
JavaSpaces™ Specification
t
are

, and
, and
The JavaSpaces™ technology package provides a distributed persistence and objec
exchange mechanism for code written in the Java™ programming language. Objects
written in entries that provide a typed grouping of relevant fields. Clients can perform
simple operations on a JavaSpaces server to write new entries, lookup existing entries
remove entries from the space. Using these tools, you can write systems to store state
also write systems that use flow of data to implement distributed algorithms and let the
JavaSpaces system implement distributed persistence for you.
901 San Antonio Road
Palo Alto, CA 94303 USA
415 960-1300
fax 415 969-9131

Revision 1.0
January 25, 1999

Copyright © 1999 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, CA 94303 USA

All rights reserved. Copyright in this document is owned by Sun Microsystems, Inc.

Sun Microsystems, Inc. has patent and other intellectual property rights relating to implementations
of the technology described in this Specification ("Sun IPR"). Your limited right to use this
Specification does not grant you any right or license to Sun IPR. A limited license to Sun IPR is
available from Sun under a separate Community Source License.

THIS SPECIFICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
SUN SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY YOU AS A RESULT OF
USING THE SPECIFICATION.

THIS SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE SPECIFICATION. SUN
MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE
SPECIFICATIONS AT ANY TIME, IN ITS SOLE DISCRETION. SUN IS UNDER NO OBLIGATION
TO PRODUCE FURTHER VERSIONS OF THE SPECIFICATION OR ANY PRODUCT OR
TECHNOLOGY BASED UPON THE SPECIFICATION. NOR IS SUN UNDER ANY OBLIGATION
TO LICENSE THE SPECIFICATION OR ANY ASSOCIATED TECHNOLOGY, NOW OR IN THE
FUTURE, FOR PRODUCTIVE OR OTHER USE.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-
14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-1(a).

TRADEMARKS

Sun, the Sun logo, Sun Microsystems, Jini, JavaSpaces, JavaSoft, JavaBeans, JDK, Java, HotJava,
HotJava Views, Visual Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS,
EmbeddedJava, PersonalJava, SNM, SunNet Manager, Solaris sunburst design, Solstice, SunCore,
SolarNet, SunWeb, Sun Workstation, The Network Is The Computer, ToolTalk, Ultra,
Ultracomputing, Ultraserver, Where The Network Is Going, Sun WorkShop, XView, Java WorkShop,
the Java Coffee Cup logo, and Visual Java are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.
Page ii JavaSpaces™ Specification—1.0

Contents
1. Introduction . 1

1.1 Overview . 1

1.2 The JavaSpaces Application Model and Terms. 1

1.3 Benefits. 4

1.4 JavaSpaces Technology and Databases 6

1.5 JavaSpaces System Design and Linda Systems. 7

1.6 Goals & Requirements . 8

1.7 Dependencies . 9

1.8 Changes Since Beta. 9

1.9 Comments . 10

2. Operations . 11

2.1 Entries . 11

2.2 net.jini.space.JavaSpace . 12

2.3 write . 14

2.4 readIfExists and read . 14
Page iii

2.5 takeIfExists and take . 15

2.6 snapshot . 16

2.7 notify . 17

2.8 Operation Ordering . 18

2.9 Serialized Form. 19

3. Transactions . 21

3.1 Operations Under Transactions . 21

3.2 Transactions and ACID Properties 22

4. References and Further Reading . 25

4.1 References . 25

4.2 Further Reading . 25
Page iv JavaSpaces™ Specification–1.0

Introduction 1
1.1 Overview
Distributed systems are hard to build. They require careful thinking about

problems that do not occur in local computation. The primary problems are

those of partial failure, greatly increased latency, and language

compatibility[1]. The Java™ programming language has a remote method

invocation system called RMI[2] that lets you approach general distributed

computation in the Java programming language using techniques natural to

the Java programming language and application environment. This is layered

on the Java platform’s object serialization mechanism[3] to marshal parameters

of remote methods into a form that can be shipped across the wire and

unmarshalled in a remote server’s Java™ Virtual Machine (JVM).

