successive iterations of a loop in order to find
sufficient instruction-level parallelism (ILP) to effectively
utilize the resources of high-performance processors.

Software pipelining [18, 6, 1, 151, is a loop scheduling
scheme that allows motion of instructions from one itera-

tion to another and maintains the overlap of loop iterations
throughout the execution of the loop. A description of the
various approaches to software pipelining is given in [17].
This paper focuses on a class of software pipelining methods
called modulo scheduling [16].

Modulo scheduling simplifies the generation of over-
lapped schedules by initiating iterations at a constant rate
and by requiring all iterations of the loop to have a common
schedule. The constant interval between the start of suc-
cessive iterations is called the initiation interval (II). The
initial candidate II is chosen as the maximum of two lower
bounds. The resource-constrained lower bound on the II
(ResMII) [16] is equal to the number of cycles that the most
heavily used resource is used by a single iteration. The
worst-case constraint among all the cycles in the depen-
dence graph determines the recurrence-constrained lower
bound on the II (RecMII) [16].

Most of the previous work on modulo scheduling has
targeted numeric programs, in which, often, the majority
of the loops are well-behaved “DO” loops (loop-counter-
based loops) without early exits. All of the more extensive
performance evaluations of modulo scheduling techniques
have been for such loops. There seems to exist a percep-
tion that modulo scheduling is primarily applicable only to
numeric programs.

In control-intensive non-numeric programs, the loops fre-
quently have characteristics that make it more difficult to
apply modulo scheduling and to obtain significant speedup.
These characteristics include multiple control flow paths,
loops that are not based on a loop counter, and multi-
ple exits. Several techniques have been developed to allow
modulo scheduling of loops with intra-iteration control flow
such as hierarchical reduction [ll], predicated execution [5],
and reverse if-conversion [21]. The above work has assumed
that all of the paths through the loop body are included for
scheduling. Including all of the paths can be detrimental
to overall loop performance. The presence of unimportant
paths with high resource usage or long dependence chains
can result in a schedule that penalizes the important paths.
An infrequent path that contains a hazard, such as another
nested loop or a function call, can prohibit modulo schedul-
ing of the loop.

Previous work has also been done on modulo schedul-

107%4451196 $5.00 0 1996 IEEE
126

ing of loops that are not based on a loop counter [20, 191.
The key difficulty with this type of loop is that it may
take many cycles to determine whether or not to start the
next iteration, limiting the overlap of the iterations. This
difficulty is overcome by speculatively initiating the next it-
eration. The work in [20] also mentions a source-to-source
transformation to convert a loop with multiple exits into a
single-exit loop. The resulting loop contains multiple paths
of control and is dealt with using one of the methods for
module scheduling of loops with intra-iteration control flow
referred to above. However this method adds extra instruc-
tions and delays the early exits until the end of the loop
body. More work is needed to evaluate the performance
of this approach, especially for architectures without pred-
icated execution.

This paper describes a new set of methods that allow
effective module scheduling of loops with multiple paths of
control and multiple exits. We use superblock [lo] (and in
the future hyperblock [14]) techniques to exclude the unim-
portant and detrimental paths from the loop. Loops with
multiple exits often occur naturally in control-intensive pro-
grams and the beneficial exclusion of paths via the forma-
tion of superblock and hyperblock loops creates many more
of them. Thus, an effective method for handling multiple
exits is essential.

Bather than transform the loop into a single exit loop,
the proposed methods modulo schedule the loop “as is”,
with the multiple exits present. A new code generation
scheme is described which creates correct epilogues for the
early exits. Speculation is used to increase both the overlap
of the basic blocks within each iteration and the overlap
of successive iterations. We extend modulo variable ex-
pansion to allow the speculation of instructions that write
to variables that are live at the loop exits. Altogether,
the methods described in this paper allow effective mod-
ulo scheduling of the selected paths of loops with arbitrary
control flow.

This paper reports speedup results for several SPEC
CINT92 benchmarks and Unix utilities. These are the
first reported performance results for modulo scheduling on
control-intensive non-numeric programs, and they demon-
strate the applicability of modulo scheduling to this class
of programs and validate the correctness of the proposed
methods.

The paper is organized as follows: Section 2 describes
the methods developed and presents a case study to show
how these methods, when combined with superblock tech-
niques, enable modulo scheduling to be effectively applied
to control-intensive loops. Section 3 reports the perfor-
mance results, and Section 4 provides a summary and di-
rections for future work.

2. Modulo Scheduling of Control-Intensive Loops

A detailed example is used to illustrate the difficulties
caused by control-intensive loops and the benefits of the
techniques developed. The loop chosen for this case study
is one of the frequently executed loops in lex, the lexical

analyzer generator. The source code for the loop is shown
in Figure 1.

for (i = n; i >= 0; i--) (
j = state[i];

Sl : if (count == “j++) (
for (k = 0; k < count; k++)

if (!temp[‘j++]) break;
if (k >= count)

return (i);

Figure 1. Source code for example loop from lex.

Loops in general purpose non-numeric programs fre-
quently have complex control flow, and this is evident in
the example loop. The outer loop contains an if-statement,
an inner loop, and an early exit via a return statement. The
inner loop contains an if-statement and an early exit via a
break statement.

Obviously, this loop contains a number of hazards for
module scheduling. Modulo scheduling would ordinarily
target the inner loop. However, profile information indi-
cates that the inner loop is infrequently invoked and usu-
ally has few iterations. The condition for the if-statement
Sl evaluates to false more than 90% of the time. Figure 2a
shows a simplified version of the control flow graph for the
loop. Block X contains the code to load state[i] and *j
and do the comparison for statement Sl. Block Y consists
of the post-increment of the pointer j and all the code in
the body of the if-statement Sl. The control flow within
block Y has been omitted for clarity. Block Z contains the
code to update i and to test the exit condition.

(a) Before (b) After

Figure 2. Superblock formation for example loop.

