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Abstract 

Much of the previous work on module scheduling has tar- 
geted numeric programs, in which, often, the majority of 
the loops are well-behaved loop-counter-based loops without 
early exits. In control-intensive non-numeric programs, the 
loops frequently have characteristics that make it more dif- 
ficult to effectively apply modulo scheduling. These charac- 
teristics include multiple control flow paths, loops that are 
not based on a loop counter, and multiple exits. In these 
loops, the presence of unimportant paths with high resource 
usage or long dependence chains can penalize the important 
paths. A path that contains a hazard such as another nested 
loop can prohibit modulo scheduling of the loop. Control 
dependences can severely restrict the overlap of the blocks 
within and across iterations. 

This paper describes a set of methods that allow effec- 
tive module scheduling of loops with multiple exits. The 
techniques include removal of control dependences to enable 
speculation, extensions to modulo variable expansion, and a 
new epilogue generation scheme. These methods can be used 
with superblock and hyperblock techniques to allow modulo 
scheduling of the selected paths of loops with arbitrary con- 
trol flow. A case study is presented to show how these meth- 
ods, combined with superblock techniques, enable modulo 
scheduling to be effectively applied to control-intensive non- 
numeric programs. Performance results for several SPEC 
CINT92 benchmarks and Unix utility programs are reported 
and demonstrate the applicability of modulo scheduling to 
this class of programs. 

1. Introduction 

The scheduling of instructions in loops is of great interest 
because many programs spend the majority of their execu- 
tion time in loops. It is often necessary for the scheduler 
to overlap successive iterations of a loop in order to find 
sufficient instruction-level parallelism (ILP) to effectively 
utilize the resources of high-performance processors. 

Software pipelining [18, 6, 1, 151, is a loop scheduling 
scheme that allows motion of instructions from one itera- 

tion to another and maintains the overlap of loop iterations 
throughout the execution of the loop. A description of the 
various approaches to software pipelining is given in [17]. 
This paper focuses on a class of software pipelining methods 
called modulo scheduling [16]. 

Modulo scheduling simplifies the generation of over- 
lapped schedules by initiating iterations at a constant rate 
and by requiring all iterations of the loop to have a common 
schedule. The constant interval between the start of suc- 
cessive iterations is called the initiation interval (II). The 
initial candidate II is chosen as the maximum of two lower 
bounds. The resource-constrained lower bound on the II 
(ResMII) [16] is equal to the number of cycles that the most 
heavily used resource is used by a single iteration. The 
worst-case constraint among all the cycles in the depen- 
dence graph determines the recurrence-constrained lower 
bound on the II (RecMII) [16]. 

Most of the previous work on modulo scheduling has 
targeted numeric programs, in which, often, the majority 
of the loops are well-behaved “DO” loops (loop-counter- 
based loops) without early exits. All of the more extensive 
performance evaluations of modulo scheduling techniques 
have been for such loops. There seems to exist a percep- 
tion that modulo scheduling is primarily applicable only to 
numeric programs. 

In control-intensive non-numeric programs, the loops fre- 
quently have characteristics that make it more difficult to 
apply modulo scheduling and to obtain significant speedup. 
These characteristics include multiple control flow paths, 
loops that are not based on a loop counter, and multi- 
ple exits. Several techniques have been developed to allow 
modulo scheduling of loops with intra-iteration control flow 
such as hierarchical reduction [ll], predicated execution [5], 
and reverse if-conversion [21]. The above work has assumed 
that all of the paths through the loop body are included for 
scheduling. Including all of the paths can be detrimental 
to overall loop performance. The presence of unimportant 
paths with high resource usage or long dependence chains 
can result in a schedule that penalizes the important paths. 
An infrequent path that contains a hazard, such as another 
nested loop or a function call, can prohibit modulo schedul- 
ing of the loop. 

Previous work has also been done on modulo schedul- 
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ing of loops that are not based on a loop counter [20, 191. 
The key difficulty with this type of loop is that it may 
take many cycles to determine whether or not to start the 
next iteration, limiting the overlap of the iterations. This 
difficulty is overcome by speculatively initiating the next it- 
eration. The work in [20] also mentions a source-to-source 
transformation to convert a loop with multiple exits into a 
single-exit loop. The resulting loop contains multiple paths 
of control and is dealt with using one of the methods for 
module scheduling of loops with intra-iteration control flow 
referred to above. However this method adds extra instruc- 
tions and delays the early exits until the end of the loop 
body. More work is needed to evaluate the performance 
of this approach, especially for architectures without pred- 
icated execution. 

This paper describes a new set of methods that allow 
effective module scheduling of loops with multiple paths of 
control and multiple exits. We use superblock [lo] (and in 
the future hyperblock [14]) techniques to exclude the unim- 
portant and detrimental paths from the loop. Loops with 
multiple exits often occur naturally in control-intensive pro- 
grams and the beneficial exclusion of paths via the forma- 
tion of superblock and hyperblock loops creates many more 
of them. Thus, an effective method for handling multiple 
exits is essential. 

Bather than transform the loop into a single exit loop, 
the proposed methods modulo schedule the loop “as is”, 
with the multiple exits present. A new code generation 
scheme is described which creates correct epilogues for the 
early exits. Speculation is used to increase both the overlap 
of the basic blocks within each iteration and the overlap 
of successive iterations. We extend modulo variable ex- 
pansion to allow the speculation of instructions that write 
to variables that are live at the loop exits. Altogether, 
the methods described in this paper allow effective mod- 
ulo scheduling of the selected paths of loops with arbitrary 
control flow. 

This paper reports speedup results for several SPEC 
CINT92 benchmarks and Unix utilities. These are the 
first reported performance results for modulo scheduling on 
control-intensive non-numeric programs, and they demon- 
strate the applicability of modulo scheduling to this class 
of programs and validate the correctness of the proposed 
methods. 