This specification describes the architecture of JavaSpaces technology, which is

designed to help you solve two related problems: distributed persistence and

the design of distributed algorithms. JavaSpaces services use RMI and the

serialization feature of the Java programming language to accomplish these

goals.

1.2 The JavaSpaces Application Model and Terms
A JavaSpaces service holds entries. An entry is a typed group of objects,

expressed in a class for the Java platform that implements the interface

net.jini.core.entry.Entry . Entries are described in detail in the

Jini™Entry Specification.
Page 1

1

An entry can be written into a JavaSpaces service, which creates a copy of that

entry in the space1 that can be used in future lookup operations.

You can look up entries in a JavaSpaces service using templates, which are entry

objects that have some or all of its fields set to specified values that must be

matched exactly. Remaining fields are left as wildcards—these fields are not

used in the lookup.

There are two kinds of lookup operations: read and take. A read request to a

space returns either an entry that matches the template on which the read is

done, or an indication that no match was found. A take request operates like a

read, but if a match is found, the matching entry is removed from the space.

You can request a JavaSpaces service to notify you when an entry that matches

a specified template is written. This is done using the distributed event model

contained in the package net.jini.core.event and described in the

Jini™Distributed Event Specification.

All operations that modify a JavaSpaces service are performed in a

transactionally secure manner with respect to that space. That is, if a write

operation returns successfully, that entry was written into the space (although

an intervening take may remove it from the space before subsequent lookup of

yours). And if a take operation returns an entry, that entry has been removed

from the space, and no future operation will read or take the same entry. In

other words, each entry in the space can be taken at most once. Note, however,

that two or more entries in a space may have exactly the same value.

The architecture of JavaSpaces technology supports a simple transaction

mechanism that allows multi-operation and/or multi-space updates to

complete atomically. This is done using the two-phase commit model under

the default transaction semantics, as defined in the package

net.jini.core.transaction and described in the Jini™Transaction
Specification.

Entries written into a JavaSpaces service are governed by a lease, as defined in

the package net.jini.core.lease and described in the Jini™Distributed
Lease Specification.

1. The term “space” is used to refer to a JavaSpaces service implementation.
Page 2 JavaSpaces™ Specification–1.0

1

1.2.1 Distributed Persistence

Implementations of JavaSpaces technology provide a mechanism for storing a

group of related objects and retrieving them based on a value-matching lookup

for specified fields. This allows a JavaSpaces service to be used to store and

retrieve objects on a remote system.

1.2.2 Distributed Algorithms as Flows of Objects

Many distributed algorithms can be modeled as a flow of objects between

participants. This is different from the traditional way of approaching

distributed computing, which is to create method-invocation-style protocols

between participants. In this architecture’s “flow of objects” approach,

protocols are based on the movement of objects into and out of

implementations of JavaSpaces technology.

For example, a book ordering system might look like this:

◆ A book buyer wants to buy 100 copies of a book. They write a request for

bids into a particular public JavaSpaces service.

◆ The broker runs a server that takes those requests out of the space and

writes them into a JavaSpaces service for each book seller who registered

with the broker for that service.

◆ A server at each book seller removes the requests from its JavaSpaces

service, presents the request to a human to prepare a bid, and writes the bid

into the space specified in the book buyer’s request for bids.

◆ When the bidding period closes, the buyer takes all the bids from the space

and presents them to a human to select the winning bid.

A method-invocation-style would create particular remote interfaces for these

interactions. With a flow-of-objects approach, only one interface is

required—the net.jini.space.JavaSpace interface.
Page 3

1

In general, the JavaSpaces application world looks like this:

Clients perform operations that map entries or templates onto JavaSpaces

services. These can be singleton operations (as with the upper client), or

contained in transactions (as with the lower client) so that all or none of the

operations take place. A single client can interact with as many spaces as it

needs to. Identities are accessed from the security subsystem and passed as

parameters to method invocations. Notifications go to event catchers, which

may be clients themselves, or proxies for a client (such as a store-and-forward

mailbox).