The detrimental path containing the inner loop can be
excluded from the loop via superblock formation. Effective
superblock formation can be done using profile informa-
tion [3] and/or static analysis of the structure and hazards
in the program [9]. A superblock loop consisting of the
most frequent path through the outer loop (blocks X and
Z) is formed as shown in Figure 2b. The path through block

127

Y has been excluded via tail duplication of block Z. A su- single basic block loops (Basic Block) and multiple exit su-
perblock loop consists of a single path through a loop, with perblock loops (Superblock) for the SPEC CINT92 bench-
a single entrance and one or more exits. The loop consisting marks and several Unix utility programs. The column la-
of blocks X and Z now appears to be an inner loop with mul- beled Total is the sum of the other two columns. The time
tiple exits and can be targeted for modulo scheduling. For not spent in these two types of loops is spent in the excluded
a detailed description of superblock formation, see [lo, 31. paths of inner and outer loops and in acyclic code.

It has been shown that superblock optimization
and acyclic scheduling techniques provide substantial
speedup [lo]. In general, the ability of superblocks (and
similarly hyperblocks) to exclude undesirable paths of ex-
ecution can provide the following benefits for modulo
scheduling:

Table 1. Percentage of dynamic Instructions In sin-
gle basic block and superblock loops.

1 Benchmark II Basic 1 Suuerblock I Total 1

Decrease ResMII by excluding unimportant paths with
high resource usage.

Decrease RecMII by excluding unimportant paths that
contribute to long dependence cycles.

Increase the number of loops that can be modulo sched-
uled by excluding paths containing hazards such as
nested loops and function calls.

Although the modulo scheduling methods developed in this
paper are described using superblock examples, they are
equally applicable to hyperblock code.

Figure 3 shows the assembly code for the example su-
perblock loop. Each instruction is numbered for later refer-
ence. Block X in the control flow graph consists of instruc-
tions 1 through 3. Instructions 4 through 6 are in block Z.
The assembly code shown is that produced by the IMPACT
compiler after classic optimizations have been applied. The
elements of the array state are four bytes in size. The regis-
ters shown are virtual registers. Register allocation is done
after modulo scheduling.

r13 = MEM(rl2+0)

r34 = r34 - 4

Register Contents
r8 = state
r34 = i’4
r12=j
r13 = l j
r6 = count
r4 = i

Figure 3. Assembly code for superblock loop.

Control exits the superblock loop if instruction 3 is
taken, or if instruction 6 is not taken. In this paper, the
exit associated with the fall-through path of the loop back
branch is termed the final exit. Any other exits from a su-
perblock loop are via taken branches and are termed early
exits.

The virtual registers r34, r4, and r12 are live out when
the early exit to L2 (block Y) is taken. The values in r34
and r4 are decremented in block Z’. The value in r12 is
incremented in block Y. No virtual registers are live out
when the loop exits via the final exit (instruction 6).

Loops with complex control flow occur frequently in gen-
eral purpose non-numeric programs. Table 1 shows statis-
tics on the percentage of dynamic instructions that are in

Block A

‘~

For all the programs except gee and tbl, little or no time
is spent in single basic block loops. For all the programs
except tbl, more time (usually much more) is spent in mul-
tiple exit superblock loops than in single basic block loops.
From this table, it is clear that modulo scheduling must be
able to effectively handle loops with control flow to be ap-
plicable to these programs. The remainder of this section
describes how the proposed techniques overcome the con-
trol dependences and register anti-dependences associated
with loops that have multiple exits and live-out virtual reg-
isters. A code generation scheme for loops with multiple
exits is also presented.

2.1. Overcoming control dependence using spec-
ulative code motion

Control dependences are a major impediment to the
exploitation of ILP in the loops of general-purpose non-
numeric programs. Cross-iteration control dependences re-
strict the overlap of loop iterations by delaying the start of
subsequent iterations until all the branches from the cur-
rent iteration have been executed. Frequently the branches
are dependent on earlier computations in the loop body
and cannot be executed until late in the iteration, severely
limiting any overlap.

Intra-iteration control dependences combined with cross-
iteration data dependences create recurrences which limit
the throughput of the modulo scheduled loop. They also
increase the length of the critical paths through a single
iteration, resulting in a longer schedule for each iteration,
an important consideration for short trip count loops,

As described in [20, 191, the cross-iteration control de-
pendences from the loop back branch to the instructions

128

in the next iteration can be relaxed, allowing speculative
code motion and overlap of the iterations. For loops with
multiple exits, this concept must be extended to the early
exit branches. It is often necessary to remove the cross-
iteration control dependences from an early exit branch to
the instructions in subsequent iterations to achieve the de-
sired level of overlap. It is also often necessary to remove
intra-iteration control dependences to allow overlap of the
blocks within an iteration and to achieve good performance
for short trip count loops.

Removal of either type of control dependence is not quite
so simple however. We currently assume that stores and
branches are not speculatively executed. The reordering
of branches will be the subject of future work. In order
to speculatively execute loads and other instructions that
can cause exceptions, either the processor architecture must
contain support for speculative execution [4, 131 or the com-
piler must be able to prove via program analysis that the
speculatively executed instruction will not except [2]. In
this paper, we assume an instruction set architecture that
contains silent (non-trapping) versions of the instructions
that can cause exceptions [4]. Furthermore, instructions
that write to virtual registers that are live at the loop ex-
its require special attention when removing control depen-
dences. This issue will be discussed in Section 2.2. We
now show the effect of control dependences on the example
superblock loop.

Figure 4a shows the dependence graph. Each node is
numbered with the ID (from Figure 3) of the instruction it
represents. The branch nodes are shaded. The data and
control dependences are shown with solid and dashed lines
respectively. Some of the transitive dependences are not
shown. None of the register anti-dependences are shown,
assuming that they can be removed. Removal of anti-
dependences is discussed in Section 2.2.

(a) RecMll = 6 (b) RecMll = 1

Figure 4. Dependence graph for example loop.

Each arc is labeled with two numbers. The first is the
minimum delay in cycles required between the start of the
two instructions. The second number is the distance, which
is the number of iterations between the two dependent in-

structions. Arcs with a distance of zero are intra-iteration
dependences and those with a distance greater than zero are
cross-iteration dependences. The instruction set assumed is
similar to HP’s PA-RISC 1.1 but has no branch delay slots.
Except for the branches, the delays shown are those of the
PA7100. It is assumed that the instructions in the fall-
through path of a branch can potentially be executed in
the same cycle as the branch and that instructions in the
taken path are executed the cycle following the branch.