The paper is organized as follows: Section 2 describes 
the methods developed and presents a case study to show 
how these methods, when combined with superblock tech- 
niques, enable modulo scheduling to be effectively applied 
to control-intensive loops. Section 3 reports the perfor- 
mance results, and Section 4 provides a summary and di- 
rections for future work. 

2. Modulo Scheduling of Control-Intensive Loops 

A detailed example is used to illustrate the difficulties 
caused by control-intensive loops and the benefits of the 
techniques developed. The loop chosen for this case study 
is one of the frequently executed loops in lex, the lexical 

analyzer generator. The source code for the loop is shown 
in Figure 1. 

for (i = n; i >= 0; i--) ( 
j = state[i]; 

Sl : if (count == “j++) ( 
for (k = 0; k < count; k++) 

if (!temp[‘j++]) break; 
if (k >= count) 

return (i); 

Figure 1. Source code for example loop from lex. 

Loops in general purpose non-numeric programs fre- 
quently have complex control flow, and this is evident in 
the example loop. The outer loop contains an if-statement, 
an inner loop, and an early exit via a return statement. The 
inner loop contains an if-statement and an early exit via a 
break statement. 

Obviously, this loop contains a number of hazards for 
module scheduling. Modulo scheduling would ordinarily 
target the inner loop. However, profile information indi- 
cates that the inner loop is infrequently invoked and usu- 
ally has few iterations. The condition for the if-statement 
Sl evaluates to false more than 90% of the time. Figure 2a 
shows a simplified version of the control flow graph for the 
loop. Block X contains the code to load state[i] and *j 
and do the comparison for statement Sl. Block Y consists 
of the post-increment of the pointer j and all the code in 
the body of the if-statement Sl. The control flow within 
block Y has been omitted for clarity. Block Z contains the 
code to update i and to test the exit condition. 

(a) Before (b) After 

Figure 2. Superblock formation for example loop. 

The detrimental path containing the inner loop can be 
excluded from the loop via superblock formation. Effective 
superblock formation can be done using profile informa- 
tion [3] and/or static analysis of the structure and hazards 
in the program [9]. A superblock loop consisting of the 
most frequent path through the outer loop (blocks X and 
Z) is formed as shown in Figure 2b. The path through block 
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Y has been excluded via tail duplication of block Z. A su- single basic block loops (Basic Block) and multiple exit su- 
perblock loop consists of a single path through a loop, with perblock loops (Superblock) for the SPEC CINT92 bench- 
a single entrance and one or more exits. The loop consisting marks and several Unix utility programs. The column la- 
of blocks X and Z now appears to be an inner loop with mul- beled Total is the sum of the other two columns. The time 
tiple exits and can be targeted for modulo scheduling. For not spent in these two types of loops is spent in the excluded 
a detailed description of superblock formation, see [lo, 31. paths of inner and outer loops and in acyclic code. 

It has been shown that superblock optimization 
and acyclic scheduling techniques provide substantial 
speedup [lo]. In general, the ability of superblocks (and 
similarly hyperblocks) to exclude undesirable paths of ex- 
ecution can provide the following benefits for modulo 
scheduling: 

Table 1. Percentage of dynamic Instructions In sin- 
gle basic block and superblock loops. 

1 Benchmark II Basic 1 Suuerblock I Total 1 

Decrease ResMII by excluding unimportant paths with 
high resource usage. 

Decrease RecMII by excluding unimportant paths that 
contribute to long dependence cycles. 

Increase the number of loops that can be modulo sched- 
uled by excluding paths containing hazards such as 
nested loops and function calls. 

Although the modulo scheduling methods developed in this 
paper are described using superblock examples, they are 
equally applicable to hyperblock code. 

Figure 3 shows the assembly code for the example su- 
perblock loop. Each instruction is numbered for later refer- 
ence. Block X in the control flow graph consists of instruc- 
tions 1 through 3. Instructions 4 through 6 are in block Z. 
The assembly code shown is that produced by the IMPACT 
compiler after classic optimizations have been applied. The 
elements of the array state are four bytes in size. The regis- 
ters shown are virtual registers. Register allocation is done 
after modulo scheduling. 

r13 = MEM(rl2+0) 

r34 = r34 - 4 

Register Contents 
r8 = state 
r34 = i’4 
r12=j 
r13 = l j 
r6 = count 
r4 = i 

Figure 3. Assembly code for superblock loop. 

Control exits the superblock loop if instruction 3 is 
taken, or if instruction 6 is not taken. In this paper, the 
exit associated with the fall-through path of the loop back 
branch is termed the final exit. Any other exits from a su- 
perblock loop are via taken branches and are termed early 
exits. 

The virtual registers r34, r4, and r12 are live out when 
the early exit to L2 (block Y) is taken. The values in r34 
and r4 are decremented in block Z’. The value in r12 is 
incremented in block Y. No virtual registers are live out 
when the loop exits via the final exit (instruction 6). 

Loops with complex control flow occur frequently in gen- 
eral purpose non-numeric programs. Table 1 shows statis- 
tics on the percentage of dynamic instructions that are in 

Block A 

‘~ 

For all the programs except gee and tbl, little or no time 
is spent in single basic block loops. For all the programs 
except tbl, more time (usually much more) is spent in mul- 
tiple exit superblock loops than in single basic block loops. 
From this table, it is clear that modulo scheduling must be 
able to effectively handle loops with control flow to be ap- 
plicable to these programs. The remainder of this section 
describes how the proposed techniques overcome the con- 
trol dependences and register anti-dependences associated 
with loops that have multiple exits and live-out virtual reg- 
isters. A code generation scheme for loops with multiple 
exits is also presented. 

2.1. Overcoming control dependence using spec- 
ulative code motion 

Control dependences are a major impediment to the 
exploitation of ILP in the loops of general-purpose non- 
numeric programs. Cross-iteration control dependences re- 
strict the overlap of loop iterations by delaying the start of 
subsequent iterations until all the branches from the cur- 
rent iteration have been executed. Frequently the branches 
are dependent on earlier computations in the loop body 
and cannot be executed until late in the iteration, severely 
limiting any overlap. 