1.3 Benefits
JavaSpaces services are tools for building distributed protocols. They are

designed to work with applications that can model themselves as flows of

objects through one or more servers. If your application can be modeled this

way, JavaSpaces technology will provide many benefits.

JavaSpaces

JavaSpaces

JavaSpaces

Client

Client

Transaction

write

write

write

read

take

Identities

Event
Catcher

writeEvent

notify
notify

service

service

service
Page 4 JavaSpaces™ Specification–1.0

1

JavaSpaces services can provide a reliable distributed storage system for the

objects. In the book buying example, the designer of the system had to define

the protocol for the participants and design the various kinds of entries that

must be passed around. This effort is akin to designing the remote interfaces

that an equivalent customized service would require. Both the JavaSpaces

system solution and the customized solution would require someone to write

the code that presented requests and bids to humans in a GUI. And in both

systems, someone would have to write code to handle the seller’s registrations

of interest with the broker.

The server for the model that uses the JavaSpaces API would be implemented

at that point.

The customized system would need to implement the servers. These servers

would have to handle concurrent access from multiple clients. Someone would

need to design and implement a reliable storage strategy that guaranteed the

entries written to the server would not be lost in an unrecoverable or

undetectable way. If multiple bids needed to be made atomically, a distributed

transaction system would have to be implemented.

All these concerns are solved in JavaSpaces services. They handle concurrent

access. They store and retrieve entries atomically. And they provide an

implementation of the distributed transaction mechanism.

This is the power of the JavaSpaces technology architecture — many common

needs are addressed in a simple platform that can be easily understood, and

used in powerful ways.

JavaSpaces services also help with data that would traditionally be stored in a

file system, such as user preferences, email messages, images, and so on.

Actually this is not a different use of a JavaSpaces service. Such uses of a file

system can equally be viewed as passing objects that contain state from one

external object (the image editor) to another (the window system that uses the

image as a screen background). And JavaSpaces services enhance this

functionality because they store objects, not just data, so the image can have

abstract behavior, not just information that must be interpreted by some

external application(s).

JavaSpaces services can provide distributed object persistence with objects in

the Java programming language. Because code written in the Java

programming language is downloadable, entries can store objects whose

behavior will be transmitted from the writer to the readers, just as in an RMI
Page 5

1

using Java technology. An entry in a space may, when fetched, cause some

active behavior in the reading client. This is the benefit of storing objects, not

just data, in an accessible repository for distributed cooperative computing.

1.4 JavaSpaces Technology and Databases
A JavaSpaces service can store persistent data which is later searchable. But a

JavaSpaces service is not a relational or object database. JavaSpaces services are

designed to help solve problems in distributed computing, not to be used

primarily as a data repository (although there are many data storage uses for

JavaSpaces applications). Some important differences are:

◆ Relational databases understand the data they store and manipulate it

directly via query languages. JavaSpaces services store entries that they

understand only by type and the serialized form of each field. There are no

general queries in the JavaSpaces application design, only “exact match” or

“don’t care” for a given field. You design your flow of objects so that this is

sufficient and powerful.

◆ Object databases provide an object oriented image of stored data that can be

modified and used, nearly as if it were transient memory. JavaSpaces

systems do not provide a nearly-transparent persistent/transient layer, and

work only on copies of entries.

These differences exist because JavaSpaces services are designed for a different

purpose than either relational or object databases. A JavaSpaces service can be

used for simple persistent storage, such as storing a user’s preferences that can

be looked up by the user’s ID or name. JavaSpaces service functionality is

somewhere between that of a filesystem and a database, but it is neither.
Page 6 JavaSpaces™ Specification–1.0

1

1.5 JavaSpaces System Design and Linda1 Systems
The JavaSpaces system design is strongly influenced by Linda systems, which

support a similar model of entry-based shared concurrent processing. Our

references (§4) include several that describe Linda-style systems.