There are several non-trivial recurrences apparent in the
graph. The longest recurrence circuit runs through instruc-
tions 1, 2, 3, 4, 6, and back to 1. It has a total delay of
six and spans one iteration, resulting in a RecMII of six.
If the loop is scheduled using this dependence graph, there
is no overlap of the iterations. The cross-iteration control
dependences from the loop back branch to the instructions
in the next iteration (except instruction 3) can be removed,
allowing speculative code motion and overlap of the itera-
tions. However, there are still limiting control dependences
present. The recurrence circuit consisting of instructions
1, 2, 3, and 5 limits the RecMII to five. To break this
recurrence, the intra-iteration control dependence between
instructions 3 and 5 must be removed, enabling speculative
execution of instruction 5. The control dependence from in-
struction 3 to instruction 4 must also be removed to break
the remaining limiting recurrence. Figure 4b shows the de-
pendence graph after all of the limiting control dependences
have been removed, reducing the RecMII to one.

An instruction can legally be moved during modulo
scheduling from above to below a branch if the branch is not
data dependent on the instruction. For example, instruc-
tion 5 could legally be scheduled after instruction 6. When
an instruction is moved from above to below a branch, it is
automatically moved into both paths of the branch during
the generation of epilogues which follows the actual modulo
scheduling process. In Sections 2.2 and 2.4, it is shown that
special attention must be paid to this type of code motion
for correct code generation in multiple exit loops.

Assuming a 4-issue processor that can execute one
branch per cycle, the ResMII for the example loop is two.
The RecMII was one, resulting in an II of two. This is a
speedup of three over modulo scheduling using the depen-
dence graph of Figure 4a.

2.2. Overcoming anti-dependence using modulo
variable expansion

Thus far, nothing has been said about anti-dependences
and the constraints imposed by the virtual registers that
are live out of the loop exits. In its original form, an in-
struction I that writes a virtual register V that is live out
of an exit branch B cannot be moved from below to above
B, because it overwrites the value in V that is used when
exit B is taken. This constraint on upward code motion
is exactly the same as if V was one of the operands of B
(i.e. it is an anti-dependence constraint) but is represented
differently in many compilers. Instead of adding an explicit
anti-dependence arc, many compilers, including IMPACT,

129

overload the control dependence arc to represent both the
control dependence and the anti-dependence.

There are several examples of anti-dependence in the
case study loop. Instruction 1 uses r34 which is later defined
by instruction 5. Virtual register r34 is live out when the
branch to L2 (instruction 3) is taken, so there is an anti-
dependence between instruction 3 and instruction 5.

Anti-dependences can be removed by renaming. Modulo
variable expansion [ll, 191 unrolls the kernel and renames
the successive lifetimes corresponding to the same loop-
variant so that they no longer overlap in time. This allows
register anti-dependences to be removed before schedul-
ing, knowing that modulo variable expansion will cor-
rect the overlap of lifetimes that the lack of these depen-
dences allows. The modulo variable expansion algorithm,
as originally described [ll], allows the removal of cross-
iteration anti-dependences. However, intra-iteration anti-
dependences can also be removed if the lifetime analysis
and the renaming algorithms are extended to include life-
times that cross iterations. It is assumed that this can be
done in [19]. In this paper, we describe the changes needed.

Figure 5 illustrates the relaxation of a cross-iteration
anti-dependence using modulo variable expansion, as de-
scribed in [ll]. Three iterations of an abstract loop body
containing a definition and a use of a virtual register rl are
shown. There is an intra-iteration flow dependence (marked
with an f) and a cross-iteration anti-dependence (marked
with an a). The cycle in which each instruction is issued
is shown in square brackets to the right of the abstract in-
struction, assuming the delay for the flow dependence is
two and the anti-dependence is zero. In its original form as
shown on the left, the minimum II that can be achieved is
two. Using modulo variable expansion, the anti-dependence
can be removed prior to scheduling, reducing the II to one.
Two virtual registers are now used as shown on the right.

Def (rl) [0]

If
+

Use (rl) [2]
\

a\
Def (rl) [2]

If
+

Use (rl) [4]

‘-2-Y
Def (rl) [4]

II = 2

4
f

Use (rl) [6]

(4

Def (rl) [0]

I
f Def W) 111

Use (rl) [2]
i

f Def (rl) [2]

Use(R) [3]
1

f

Use (rl) [4]

II = 1

(4

Figure 5. Relaxation of cross-iteration anti-
dependence.

Figure 6 shows the relaxation of an intra-iteration anti-
dependence. In this case, the use appears before the defi-
nition in the original iteration, and the lifetime of rl now
crosses the iterations. Removal of the intra-iteration anti-

dependence prior to scheduling allows the definition to be
moved above the use within the iteration as shown on the
right. As in the previous case, two registers are used and
the II is reduced from 2 to 1.

Use (rl) [O] Def W) 101

1
a f

Def (rl) [0] Use 03 [II

‘:

Def (rl) [l]

--+A
f

Use (rl) [2] Use 03 PI
\

Def 0’3 PI

I
a

Use (rl) [3]
Def (rl) [2]

-7-h
II = 1

Use (rl) [4]
II = 2

I
a

Def (rl) [4]

(a) (b)

Figure 6. Relaxation of intra-iteration anti-
dependence.

The lifetime of a virtual register extends fIom its first
definition to its last use. The lifetime of a loop-variant
virtual register V from a definition D to a use U is com-
puted using the following equation, assuming that the life-
time starts when D is issued and ends when U is issued.

Lifetime(V) = Issue(U) - Issue(D) + II * Dist(V) (1)

Issue(D) and Issue(U) are the issue time of the instances
of D and U from the same original iteration ‘. Dist(V) is
the number of iterations separating D and the instance of
U that uses the value defined by D in the original loop.

Note that in equation 1, use U could be a branch for
which V is live out. For correct renaming, the lifetime
analysis must be extended to include such uses. There is
an additional consideration for live out virtual registers.
Instruction D can be moved downward across the branch B.
If such code motion occurs, the definition is moved into both
paths of the branch during epilogue generation, V is no
longer live-out, and Lifetime(V) as computed by equation 1
becomes less than or equal to 0. Thus, the lifetime of V is
computed for all the uses except those associated with the
exits that D has been moved down across.