Intra-iteration control dependences combined with cross- 
iteration data dependences create recurrences which limit 
the throughput of the modulo scheduled loop. They also 
increase the length of the critical paths through a single 
iteration, resulting in a longer schedule for each iteration, 
an important consideration for short trip count loops, 

As described in [20, 191, the cross-iteration control de- 
pendences from the loop back branch to the instructions 
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in the next iteration can be relaxed, allowing speculative 
code motion and overlap of the iterations. For loops with 
multiple exits, this concept must be extended to the early 
exit branches. It is often necessary to remove the cross- 
iteration control dependences from an early exit branch to 
the instructions in subsequent iterations to achieve the de- 
sired level of overlap. It is also often necessary to remove 
intra-iteration control dependences to allow overlap of the 
blocks within an iteration and to achieve good performance 
for short trip count loops. 

Removal of either type of control dependence is not quite 
so simple however. We currently assume that stores and 
branches are not speculatively executed. The reordering 
of branches will be the subject of future work. In order 
to speculatively execute loads and other instructions that 
can cause exceptions, either the processor architecture must 
contain support for speculative execution [4, 131 or the com- 
piler must be able to prove via program analysis that the 
speculatively executed instruction will not except [2]. In 
this paper, we assume an instruction set architecture that 
contains silent (non-trapping) versions of the instructions 
that can cause exceptions [4]. Furthermore, instructions 
that write to virtual registers that are live at the loop ex- 
its require special attention when removing control depen- 
dences. This issue will be discussed in Section 2.2. We 
now show the effect of control dependences on the example 
superblock loop. 

Figure 4a shows the dependence graph. Each node is 
numbered with the ID (from Figure 3) of the instruction it 
represents. The branch nodes are shaded. The data and 
control dependences are shown with solid and dashed lines 
respectively. Some of the transitive dependences are not 
shown. None of the register anti-dependences are shown, 
assuming that they can be removed. Removal of anti- 
dependences is discussed in Section 2.2. 

(a) RecMll = 6 (b) RecMll = 1 

Figure 4. Dependence graph for example loop. 

Each arc is labeled with two numbers. The first is the 
minimum delay in cycles required between the start of the 
two instructions. The second number is the distance, which 
is the number of iterations between the two dependent in- 

structions. Arcs with a distance of zero are intra-iteration 
dependences and those with a distance greater than zero are 
cross-iteration dependences. The instruction set assumed is 
similar to HP’s PA-RISC 1.1 but has no branch delay slots. 
Except for the branches, the delays shown are those of the 
PA7100. It is assumed that the instructions in the fall- 
through path of a branch can potentially be executed in 
the same cycle as the branch and that instructions in the 
taken path are executed the cycle following the branch. 

There are several non-trivial recurrences apparent in the 
graph. The longest recurrence circuit runs through instruc- 
tions 1, 2, 3, 4, 6, and back to 1. It has a total delay of 
six and spans one iteration, resulting in a RecMII of six. 
If the loop is scheduled using this dependence graph, there 
is no overlap of the iterations. The cross-iteration control 
dependences from the loop back branch to the instructions 
in the next iteration (except instruction 3) can be removed, 
allowing speculative code motion and overlap of the itera- 
tions. However, there are still limiting control dependences 
present. The recurrence circuit consisting of instructions 
1, 2, 3, and 5 limits the RecMII to five. To break this 
recurrence, the intra-iteration control dependence between 
instructions 3 and 5 must be removed, enabling speculative 
execution of instruction 5. The control dependence from in- 
struction 3 to instruction 4 must also be removed to break 
the remaining limiting recurrence. Figure 4b shows the de- 
pendence graph after all of the limiting control dependences 
have been removed, reducing the RecMII to one. 

An instruction can legally be moved during modulo 
scheduling from above to below a branch if the branch is not 
data dependent on the instruction. For example, instruc- 
tion 5 could legally be scheduled after instruction 6. When 
an instruction is moved from above to below a branch, it is 
automatically moved into both paths of the branch during 
the generation of epilogues which follows the actual modulo 
scheduling process. In Sections 2.2 and 2.4, it is shown that 
special attention must be paid to this type of code motion 
for correct code generation in multiple exit loops. 

Assuming a 4-issue processor that can execute one 
branch per cycle, the ResMII for the example loop is two. 
The RecMII was one, resulting in an II of two. This is a 
speedup of three over modulo scheduling using the depen- 
dence graph of Figure 4a. 

2.2. Overcoming anti-dependence using modulo 
variable expansion 

Thus far, nothing has been said about anti-dependences 
and the constraints imposed by the virtual registers that 
are live out of the loop exits. In its original form, an in- 
struction I that writes a virtual register V that is live out 
of an exit branch B cannot be moved from below to above 
B, because it overwrites the value in V that is used when 
exit B is taken. This constraint on upward code motion 
is exactly the same as if V was one of the operands of B 
(i.e. it is an anti-dependence constraint) but is represented 
differently in many compilers. Instead of adding an explicit 
anti-dependence arc, many compilers, including IMPACT, 
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overload the control dependence arc to represent both the 
control dependence and the anti-dependence. 

There are several examples of anti-dependence in the 
case study loop. Instruction 1 uses r34 which is later defined 
by instruction 5. Virtual register r34 is live out when the 
branch to L2 (instruction 3) is taken, so there is an anti- 
dependence between instruction 3 and instruction 5. 

Anti-dependences can be removed by renaming. Modulo 
variable expansion [ll, 191 unrolls the kernel and renames 
the successive lifetimes corresponding to the same loop- 
variant so that they no longer overlap in time. This allows 
register anti-dependences to be removed before schedul- 
ing, knowing that modulo variable expansion will cor- 
rect the overlap of lifetimes that the lack of these depen- 
dences allows. The modulo variable expansion algorithm, 
as originally described [ll], allows the removal of cross- 
iteration anti-dependences. However, intra-iteration anti- 
dependences can also be removed if the lifetime analysis 
and the renaming algorithms are extended to include life- 
times that cross iterations. It is assumed that this can be 
done in [19]. In this paper, we describe the changes needed. 