No knowledge of Linda systems is required to understand this specification.

This section discusses the relationship of JavaSpaces systems with respect to

Linda systems for the benefit of those already familiar with Linda

programming. Other readers should feel free to skip ahead.

JavaSpaces systems are similar to Linda systems in that they store collections

of information for future computation and are driven by value-based lookup.

They differ in some important ways:

◆ Linda systems have not used rich typing. JavaSpaces systems take a deep

concern with typing from the Java platform type-safe environment. In

JavaSpaces systems, entries themselves, not just their fields, are typed —

two different entries with the same field types but with different data types

for the Java programming language are different entries. For example, an

entry that had a string and two double values could be either a named point

or a named vector. In JavaSpaces systems these two entry types would have

specific different classes for the Java platform, and templates for one type

would never match the other, even if the values are compatible.

◆ Entries are typed as objects in the Java programming language, so they may

have methods associated with them. This provides a way of associating

behavior with entries.

◆ As another result of typed entries, JavaSpaces services allow matching of

subtypes — a template match can return a type that is a subtype of the

template type. This means that the read or take may return more states than

anticipated. In combination with the previous point, this means that entry

behavior can be polymorphic in the usual object-oriented style that the Java

platform provides.

◆ The fields of entries are objects in the Java programming language. Any

object data type for the Java programming language can be used as a

template for matching entry lookups as long as it has certain properties.

1. “Linda” is the name of a public domain technology originally propounded by Dr. David Gelertner of Yale
University. “Linda” is also claimed as a trademark for certain goods by Scientific Computing Associates,
Inc. This discussion refers to the public domain “Linda” technology.
Page 7

1

This means that computing systems constructed using the JavaSpaces API

are object-oriented from top to bottom, and behavior-based (agent-like)

applications can use JavaSpaces services for co-ordination.

◆ Most environments will have more than one JavaSpaces service. Most Linda

tuple spaces have one tuple space for all cooperating threads. So

transactions in the JavaSpaces system can span multiple spaces (and even

non-JavaSpaces system transaction participants).

◆ Entries written into a JavaSpaces service are leased. This helps keep the

space free of debris left behind due to system crashes and network failures.

◆ The JavaSpaces API does not provide an equivalent of “eval” because it

would require the server to execute arbitrary computation on behalf of the

client. Such a general compute server system has its own large number of

requirements (such as security and fairness).

On the nomenclature side, the JavaSpaces technology API uses a more

accessible set of terms than the traditional Linda terms. The term mappings are

“entry” for “tuple”, “value” for “actual”, “wildcard” for “formal”, “write” for

“out”, and “take” for “in”. So the Linda sentence “When you ‘out’ a tuple

make sure that actuals and formals in ‘in’ and ‘read’ can do appropriate

matching” would be translated to “When you write an entry make sure that

values and wildcards in ‘take’ and ‘read’ can do appropriate matching.”

1.6 Goals & Requirements
The goals for the design of JavaSpaces technology are:

◆ Provide a platform for designing distributed computing systems that

simplifies the design and implementation of those systems.

◆ The client side should have few classes, both to keep the client-side model

simple, and to make downloading of the client classes quick.

◆ The client side should have a small footprint, because it will run on

computers with limited local memory.

◆ A variety of server implementations should be possible, including relational

database storage and object-oriented database storage.

◆ It should be possible to create a replicated JavaSpaces service.
Page 8 JavaSpaces™ Specification–1.0

1

The requirements for JavaSpaces application clients are:

◆ It must be possible to write a 100% Pure Java client.

◆ Clients must be oblivious to the implementation details of the server. The

same entries and templates must work in the same ways no matter which

server is used.