Figure 7 shows the execution of two iterations of the
case study loop after modulo scheduling. The first itera-
tion starts at time 0 and its instructions are denoted with
the subscript 1. The second iteration starts at time 2 and
its instructions are denoted with subscript 2. The second it-
eration’s instructions are also shaded to further distinguish
the two iterations. The lifetimes of all the virtual registers
written in the loop are shown to the right of the execu-
tion record. Each virtual register’s lifetime begins with its

1 Modulo scheduling generates a schedule for a single iteration
of the original loop. It is this schedule that we are working with
when analyzing the lifetimes for modulo variable expansion.

definition in the first iteration. Each of the subsequent tic
marks denotes either an explicit use of the virtual regis-
ter as a source operand, or a branch for which the register
is live-out. The lifetime extends until the last use of the
register.

Issue Slot Lifetimes

0 1 2 3 r13 r12 r34 r4

Cyde

0
T

Ii
t 1

Figure
ser.

2 r4 = r4 - 1
3 r13 = MEM(rl23+0)
4 rl2 = MEM(r343+r8)
5 r34=r343-4
61 bgt (0 r4) L3
71 beq (1’6 r13) L2
8 r4 = r4 - 1
9 r13 = MEM(rl2+0)

10 r122 = MEM(r34+r8)
11 t342=r34-4
121 bgt (0 r4) L3
131 beq (r6 r13) L2

Inst. Assembly
lIL1: beq (r6 rl3) L2

Cycle
0
0
0
0
1
1
2
2
2
2
3
3
4
4
4
4
5
5

8. Unrolled kernel for superscalar proces-

Figure 7. Execution record and lifetimes for two
iterations.

2.3. Review of a code generation scheme for sin-
gle exit loops

The lifetime of r13 is entirely contained within one iter-
ation. It is defined by instruction 2 and used by instruction
3. issue(2) is 2, Issve(3) is 4, Dist(rl3) is 0, and II is 2.
Using equation 1, the length of the lifetime is 2. The life-
time of r34 crosses iterations. It is defined by instruction
5, used by instruction 1 and 5 of the next iteration, and
live out of instruction 3 of the next iteration. Issue(S) is
1, Issve(3) is 4, and Dist(r34) is 1. Using equation 1, the
total length of the lifetime is 5.

The definitions of V are renamed by cycling through
the set of virtual registers assigned for V. Each use of V
is renamed by first finding the iteration that contains the
corresponding definition of V (the current iteration if Dis-
tance(V) is zero or the previous iteration if Distance(V) is
one) and using the same virtual register name as the defi-
nition from that iteration.

The longest lifetime, that of r34, is 5 cycles so the loop
must be unrolled three times for modulo variable expan-
sion. Figure 8 shows the unrolled kernel of the modulo
scheduled loop after module variable expansion. The in-
structions have been renumbered. When renaming, one of
the names used is the original virtual register name. The
set of registers used for r34 is r34, r342, and r343. The
set of registers used for r12 is r12, r122, and r123. The
instructions have been put into sequential order, as would
be done when generating code for a superscalar processor.
The target and fall-through path for the first two copies
of the loop back branch (instructions 6 and 12) have been
reversed in preparation for epilogue generation. Block L3
is the original fall through path of the loop.

In this subsection, we review an existing code generation
scheme for single exit loops in preparation for introducing
a modified scheme for multiple exit loops. For a complete
discussion of this and other possible code schemes for single
exit loops, see [19]. We use the abstract code representation
of [19] to reduce the complexity of the examples. Figure 9a
shows a single iteration of a generic single-exit loop after
modulo scheduling. Each square represents the code from
one stage, or II cycles, of a single iteration of the original
source loop. The number of stages is called the stage count.

(a) One iteration (b) Unrolled-kernel code structure

I All

Bi /Ad

Figure 9. Abstract representation of iterations.

Figure 9b shows the code structure for the modulo sched-
uled loop after kernel unrolling and generation of the pro-
logue and epilogue. The iterations progress from left to
right with each one starting one stage after the previous
one. The back-edge arrow from row 6 to row 3 identifies
the start and end of the unrolled kernel (the degree of un-
rolling is unrelated to the stage count). The squares before
the kernel represent the prologue and the squares after-
ward represent the epilogue. Each square is now also given
a number to specify which version of the code is being used.

131

Each version uses different names for the registers to avoid
overwriting live values. The code structure in Figure 9b is
simplistic and does not allow an arbitrary number of iter-
ations to be correctly executed [19], but it illustrates some
of the basic concepts and prepares the reader for the more
complex (and correct) code schemes described later in this
section.

In this paper, loop back branch refers to the loop back
branch in the original loop body. There are multiple copies
of this branch after modulo scheduling because of the kernel
unrolling and prologue generation. For all the copies except
the one that becomes the loop back branch of the kernel, the
target and fall-through path are reversed, as was shown in
Figure 8, so that the loop is exited when the branch is taken
rather than when it falls through. All the exits associated
with the copies of the loop back branch are called final e&s.
All other exits are early e&s.

The chain of dependences leading up to the loop back
branch determines the earliest stage in which the loop back
branch can be placed. The stage in which the loop back
branch is scheduled determines the number of iterations
that are speculatively initiated. Assume the stages of an
iteration are numbered such that stage A corresponds to 0,
stage B corresponds to 1, and so on. Using the terminology
of [19], if the loop back branch is scheduled in stage 0, then
there are fl speculatively executed stages for each iteration
after the first. For example, in Figure 9b, if the loop back
branch is scheduled in stage B, then stage A of every itera-
tion after the llrst is executed speculatively. In this paper,
the last iteration refers to the last iteration that would have
been executed in the original non-pipelined loop. When the
exit from the last iteration is taken, any speculative itera-
tions are aborted.

Figure 10 shows the structure of the code that is gener-
ated for each of the possible stages in which the loop back
branch could be placed for a three-stage schedule. In Fig-
ure lOa, b, and c, the loop back branch is scheduled at the
end of stage A, B, and C respectively.

(a) Theta = 0

1
01 H Cl

(b) Theta = 1 (c) Theta = 2

Iill Iil~j

Figure 10. Code generation scheme for single exit
loops.