Figure 5 illustrates the relaxation of a cross-iteration 
anti-dependence using modulo variable expansion, as de- 
scribed in [ll]. Three iterations of an abstract loop body 
containing a definition and a use of a virtual register rl are 
shown. There is an intra-iteration flow dependence (marked 
with an f) and a cross-iteration anti-dependence (marked 
with an a). The cycle in which each instruction is issued 
is shown in square brackets to the right of the abstract in- 
struction, assuming the delay for the flow dependence is 
two and the anti-dependence is zero. In its original form as 
shown on the left, the minimum II that can be achieved is 
two. Using modulo variable expansion, the anti-dependence 
can be removed prior to scheduling, reducing the II to one. 
Two virtual registers are now used as shown on the right. 

Def (rl) [0] 

If 
+ 

Use (rl) [2] 
\ 

a\ 
Def (rl) [2] 

If 
+ 

Use (rl) [4] 

‘-2-Y 
Def (rl) [4] 

II = 2 

4 
f 

Use (rl) [6] 

(4 

Def (rl) [0] 

I 
f Def W) 111 

Use (rl) [2] 
i 

f Def (rl) [2] 

Use(R) [3] 
1 

f 

Use (rl) [4] 

II = 1 

(4 

Figure 5. Relaxation of cross-iteration anti- 
dependence. 

Figure 6 shows the relaxation of an intra-iteration anti- 
dependence. In this case, the use appears before the defi- 
nition in the original iteration, and the lifetime of rl now 
crosses the iterations. Removal of the intra-iteration anti- 

dependence prior to scheduling allows the definition to be 
moved above the use within the iteration as shown on the 
right. As in the previous case, two registers are used and 
the II is reduced from 2 to 1. 

Use (rl) [O] Def W) 101 

1 
a f 

Def (rl) [0] Use 03 [II 

‘: 

Def (rl) [l] 

--+A 
f 

Use (rl) [2] Use 03 PI 
\ 

Def 0’3 PI 

I 
a 

Use (rl) [3] 
Def (rl) [2] 

-7-h 
II = 1 

Use (rl) [4] 
II = 2 

I 
a 

Def (rl) [4] 

(a) (b) 

Figure 6. Relaxation of intra-iteration anti- 
dependence. 

The lifetime of a virtual register extends fIom its first 
definition to its last use. The lifetime of a loop-variant 
virtual register V from a definition D to a use U is com- 
puted using the following equation, assuming that the life- 
time starts when D is issued and ends when U is issued. 

Lifetime(V) = Issue(U) - Issue(D) + II * Dist(V) (1) 

Issue(D) and Issue(U) are the issue time of the instances 
of D and U from the same original iteration ‘. Dist(V) is 
the number of iterations separating D and the instance of 
U that uses the value defined by D in the original loop. 

Note that in equation 1, use U could be a branch for 
which V is live out. For correct renaming, the lifetime 
analysis must be extended to include such uses. There is 
an additional consideration for live out virtual registers. 
Instruction D can be moved downward across the branch B. 
If such code motion occurs, the definition is moved into both 
paths of the branch during epilogue generation, V is no 
longer live-out, and Lifetime(V) as computed by equation 1 
becomes less than or equal to 0. Thus, the lifetime of V is 
computed for all the uses except those associated with the 
exits that D has been moved down across. 

Figure 7 shows the execution of two iterations of the 
case study loop after modulo scheduling. The first itera- 
tion starts at time 0 and its instructions are denoted with 
the subscript 1. The second iteration starts at time 2 and 
its instructions are denoted with subscript 2. The second it- 
eration’s instructions are also shaded to further distinguish 
the two iterations. The lifetimes of all the virtual registers 
written in the loop are shown to the right of the execu- 
tion record. Each virtual register’s lifetime begins with its 

1 Modulo scheduling generates a schedule for a single iteration 
of the original loop. It is this schedule that we are working with 
when analyzing the lifetimes for modulo variable expansion. 



definition in the first iteration. Each of the subsequent tic 
marks denotes either an explicit use of the virtual regis- 
ter as a source operand, or a branch for which the register 
is live-out. The lifetime extends until the last use of the 
register. 

Issue Slot Lifetimes 

0 1 2 3 r13 r12 r34 r4 

Cyde 

0 
T 

Ii 
t 1 

Figure 
ser. 

2 r4 = r4 - 1 
3 r13 = MEM(rl23+0) 
4 rl2 = MEM(r343+r8) 
5 r34=r343-4 
61 bgt (0 r4) L3 
71 beq (1’6 r13) L2 
8 r4 = r4 - 1 
9 r13 = MEM(rl2+0) 

10 r122 = MEM(r34+r8) 
11 t342=r34-4 
121 bgt (0 r4) L3 
131 beq (r6 r13) L2 

Inst. Assembly 
lIL1: beq (r6 rl3) L2 

Cycle 
0 
0 
0 
0 
1 
1 
2 
2 
2 
2 
3 
3 
4 
4 
4 
4 
5 
5 

8. Unrolled kernel for superscalar proces- 

Figure 7. Execution record and lifetimes for two 
iterations. 

2.3. Review of a code generation scheme for sin- 
gle exit loops 

The lifetime of r13 is entirely contained within one iter- 
ation. It is defined by instruction 2 and used by instruction 
3. issue(2) is 2, Issve(3) is 4, Dist(rl3) is 0, and II is 2. 
Using equation 1, the length of the lifetime is 2. The life- 
time of r34 crosses iterations. It is defined by instruction 
5, used by instruction 1 and 5 of the next iteration, and 
live out of instruction 3 of the next iteration. Issue(S) is 
1, Issve(3) is 4, and Dist(r34) is 1. Using equation 1, the 
total length of the lifetime is 5. 

The definitions of V are renamed by cycling through 
the set of virtual registers assigned for V. Each use of V 
is renamed by first finding the iteration that contains the 
corresponding definition of V (the current iteration if Dis- 
tance(V) is zero or the previous iteration if Distance(V) is 
one) and using the same virtual register name as the defi- 
nition from that iteration. 

The longest lifetime, that of r34, is 5 cycles so the loop 
must be unrolled three times for modulo variable expan- 
sion. Figure 8 shows the unrolled kernel of the modulo 
scheduled loop after module variable expansion. The in- 
structions have been renumbered. When renaming, one of 
the names used is the original virtual register name. The 
set of registers used for r34 is r34, r342, and r343. The 
set of registers used for r12 is r12, r122, and r123. The 
instructions have been put into sequential order, as would 
be done when generating code for a superscalar processor. 
The target and fall-through path for the first two copies 
of the loop back branch (instructions 6 and 12) have been 
reversed in preparation for epilogue generation. Block L3 
is the original fall through path of the loop. 

In this subsection, we review an existing code generation 
scheme for single exit loops in preparation for introducing 
a modified scheme for multiple exit loops. For a complete 
discussion of this and other possible code schemes for single 
exit loops, see [19]. We use the abstract code representation 
of [19] to reduce the complexity of the examples. Figure 9a 
shows a single iteration of a generic single-exit loop after 
modulo scheduling. Each square represents the code from 
one stage, or II cycles, of a single iteration of the original 
source loop. The number of stages is called the stage count. 

(a) One iteration (b) Unrolled-kernel code structure 

I All 

Bi /Ad 

Figure 9. Abstract representation of iterations. 

Figure 9b shows the code structure for the modulo sched- 
uled loop after kernel unrolling and generation of the pro- 
logue and epilogue. The iterations progress from left to 
right with each one starting one stage after the previous 
one. The back-edge arrow from row 6 to row 3 identifies 
the start and end of the unrolled kernel (the degree of un- 
rolling is unrelated to the stage count). The squares before 
the kernel represent the prologue and the squares after- 
ward represent the epilogue. Each square is now also given 
a number to specify which version of the code is being used. 
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Each version uses different names for the registers to avoid 
overwriting live values. The code structure in Figure 9b is 
simplistic and does not allow an arbitrary number of iter- 
ations to be correctly executed [19], but it illustrates some 
of the basic concepts and prepares the reader for the more 
complex (and correct) code schemes described later in this 
section. 

In this paper, loop back branch refers to the loop back 
branch in the original loop body. There are multiple copies 
of this branch after modulo scheduling because of the kernel 
unrolling and prologue generation. For all the copies except 
the one that becomes the loop back branch of the kernel, the 
target and fall-through path are reversed, as was shown in 
Figure 8, so that the loop is exited when the branch is taken 
rather than when it falls through. All the exits associated 
with the copies of the loop back branch are called final e&s. 
All other exits are early e&s. 

The chain of dependences leading up to the loop back 
branch determines the earliest stage in which the loop back 
branch can be placed. The stage in which the loop back 
branch is scheduled determines the number of iterations 
that are speculatively initiated. Assume the stages of an 
iteration are numbered such that stage A corresponds to 0, 
stage B corresponds to 1, and so on. Using the terminology 
of [19], if the loop back branch is scheduled in stage 0, then 
there are fl speculatively executed stages for each iteration 
after the first. For example, in Figure 9b, if the loop back 
branch is scheduled in stage B, then stage A of every itera- 
tion after the llrst is executed speculatively. In this paper, 
the last iteration refers to the last iteration that would have 
been executed in the original non-pipelined loop. When the 
exit from the last iteration is taken, any speculative itera- 
tions are aborted. 

Figure 10 shows the structure of the code that is gener- 
ated for each of the possible stages in which the loop back 
branch could be placed for a three-stage schedule. In Fig- 
ure lOa, b, and c, the loop back branch is scheduled at the 
end of stage A, B, and C respectively. 

(a) Theta = 0 

1 
01 H Cl 

(b) Theta = 1 (c) Theta = 2 

Iill Iil~j 

Figure 10. Code generation scheme for single exit 
loops. 

The arrows (except the back-edge) represent control 

transfers from the prologue and kernel to the epilogues 
shown. Because the final exits are scheduled at the end 
of the stage, the arrows originate very close to the bottom 
of each row of squares. Each epilogue contains the code to 
complete the non-speculative iterations that are in progress 
at the time the exit is taken. Although it is not explicitly 
shown, at the end of each epilogue there exists code to move 
any live out values to the registers in which the code outside 
the loop expects to find them and to jump to the original 
target block of the exit. 

By comparing Figure 10a and b, one can see how the 
structure of the generated code changes when the loop back 
branch is scheduled at the end of stage B instead of stage A. 
Because the loop back branch is executed one stage later, 
there are fewer stages left to execute in the epilogues for 
the last iteration and its predecessors. Thus, the epilogues 
all have one less row. The one speculative iteration that 
is in progress when the loop exits is aborted and so there 
is one less column in each epilogue. There is one less exit 
from the prologue, so one of the epilogues has disappeared 
altogether. In general, when the loop back branch is placed 
in stage 6 instead of stage 0, the 6 rightmost columns of 
each epilogue are removed, corresponding to the 8 aborted 
speculative iterations [19]. The resulting epilogues have 
SC - 0 - 1 rows where SC is the stage count. 

In Figure lOc, the loop back branch is scheduled at the 
end of the last stage. Thus, the last iteration and its pre- 
decessors are complete when the loop exits. The epilogues 
consist only of the code needed to move the live values and 
are not shown. 

2.4. A code generation scheme for multiple exit 
loops 

Figure 11 illustrates the changes to the code generation 
scheme for multiple exit loops. The figure assumes a loop 
with two exits, where both the early exit and the loop back 
branch are scheduled in the same stage. In Figure lla, b, 
and c, the branches are scheduled in stage A, B, and C 
respectively. There are now more exits from the modulo 
scheduled loop and thus more epilogues. The arrows asso- 
ciated with the early exits originate very close to the top 
of each row and have dashed lines to distinguish them from 
the final exits. 