The arrows (except the back-edge) represent control

transfers from the prologue and kernel to the epilogues
shown. Because the final exits are scheduled at the end
of the stage, the arrows originate very close to the bottom
of each row of squares. Each epilogue contains the code to
complete the non-speculative iterations that are in progress
at the time the exit is taken. Although it is not explicitly
shown, at the end of each epilogue there exists code to move
any live out values to the registers in which the code outside
the loop expects to find them and to jump to the original
target block of the exit.

By comparing Figure 10a and b, one can see how the
structure of the generated code changes when the loop back
branch is scheduled at the end of stage B instead of stage A.
Because the loop back branch is executed one stage later,
there are fewer stages left to execute in the epilogues for
the last iteration and its predecessors. Thus, the epilogues
all have one less row. The one speculative iteration that
is in progress when the loop exits is aborted and so there
is one less column in each epilogue. There is one less exit
from the prologue, so one of the epilogues has disappeared
altogether. In general, when the loop back branch is placed
in stage 6 instead of stage 0, the 6 rightmost columns of
each epilogue are removed, corresponding to the 8 aborted
speculative iterations [19]. The resulting epilogues have
SC - 0 - 1 rows where SC is the stage count.

In Figure lOc, the loop back branch is scheduled at the
end of the last stage. Thus, the last iteration and its pre-
decessors are complete when the loop exits. The epilogues
consist only of the code needed to move the live values and
are not shown.

2.4. A code generation scheme for multiple exit
loops

Figure 11 illustrates the changes to the code generation
scheme for multiple exit loops. The figure assumes a loop
with two exits, where both the early exit and the loop back
branch are scheduled in the same stage. In Figure lla, b,
and c, the branches are scheduled in stage A, B, and C
respectively. There are now more exits from the modulo
scheduled loop and thus more epilogues. The arrows asso-
ciated with the early exits originate very close to the top
of each row and have dashed lines to distinguish them from
the final exits.

There are two key differences between a final exit and an
early exit. First, the final exit is scheduled at the very end
of the stage, but an early exit branch can be in the middle
of a stage. Thus, for a final exit, the epilogue starts at the
beginning of the stage following the one containing the final
exit branch. For an early exit, the remainder of the row
containing the exit branch in the kernel must be examined
for copying to the epilogue. For all the iterations before the
last one, the remainder of that iteration’s stage in the row
containing the exit branch is copied to the epilogue. The
treatment of the last iteration will be discussed shortly. In
Figure 11, small letters are used to denote a partial stage
resulting from an exit branch from the middle of a stage.

132

(a) Theta=0

i i i

(b) Theta = 1 (c) Theta = 2

Figure 11. Code generation scheme for multiple
exit loops.

The second key difference is that the loop back branch is
always the last instruction in the original loop body, but an
early exit branch is somewhere in the middle of the original
loop body. When a final exit is taken, the last iteration
is always fully executed. The remaining stages for the last
iteration are copied to the epilogue in their entirety. How-
ever after an early exit is taken, only the instructions from
the last iteration that appeared before the exit branch in
the original loop body should be executed.

Assume the basic blocks in a superblock are assigned
numerical IDS sequentially from zero to SC - 1. Define
the home block for an instruction to be the basic block in
which the instruction resides in the original loop body. For
Ian early exit, an instruction from the remaining stages of
the last iteration is copied to the epilogue only if the ID of
its home block is less than or equal to the home block ID
of the exit branch. In Figure 11, shaded squares are used
to denote the stages for which the home block is checked
before copying the instruction.

In Figure 11, the epilogues for the final exits are all the
same as in Figure 10. The epilogues for the early exits al-
ways have one more row and usually have one more column
than the corresponding final exit from the same stage. The
extra row consists of the remainder of the row in the kernel
in which the early exit branch resides. Thus, all the squares
in the extra row are marked with small letters. The extra
column corresponds to the last stage of the oldest iteration
in progress at the time the exit is taken. For a final exit,
this iteration is just finished when the exit is taken. For
an early exit, part of the last stage remains and is com-
pleted in the epilogue. The epilogues for the early exits
from the prologue do not have an extra column because
none of the iterations have started execution of the last
stage. The rightmost column of each early exit epilogue

is shaded. This column corresponds to the last iteration.
For the last iteration, only the instructions that appeared
before the exit branch in the original loop body are copied
to the epilogue.

Figure 12 shows the algorithm for generating an epi-
logue for an exit branch. The algorithm starts with the
instructions following the exit branch and copies rows of
instructions from the unrolled kernel to the epilogue, wrap-
ping around the kernel until the last row of the epilogue
is complete. Squares are not copied if they correspond to
instructions from iterations after the last or to instructions
from the last iteration that appeared after the exit branch
in the original loop body. The algorithm as shown assumes
a processor that does not have branch delay slots. The
following paragraphs describe the data structures and con-
cepts needed to understand the algorithm.

The unrolled kernel is divided into sections of II cycles
each called kernel rows. There are kmin rows where kmin
is the degree of unrolling of the kernel. Each row con-
tains a linked list of the instructions contained in that row.
The data structure for each instruction contains a pointer
to an information structure which contains among other
items: the stage in which the instruction is scheduled, the
instruction’s home block ID, and the row of the kernel that
contains the instruction.

There are SC - 0 rows in each epilogue (numbered zero
to SC - 0 - 1) where 0 is the stage in which the exit branch
is scheduled. Row zero is the partial row and is empty for a
final exit (the linked list for each kernel row ends with a final
exit). In row epirow of the epilogue, the last iteration is
executing in stage epirow + 0. Instructions from stages
less than epirow + 0 must be from iterations after the last,
and thus are not copied.

For simplicity, the algorithm shown generates correct
epilogues for exits from the kernel, but not for exits from
the prologue. In practice, the algorithm contains additional
code to map an exit in the prologue to the corresponding
exit in the kernel. The prologue is generated in a similar
manner to the epilogues, by copying selected instructions
from the rows of the unrolled kernel. Mapping a prologue
exit to a corresponding kernel exit facilitates the copying
of rows for the epilogue. Also in practice, if the epilogue is
for an exit from the prologue, the algorithm does not copy
an instruction that is from a later stage than the stage that
the very first iteration is executing. Such instructions cor-
respond to the non-existent iterations prior to the first one.

We now apply the code generation scheme to the exam-
ple loop. The schedule for a single iteration of the example
loop contains 3 stages. Stage A consists of instructions 1
and 5 from the original loop (see Figure 7). Stage B con-
tains instruction 2. Instructions 3 (early exit), 4, and 6
(final exit) are in stage C. The code scheme in Figure llc
is similar to what would be generated for the example loop.
Because of the dependence structure of the loop, there is
no opportunity for downward code motion across the early
exit branch. Thus, when the early exit branch is taken there
are no remaining instructions from the last iteration that
appeared before the exit branch in the original loop body

133

Algorithm gen-epicexit branch) {

create epilogue block
SC = stage count
theta = exit->info->stage
row = exit->info->row
exit-home-block = exit->info->home-block

/* Generate all rows of epilogue */
for (epi-row = 0 to SC - theta - 1) do {

/* Determine where to start copying */
if (epi-row == 0)

/* Partial rov. If exit is a final exit,
exit->next-op is NULL and no instructions
vi11 be copied to the partial rov. */

oper = exit->next-op
else

/* Full rov */
oper = kernel[rov]->first-op

/* Generate one full or partial rov */
vhile (oper != NULL) {

oper-stage = oper->info->stage
oper-home-block = oper->info->home-block

/* Copy instruction if it is from an
iteration previous to the last iteration,
or if it is from the last iteration and
appears before the exit branch in the
original loop body */

if ((oper-stage > epi-rov + theta) or
(oper-stage == epi-rov + theta and
oper-home-block <= exit-home-block)) {

nev-op = copy-operation(oper)
insert-op-after(epilogue->last_op. nev-op)

3
oper = oper->next-op

3
/* Rotate through the rovs of the kernel */
rov = (row + I) mod kmin

3

/* insert moves at end of epilogue for variants
that are live out of exit */

insert-moves-for-live-variants(epilogue. exit)

/* Last exit branch falls through to epilogue */
if (exit is not last exit in unrolled kernel) {

jump = create jump to target of exit branch
insert-op-aftercepilogue->last_op. jump)
make epilogue block the target of exit branch

3
3

Figure 12. Epilogue generation algorithm.

and the shaded epilogues are empty.

2.5. Insertion of moves for live-out values

As mentioned earlier, code must be appended to the end
of each epilogue to move the values that are live-out of
the corresponding exit into the register in which the code
outside the loop expects to find them. For single exit su-
perblock loops, the value used outside the loop must have
been defined in the last iteration. Thus, for each final exit,
the instructions from the last iteration are examined in the
corresponding epilogue and in the kernel. If the value pro-
duced by the instruction is live-out and the destination reg-
ister is not the one expected outside the loop, a move in-
struction is inserted at the end of the epilogue.

For multiple exit loops, the procedure is the same for
the final exits. However, for the early exits there is an ad-
ditional consideration. The live out value could be defined
in the last iteration by one of the instructions that pre-
ceded the exit branch in the original loop body, or it could
be defined in the second-to-last iteration by one of the in-
structions that followed the exit branch in the original loop
body. Thus, the last iteration is examined for instructions
that originally resided in the same or earlier home block
as the early exit branch and the second-to-last iteration is
examined for instructions that originally resided in a later
home block than the exit.

In the example loop, when the early exit (instruction 3
from Figure 3) is taken, the live out values of r34 and r4 are
from the second-to-last iteration and the live out value of
r12 is from the last iteration. There are no values live out of
the final exit. Figure 13 shows the code generated for the
example loop using the multiple epilogue code scheme of
Figure llc. The instructions have again been renumbered.
The moves for the live out values (instructions 25, 27, 28,
and 30) are also shown.

The blocks labeled Pro and Ll are the prologue and the
unrolled kernel respectively. The blocks labeled LEl, LE3
and LE5 are epilogues. The block immediately following
thekernelistheepiloguereachedbyfallingthroughtheioop
back branch. Block L3 is the original fall through path of
the loop. Label L2 is the start of block Y. The epilogues
for the final exits (instructions 11, 17, and 23) are all empty
becausenocodewasmoveddownward acrosstheloopback
branch and there are no virtual registers live out of the
final exits. Rather than branching to empty epilogues, the
final exits branch directly to L3. The exception is the loop
back branch, which falls through into its epilogue and then
jumps to L3.

The early exits (instructions 6, 12, and 18) all require
moves for one or more of the live virtual registers, so all
branch to epilogues. As mentioned at the end of 2.2, when
renaming, one of the names used is the original virtual reg-
ister name. Thus, if the live out value is already in the
correct register, a move is not necessary. This is the case
for r34 in epilogue LEl and r12 in epilogue LE5. A jump
is placed at the end of each early exit epilogue to transfer
control to Block Y.

134

2 r342=r34-4
i”““’

3 r13 = MEM(r122+0)
4 r123 = MEM(r342+r6)
51 1343=r342-4
61Ll: beq (r6 r13) LEl

1
2
2
3
0
0
0
0
1
1
2
2
2
2
3
3
4
4
4
4
5
5
0
0
0

0
0
0

0
0 -

7 r4 = r4 - 1
0 r13 = MEM(r123+0)
9 r12 = MEM(r343+r6)

10 r34=r343-4
11 bgt (0 r4) L3
12 beq (r6 r13) LE3
13 r4 = r4 - 1
14 r13 = MEM(rl2+0)
15 r122 = MEM(r34+r6)
16 r342=r34-4
17 bgt (0 r4) L3
16 beq (r6 r13) LE5
19 r4 = r4 - 1
20 r13 = MEM(r122+0)
21 r123 = MEM(r342+18)
22 r343=r342-4

261 jump L2
271LE3: r12 = r123
26 r34=r342
29 jump L2
3OLE5: r34=1343
31 jump LZ

L3:

Figure 13. Final assembly code for the example
loop.

The virtual registers are renamed during modulo vari-
able expansion such that the uses of a live-in virtual regis-
ter in the first iteration refer to the original virtual register
name. Thus, no moves are required for live-in values. For
example, virtual register r34 is live-in and the first iteration
in the prologue uses r34 (instructions 1 and 2) rather than
one of the renamed versions (r342 and r343).