There are two key differences between a final exit and an 
early exit. First, the final exit is scheduled at the very end 
of the stage, but an early exit branch can be in the middle 
of a stage. Thus, for a final exit, the epilogue starts at the 
beginning of the stage following the one containing the final 
exit branch. For an early exit, the remainder of the row 
containing the exit branch in the kernel must be examined 
for copying to the epilogue. For all the iterations before the 
last one, the remainder of that iteration’s stage in the row 
containing the exit branch is copied to the epilogue. The 
treatment of the last iteration will be discussed shortly. In 
Figure 11, small letters are used to denote a partial stage 
resulting from an exit branch from the middle of a stage. 
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Figure 11. Code generation scheme for multiple 
exit loops. 

The second key difference is that the loop back branch is 
always the last instruction in the original loop body, but an 
early exit branch is somewhere in the middle of the original 
loop body. When a final exit is taken, the last iteration 
is always fully executed. The remaining stages for the last 
iteration are copied to the epilogue in their entirety. How- 
ever after an early exit is taken, only the instructions from 
the last iteration that appeared before the exit branch in 
the original loop body should be executed. 

Assume the basic blocks in a superblock are assigned 
numerical IDS sequentially from zero to SC - 1. Define 
the home block for an instruction to be the basic block in 
which the instruction resides in the original loop body. For 
Ian early exit, an instruction from the remaining stages of 
the last iteration is copied to the epilogue only if the ID of 
its home block is less than or equal to the home block ID 
of the exit branch. In Figure 11, shaded squares are used 
to denote the stages for which the home block is checked 
before copying the instruction. 

In Figure 11, the epilogues for the final exits are all the 
same as in Figure 10. The epilogues for the early exits al- 
ways have one more row and usually have one more column 
than the corresponding final exit from the same stage. The 
extra row consists of the remainder of the row in the kernel 
in which the early exit branch resides. Thus, all the squares 
in the extra row are marked with small letters. The extra 
column corresponds to the last stage of the oldest iteration 
in progress at the time the exit is taken. For a final exit, 
this iteration is just finished when the exit is taken. For 
an early exit, part of the last stage remains and is com- 
pleted in the epilogue. The epilogues for the early exits 
from the prologue do not have an extra column because 
none of the iterations have started execution of the last 
stage. The rightmost column of each early exit epilogue 

is shaded. This column corresponds to the last iteration. 
For the last iteration, only the instructions that appeared 
before the exit branch in the original loop body are copied 
to the epilogue. 

Figure 12 shows the algorithm for generating an epi- 
logue for an exit branch. The algorithm starts with the 
instructions following the exit branch and copies rows of 
instructions from the unrolled kernel to the epilogue, wrap- 
ping around the kernel until the last row of the epilogue 
is complete. Squares are not copied if they correspond to 
instructions from iterations after the last or to instructions 
from the last iteration that appeared after the exit branch 
in the original loop body. The algorithm as shown assumes 
a processor that does not have branch delay slots. The 
following paragraphs describe the data structures and con- 
cepts needed to understand the algorithm. 

The unrolled kernel is divided into sections of II cycles 
each called kernel rows. There are kmin rows where kmin 
is the degree of unrolling of the kernel. Each row con- 
tains a linked list of the instructions contained in that row. 
The data structure for each instruction contains a pointer 
to an information structure which contains among other 
items: the stage in which the instruction is scheduled, the 
instruction’s home block ID, and the row of the kernel that 
contains the instruction. 

There are SC - 0 rows in each epilogue (numbered zero 
to SC - 0 - 1) where 0 is the stage in which the exit branch 
is scheduled. Row zero is the partial row and is empty for a 
final exit (the linked list for each kernel row ends with a final 
exit). In row epirow of the epilogue, the last iteration is 
executing in stage epirow + 0. Instructions from stages 
less than epirow + 0 must be from iterations after the last, 
and thus are not copied. 

For simplicity, the algorithm shown generates correct 
epilogues for exits from the kernel, but not for exits from 
the prologue. In practice, the algorithm contains additional 
code to map an exit in the prologue to the corresponding 
exit in the kernel. The prologue is generated in a similar 
manner to the epilogues, by copying selected instructions 
from the rows of the unrolled kernel. Mapping a prologue 
exit to a corresponding kernel exit facilitates the copying 
of rows for the epilogue. Also in practice, if the epilogue is 
for an exit from the prologue, the algorithm does not copy 
an instruction that is from a later stage than the stage that 
the very first iteration is executing. Such instructions cor- 
respond to the non-existent iterations prior to the first one. 

We now apply the code generation scheme to the exam- 
ple loop. The schedule for a single iteration of the example 
loop contains 3 stages. Stage A consists of instructions 1 
and 5 from the original loop (see Figure 7). Stage B con- 
tains instruction 2. Instructions 3 (early exit), 4, and 6 
(final exit) are in stage C. The code scheme in Figure llc 
is similar to what would be generated for the example loop. 
Because of the dependence structure of the loop, there is 
no opportunity for downward code motion across the early 
exit branch. Thus, when the early exit branch is taken there 
are no remaining instructions from the last iteration that 
appeared before the exit branch in the original loop body 
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Algorithm gen-epicexit branch) { 

create epilogue block 
SC = stage count 
theta = exit->info->stage 
row = exit->info->row 
exit-home-block = exit->info->home-block 

/* Generate all rows of epilogue */ 
for (epi-row = 0 to SC - theta - 1) do { 

/* Determine where to start copying */ 
if (epi-row == 0) 

/* Partial rov. If exit is a final exit, 
exit->next-op is NULL and no instructions 
vi11 be copied to the partial rov. */ 

oper = exit->next-op 
else 

/* Full rov */ 
oper = kernel[rov]->first-op 

/* Generate one full or partial rov */ 
vhile (oper != NULL) { 

oper-stage = oper->info->stage 
oper-home-block = oper->info->home-block 

/* Copy instruction if it is from an 
iteration previous to the last iteration, 
or if it is from the last iteration and 
appears before the exit branch in the 
original loop body */ 

if ( (oper-stage > epi-rov + theta) or 
(oper-stage == epi-rov + theta and 
oper-home-block <= exit-home-block) ) { 

nev-op = copy-operation(oper) 
insert-op-after(epilogue->last_op. nev-op) 

3 
oper = oper->next-op 

3 
/* Rotate through the rovs of the kernel */ 
rov = (row + I) mod kmin 

3 

/* insert moves at end of epilogue for variants 
that are live out of exit */ 

insert-moves-for-live-variants(epilogue. exit) 

/* Last exit branch falls through to epilogue */ 
if (exit is not last exit in unrolled kernel) { 

jump = create jump to target of exit branch 
insert-op-aftercepilogue->last_op. jump) 
make epilogue block the target of exit branch 

3 
3 

Figure 12. Epilogue generation algorithm. 

and the shaded epilogues are empty. 

2.5. Insertion of moves for live-out values 

As mentioned earlier, code must be appended to the end 
of each epilogue to move the values that are live-out of 
the corresponding exit into the register in which the code 
outside the loop expects to find them. For single exit su- 
perblock loops, the value used outside the loop must have 
been defined in the last iteration. Thus, for each final exit, 
the instructions from the last iteration are examined in the 
corresponding epilogue and in the kernel. If the value pro- 
duced by the instruction is live-out and the destination reg- 
ister is not the one expected outside the loop, a move in- 
struction is inserted at the end of the epilogue. 

For multiple exit loops, the procedure is the same for 
the final exits. However, for the early exits there is an ad- 
ditional consideration. The live out value could be defined 
in the last iteration by one of the instructions that pre- 
ceded the exit branch in the original loop body, or it could 
be defined in the second-to-last iteration by one of the in- 
structions that followed the exit branch in the original loop 
body. Thus, the last iteration is examined for instructions 
that originally resided in the same or earlier home block 
as the early exit branch and the second-to-last iteration is 
examined for instructions that originally resided in a later 
home block than the exit. 

In the example loop, when the early exit (instruction 3 
from Figure 3) is taken, the live out values of r34 and r4 are 
from the second-to-last iteration and the live out value of 
r12 is from the last iteration. There are no values live out of 
the final exit. Figure 13 shows the code generated for the 
example loop using the multiple epilogue code scheme of 
Figure llc. The instructions have again been renumbered. 
The moves for the live out values (instructions 25, 27, 28, 
and 30) are also shown. 

The blocks labeled Pro and Ll are the prologue and the 
unrolled kernel respectively. The blocks labeled LEl, LE3 
and LE5 are epilogues. The block immediately following 
thekernelistheepiloguereachedbyfallingthroughtheioop 
back branch. Block L3 is the original fall through path of 
the loop. Label L2 is the start of block Y. The epilogues 
for the final exits (instructions 11, 17, and 23) are all empty 
becausenocodewasmoveddownward acrosstheloopback 
branch and there are no virtual registers live out of the 
final exits. Rather than branching to empty epilogues, the 
final exits branch directly to L3. The exception is the loop 
back branch, which falls through into its epilogue and then 
jumps to L3. 

The early exits (instructions 6, 12, and 18) all require 
moves for one or more of the live virtual registers, so all 
branch to epilogues. As mentioned at the end of 2.2, when 
renaming, one of the names used is the original virtual reg- 
ister name. Thus, if the live out value is already in the 
correct register, a move is not necessary. This is the case 
for r34 in epilogue LEl and r12 in epilogue LE5. A jump 
is placed at the end of each early exit epilogue to transfer 
control to Block Y. 
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2 r342=r34-4 
i”““’ 

3 r13 = MEM(r122+0) 
4 r123 = MEM(r342+r6) 
51 1343=r342-4 
61Ll: beq (r6 r13) LEl 

1 
2 
2 
3 
0 
0 
0 
0 
1 
1 
2 
2 
2 
2 
3 
3 
4 
4 
4 
4 
5 
5 
0 
0 
0 

0 
0 
0 

0 
0 - 

7 r4 = r4 - 1 
0 r13 = MEM(r123+0) 
9 r12 = MEM(r343+r6) 

10 r34=r343-4 
11 bgt (0 r4) L3 
12 beq (r6 r13) LE3 
13 r4 = r4 - 1 
14 r13 = MEM(rl2+0) 
15 r122 = MEM(r34+r6) 
16 r342=r34-4 
17 bgt (0 r4) L3 
16 beq (r6 r13) LE5 
19 r4 = r4 - 1 
20 r13 = MEM(r122+0) 
21 r123 = MEM(r342+18) 
22 r343=r342-4 

261 jump L2 
271LE3: r12 = r123 
26 r34=r342 
29 jump L2 
3OLE5: r34=1343 
31 jump LZ 

L3: 

Figure 13. Final assembly code for the example 
loop. 

The virtual registers are renamed during modulo vari- 
able expansion such that the uses of a live-in virtual regis- 
ter in the first iteration refer to the original virtual register 
name. Thus, no moves are required for live-in values. For 
example, virtual register r34 is live-in and the first iteration 
in the prologue uses r34 (instructions 1 and 2) rather than 
one of the renamed versions (r342 and r343). 

3. Experimental Results 

In this section, we report experimental results on the 
applicability of modulo scheduling to control-intensive non- 
numeric programs. The results were obtained using the 
IMPACT compiler. Inter-procedural alias analysis [7] and 
data dependence analysis are done in the front end and 
memory dependence arcs are passed to the back end, giv- 
ing the optimizer and the schedulers accurate dependence 
information. In addition to the classic optimizations, op- 
timizations are performed in the back end to increase the 
ILP of the code [lo]. 