3. Experimental Results

In this section, we report experimental results on the
applicability of modulo scheduling to control-intensive non-
numeric programs. The results were obtained using the
IMPACT compiler. Inter-procedural alias analysis [7] and
data dependence analysis are done in the front end and
memory dependence arcs are passed to the back end, giv-
ing the optimizer and the schedulers accurate dependence
information. In addition to the classic optimizations, op-
timizations are performed in the back end to increase the
ILP of the code [lo].

Modulo scheduling is done before prepass acyclic
scheduling and global register allocation. The modulo
scheduler is an implementation of Rau’s Iterative Modulo
Scheduling [16]. It uses a machine description system [8]
to get information on instruction latencies and resource
requirements. The modulo scheduler has been used to
pipeline loops for high issue rate versions of the PA-RISC

(in this paper) and SPARC architectures. Loops are eligible
for modulo scheduling if they are inner loops (outer loops
may become inner loops after superblock formation), are
single basic block or superblock loops, and do not contain
function calls on the included path (function calls may be
excluded from the loop by superblock formation, enabling
modulo scheduling).

The target processors for these experiments are multiple
issue processors with issue rates between 4 and 8 with vary-
ing resource constraints. Table 2 shows the functional unit
mix for each processor. All processors are assumed to have
32 integer registers and 32 double-precision floating-point
registers. The latencies used are those of the HP PA7100
processor.

Table 2. Processor characteristics.

Number of
Name Issue Integer Memory Branch FP

Slots ALUs Ports Units ALUs

All speedups are reported over the single-issue base pro-
cessor. For the base processor, ILP optimizations and mod-
ulo scheduling are not applied. For the multiple issue pro-
cessors, code is generated three ways, once without modulo
scheduling, once with modulo scheduling of only the sin-
gle basic block loops, and once with modulo scheduling of
superblock loops using the techniques described in this pa-
per. All the code that is not software pipelined is scheduled
using acyclic superblock scheduling [lo].

None of the loops are unrolled before acyclic scheduling
or modulo scheduling. In general, prior unrolling improves
the performance of both acyclicly scheduled and modulo
scheduled loops [12]. However, there are complex inter-
actions between unrolling, optimization, and scheduling,
which add another variable when we are trying to focus
on the effect of modulo scheduling. The purpose of the
paper is primarily to describe an effective method for mod-
ulo scheduling loops in control-intensive non-numeric pro-
grams. The results in this paper are used to demonstrate
the applicability of modulo scheduling to this class of pro-
grams and to validate the correctness of the method. The
effects of unrolling prior to scheduling and performance
comparisons of modulo scheduling and acyclic scheduling
of unrolled loops in control-intensive non-numeric programs
are the subject of future work as described in Section 4.

The execution times of the whole programs are calcu-
lated using scheduler cycle counts for each basic block and
profile information. A 100% cache hit rate is assumed. The
benchmarks are profiled after all transformations to insure
accuracy. The profiling is done by instrumenting the target
(virtual) processor’s assembly code and then emulating it

135

5.5

5

t I

IF4 Superblock Modulo Scheduling

4.5 n Basic Block Modulo Scheduling

it 4
/ 0 No Modulo Scheduling

u
8 3.5

:: 3

2.5

2

1.5

1

0.5

0

ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD

espresso eqntotl compress SC cmp lex WC yacc

Figure 14. Speedup over single issue processor with and without modulo scheduling.

on an HP Series 700 workstation. This execution produces
benchmark output which is used to verify the correctness
of the target processor’s assembly code.

The benchmarks chosen for the experiments are the
four SPEC CINT92 and four Unix programs from Table 1
(espresso, eqntott, compress, gee, cmp, lex, WC, and yacc)
that spend the most time in basic block and superblock
loops, loops to which we apply modulo scheduling. For all
of the chosen programs, over 40% of the dynamic instruc-
tions were in such loops. A total of 305 loops were modulo
scheduled.

Figure 14 shows the speedup results. The white part
of the bars show the speedup over the base processor when
acyclic scheduling is applied to all of the code. For espresso,
eqntott, lex, and yacc, the performance is flat as resources
are increased. Without overlapping the iterations, the ILP
that can be exploited is limited. The black part of the
bars show the slightly increased performance when mod-
ulo scheduling is applied to the single basic block loops.
For all of the benchmarks except gee, less than 6% of the
dynamic instructions are in basic block loops. Thus only
a slight performance improvement can be expected. The
benchmark gee spends about half as much time (14%) in
single basic block loops as it does in superblock loops and
shows speedups of about 5%.

The cross-hatched part of the bars show the increased
performance when superblock modulo scheduling is applied
to the eligible loops. Modulo scheduling almost doubles
the performance of lex for the 4-issue processor and almost
triples performance for the 8-issue processor. As was shown
in the case study, there is very limited ILP within a single
iteration of the loops in that program. Modulo schedul-
ing provides good speedup across all the benchmarks and
processors. In particular, speedups of 25% or more are ob-
tained across all the processors for espresso, eqntott, com-
press, Zex, and yacc. For the most aggressive processor,
performance is improved by 30% or more for all the bench-
marks except gee and WC.

With superblock modulo scheduling, the performance of
espresso, eqntott, lex, and yacc is no longer flat as the pro-
cessor resources are increased. More ILP is being exploited
by overlapping the loop iterations. The results clearly show
that modulo scheduling, using the techniques described in
this paper, is applicable to control-intensive, non-numeric
programs.

4. Conclusion

This paper has described a set of methods that allow
effective modulo scheduling of loops with multiple exits.
These methods can be used to allow modulo scheduling of
the selected paths of loops with arbitrary control flow. A
case study was presented to show how these methods en-
able modulo scheduling to be effectively applied to control-
intensive non-numeric programs. Performance results for
several SPEC CINT92 benchmarks and Unix utility pro-
grams demonstrated that modulo scheduling can signifi-
cantly accelerate loops in this class of programs.

Previous work has shown that unrolling prior to mod-
ulo scheduling improves performance for numeric pro-
grams [12]. Unrolling enables additional optimization and
an effective II that is not an integer. For acyclic scheduling,
unrolling is done to allow both optimization and overlap of
iterations. For modulo scheduling, unrolling is done to opti-
mize the effective ResMII and RecMII. Much research needs
to be done to study the effect of unrolling prior to modulo
scheduling for non-numeric programs and to understand the
amount of unrolling necessary to achieve the minimum II
possible for a given loop. This will be the next step in
our effort to apply modulo scheduling to control-intensive
non-numeric programs. One result of the next step will be
the ability compare modulo scheduling and global acyclic
scheduling of unrolled loops within a common framework.

136

Acknowledgments

The research for this paper has benefited from conver-
sations with Mike Schlansker and Bob Rau at HP Labs.
Thanks to Bob Rau, Scott Mahlke, and Grant Haab for
providing feedback on a very early version of this paper and
to Brian Deitrich, John Gyllenhaal, and the anonymous ref-
erees for their suggestions on the submitted version. The
authors would also like to thank Jurgen Mihm, whose work
inspired some of our thoughts on modulo variable expan-
sion, and Nancy Warter-Perez, Noubar Partamian, and the
past and present members of the IMPACT research group
for providing the underlying technology on which the mod-
ulo scheduler is built.

This research has been supported by the National Sci-
ence Foundation (NSF) under grant MIP-9308013, Intel
Corporation, Advanced Micro Devices, Hewlett-Packard,
SUN Microsystems, NCR, and the National Aeronautics
and Space Administration (NASA) under Contract NASA
NAG 1-613 in cooperation with the Illinois Computer Lab-
oratory for Aerospace Systems and Software (ICLASS).

References

[l] A. Aiken and A. Nicolau. A realistic resource-
constrained software pipelining algorithm. In A. Nico-
lau, D. Galernter, T. Gross, and D. Padua, editors, Ad-
vances in Languages and Compilers for Parallel Pro-
cessing, pages 274.-290. Pitman/The MIT Press, Lon-
don, 1991.

[2] R. A. Bringmann. Compiler-Controlled Speculation.
PhD thesis, Department of Computer Science, Univer-
sity of Illinois, Urbana, IL, 1995.

[3] P. P. Chang, S. A. Mahlke, and W. W. Hwu. Using
profile information to assist classic code optimizations.
So&are Practice and Experience, 21(12):1301-1321,
December 1991.

[It] P. P. Chang, N. Warter, S. A. Mahlke, W. Y.
Chen, and W. W. Hwu. Three architectural models
for compiler-controlled speculative execution. IEEE
lPransactions on Computers, 44(4):481-494, April
1995.

[5] J. C. Dehnert, P. Y. Hsu, and J. P. Bratt. Overlapped
loop support in the Cydra 5. In Proceedings of the
Third International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, pages 26-38, April 1989.

[6] K. Ebcioglu and T. Nakatani. A new compilation
technique for parallelizing loops with unpredictable
branches on a VLIW architecture. In Languages
and Compilers for Parallel Computing, pages 213-229,
1989.

[7] D. M. Gallagher. Memory Disambiguation to Facili-
tate Instruction-Level Parallelism Compilation. PhD
thesis, Department of Electrical and Computer Engi-
neering, University of Illinois, Urbana, IL, 1995.

[8] J. C. Gyllenhaal. A machine description language for
compilation. Master’s thesis, Department of Electri-
cal and Computer Engineering, University of Illinois,
Urbana, IL, 1994.

[9] R. E. Hank, S. A. Mahlke, R. A. Bringmann, J. C.
Gyllenhaal, and W. W. Hwu. Superblock formation
using static program analysis. In Proceedings of the
26th Annual International Symposium on Microarchi-
tecture, December 1993.

[lo] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang,
N. J. Warter, R. A. Bringmann, R. G. Ouellette, R. E.
Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M.
Lavery. The Superblock: An effective technique for
VLIW and superscalar compilation. The Journal of
Supercomputing, 7(1):229-248, January 1993.

[ll] M. S. Lam. Software pipelining: An effective schedul-
ing technique for VLIW machines. In Proceedings of
the A CM SZGPLA N 1988 Conference on Programming
Language Design and Implementation, pages 318-328,
June 1988.

[12] D. M. Lavery and W. W. Hwu. Unrolling-based op-
timizations for modulo scheduling. In Proceedings of
the 28th International Symposium on Microarchitec-
ture, pages 327-337, Nov. 1995.

[13] S. A. Mahlke, W. Y. Chen, R. A. Bringmann, R. E.
Hank, W. W. Hwu, B. R. Rau, and M. S. Schlansker.
Sentinel scheduling: A model for compiler-controlled
speculative execution. Transactions on Computer Sys-
tems, 11(4), November 1993.

[14] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and
R. A. Bringmann. Effective compiler support for pred-
icated execution using the hyperblock. In Proceedings
of the 25th International Symposium on Microarchitec-
ture, pages 45-54, December 1992.

[15] M. Rajagopalan and V. H. Allan. Efficient schedul-
ing of fine grain parallelism in loops. In Proceedings
of the 26th International Symposium on Microarchi-
tecture, pages 2-11, December 1993.

[16] B. R. Rau. Iterative modulo scheduling: An algorithm
for software pipelining loops. In Proceedings of the 27th
International Symposium on Microarchitecture, pages
63-74, December 1994.

(171 B. R. Rau and J. A. Fisher. Instruction-level parallel
processing: History, overview, and perspective. The
Journal of Supercomputing, 7(1):9-50, January 1993.

[18] B. R. Rau and C. D. Glaeser. Some scheduling tech-
niques and an easily schedulable horizontal architec-
ture for high performance scientific computing. In Pro-
ceedings of the 20th Annual Workshop on Micropro-
gramming and Microarchitecture, pages 183-198, Oc-
tober 1981.

[19] B. R. Rau, M. S. Schlansker, and P. P. Tirumalai. Code
generation schema for modulo scheduled loops. In Pro-
ceedings of the 25th Annual International Symposium
on Microarchitecture, pages 158-169, December 1992.

[20] P. Tirumalai, M. Lee, and M. Schlansker. Paralleliza-
tion of loops with exits on pipelined architectures. In
Supercomputing, November 1990.

[21] N. J. Warter, G. E. Haab, K. Subramanian, and 3. W.
Bockhaus. Enhanced modulo scheduling for loops with
conditional branches. In Proceedings of the 25th An-
nual International Symposium on Microarchitecture,
pages 170-179, December 1992.

137