Modulo scheduling is done before prepass acyclic 
scheduling and global register allocation. The modulo 
scheduler is an implementation of Rau’s Iterative Modulo 
Scheduling [16]. It uses a machine description system [8] 
to get information on instruction latencies and resource 
requirements. The modulo scheduler has been used to 
pipeline loops for high issue rate versions of the PA-RISC 

(in this paper) and SPARC architectures. Loops are eligible 
for modulo scheduling if they are inner loops (outer loops 
may become inner loops after superblock formation), are 
single basic block or superblock loops, and do not contain 
function calls on the included path (function calls may be 
excluded from the loop by superblock formation, enabling 
modulo scheduling). 

The target processors for these experiments are multiple 
issue processors with issue rates between 4 and 8 with vary- 
ing resource constraints. Table 2 shows the functional unit 
mix for each processor. All processors are assumed to have 
32 integer registers and 32 double-precision floating-point 
registers. The latencies used are those of the HP PA7100 
processor. 

Table 2. Processor characteristics. 

Number of 
Name Issue Integer Memory Branch FP 

Slots ALUs Ports Units ALUs 

All speedups are reported over the single-issue base pro- 
cessor. For the base processor, ILP optimizations and mod- 
ulo scheduling are not applied. For the multiple issue pro- 
cessors, code is generated three ways, once without modulo 
scheduling, once with modulo scheduling of only the sin- 
gle basic block loops, and once with modulo scheduling of 
superblock loops using the techniques described in this pa- 
per. All the code that is not software pipelined is scheduled 
using acyclic superblock scheduling [lo]. 

None of the loops are unrolled before acyclic scheduling 
or modulo scheduling. In general, prior unrolling improves 
the performance of both acyclicly scheduled and modulo 
scheduled loops [12]. However, there are complex inter- 
actions between unrolling, optimization, and scheduling, 
which add another variable when we are trying to focus 
on the effect of modulo scheduling. The purpose of the 
paper is primarily to describe an effective method for mod- 
ulo scheduling loops in control-intensive non-numeric pro- 
grams. The results in this paper are used to demonstrate 
the applicability of modulo scheduling to this class of pro- 
grams and to validate the correctness of the method. The 
effects of unrolling prior to scheduling and performance 
comparisons of modulo scheduling and acyclic scheduling 
of unrolled loops in control-intensive non-numeric programs 
are the subject of future work as described in Section 4. 

The execution times of the whole programs are calcu- 
lated using scheduler cycle counts for each basic block and 
profile information. A 100% cache hit rate is assumed. The 
benchmarks are profiled after all transformations to insure 
accuracy. The profiling is done by instrumenting the target 
(virtual) processor’s assembly code and then emulating it 
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Figure 14. Speedup over single issue processor with and without modulo scheduling. 

on an HP Series 700 workstation. This execution produces 
benchmark output which is used to verify the correctness 
of the target processor’s assembly code. 

The benchmarks chosen for the experiments are the 
four SPEC CINT92 and four Unix programs from Table 1 
(espresso, eqntott, compress, gee, cmp, lex, WC, and yacc) 
that spend the most time in basic block and superblock 
loops, loops to which we apply modulo scheduling. For all 
of the chosen programs, over 40% of the dynamic instruc- 
tions were in such loops. A total of 305 loops were modulo 
scheduled. 

Figure 14 shows the speedup results. The white part 
of the bars show the speedup over the base processor when 
acyclic scheduling is applied to all of the code. For espresso, 
eqntott, lex, and yacc, the performance is flat as resources 
are increased. Without overlapping the iterations, the ILP 
that can be exploited is limited. The black part of the 
bars show the slightly increased performance when mod- 
ulo scheduling is applied to the single basic block loops. 
For all of the benchmarks except gee, less than 6% of the 
dynamic instructions are in basic block loops. Thus only 
a slight performance improvement can be expected. The 
benchmark gee spends about half as much time (14%) in 
single basic block loops as it does in superblock loops and 
shows speedups of about 5%. 

The cross-hatched part of the bars show the increased 
performance when superblock modulo scheduling is applied 
to the eligible loops. Modulo scheduling almost doubles 
the performance of lex for the 4-issue processor and almost 
triples performance for the 8-issue processor. As was shown 
in the case study, there is very limited ILP within a single 
iteration of the loops in that program. Modulo schedul- 
ing provides good speedup across all the benchmarks and 
processors. In particular, speedups of 25% or more are ob- 
tained across all the processors for espresso, eqntott, com- 
press, Zex, and yacc. For the most aggressive processor, 
performance is improved by 30% or more for all the bench- 
marks except gee and WC. 

With superblock modulo scheduling, the performance of 
espresso, eqntott, lex, and yacc is no longer flat as the pro- 
cessor resources are increased. More ILP is being exploited 
by overlapping the loop iterations. The results clearly show 
that modulo scheduling, using the techniques described in 
this paper, is applicable to control-intensive, non-numeric 
programs. 

4. Conclusion 

This paper has described a set of methods that allow 
effective modulo scheduling of loops with multiple exits. 
These methods can be used to allow modulo scheduling of 
the selected paths of loops with arbitrary control flow. A 
case study was presented to show how these methods en- 
able modulo scheduling to be effectively applied to control- 
intensive non-numeric programs. Performance results for 
several SPEC CINT92 benchmarks and Unix utility pro- 
grams demonstrated that modulo scheduling can signifi- 
cantly accelerate loops in this class of programs. 

Previous work has shown that unrolling prior to mod- 
ulo scheduling improves performance for numeric pro- 
grams [12]. Unrolling enables additional optimization and 
an effective II that is not an integer. For acyclic scheduling, 
unrolling is done to allow both optimization and overlap of 
iterations. For modulo scheduling, unrolling is done to opti- 
mize the effective ResMII and RecMII. Much research needs 
to be done to study the effect of unrolling prior to modulo 
scheduling for non-numeric programs and to understand the 
amount of unrolling necessary to achieve the minimum II 
possible for a given loop. This will be the next step in 
our effort to apply modulo scheduling to control-intensive 
non-numeric programs. One result of the next step will be 
the ability compare modulo scheduling and global acyclic 
scheduling of unrolled loops within a common framework. 
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