1.7 Dependencies
This document relies upon the following other specifications:

◆ Java Remote Method Invocation Specification

◆ Java Object Serialization Specification

◆ Jini™ Entry Specification

◆ Jini™ Entry Utilities Specification

◆ Jini™ Distributed Event Specification

◆ Jini™ Distributed Leasing Specification

◆ Jini™ Transaction Specification

1.8 Changes Since Beta
The following changes have been made to this specification since the beta

release:

◆ The types Entry and UnusableEntryException have been moved to the

net.jini.core.entry package, the type AbstractEntry has been

moved to the net.jini.entry package, and the descriptions have been

moved into separate specifications (Jini™ Entry Specification and Jini™ Entry
Utilities Specification).

◆ A timeout of zero in read or take now means to wait no time at all. The

NO_WAIT constant has been changed to zero. To wait infinite time, use

Long.MAX_VALUE as a timeout value (§2.4).

◆ The semantics of event notification retry have been loosened to allow for

implementation variance (§2.7).

◆ The serialized forms of the relevant classes are now described (§2.9).

◆ The Introduction chapter has been eliminated.
Page 9

1

1.9 Comments
Please direct comments to js-comments@jse.east.sun.com
Page 10 JavaSpaces™ Specification–1.0

 Operations 2
There are four primary kinds of operations that you can invoke on a

JavaSpaces service. Each operation has parameters that are entries, including

some that are templates, which are a kind of entry. This chapter describes

entries, templates, and the details of the operations, which are:

◆ write — Write the given entry into this JavaSpaces service.

◆ read — Read an entry from this JavaSpaces service that matches the given

template.

◆ take —Read an entry from this JavaSpaces service that matches the given

template, removing it from this space.

◆ notify —Notify a specified object when entries that match the given

template are written into this JavaSpaces service.

As used in this document, the term “operation” refers to a single invocation of

a method; thus, for example, two different take operations may have different

templates.

2.1 Entries
The types Entry and UnusableEntryException that are used in this

specification are from the package net.jini.core.entry , and are described

in detail in the Jini™Entry Specification. In the terminology of that specification,

write is a store operation; read and take are combination search and fetch

operations, and notify sets up repeated search operations as entries are written

to the space.
Page 11

2

2.2 net.jini.space.JavaSpace

All operations are invoked on an object that implements the JavaSpace
interface. For example, the following code fragment would write an entry of

type AttrEntry into the JavaSpaces service referred to by the identifier

space :

JavaSpace space = getSpace();
AttrEntry e = new AttrEntry();
e.name = "Duke";
e.value = new GIFImage("dukeWave.gif");
space.write(e, null, 60 * 60 * 1000);// one hour
// lease is ignored -- one hour will be enough

The JavaSpace interface is:

package net.jini.space;

import java.rmi.*;
import net.jini.core.event.*;
import net.jini.core.transaction.*;
import net.jini.core.lease.*;

public interface JavaSpace {
Lease write(Entry e, Transaction txn, long lease)

throws RemoteException, TransactionException;
public final long NO_WAIT = 0; // don’t wait at all
Entry read(Entry tmpl, Transaction txn, long timeout)

throws TransactionException, UnusableEntryException,
RemoteException, InterruptedException;

Entry readIfExists(Entry tmpl, Transaction txn, long timeout)
throws TransactionException, UnusableEntryException,

RemoteException, InterruptedException;
Entry take(Entry tmpl, Transaction txn, long timeout)

throws TransactionException, UnusableEntryException,
RemoteException, InterruptedException;

Entry takeIfExists(Entry tmpl, Transaction txn, long timeout)
throws TransactionException, UnusableEntryException,

RemoteException, InterruptedException;
EventRegistration notify(Entry tmpl, Transaction txn,

RemoteEventListener listener, long lease,
MarshalledObject handback)

throws RemoteException, TransactionException;
Entry snapshot(Entry e) throws RemoteException;

}

Page 12 JavaSpaces™ Specification–1.0

2

The Transaction and TransactionException types in the above

signatures are imported from net.jini.core.transaction . The Lease
type is imported from net.jini.core.lease . The RemoteEventListener
and EventRegistration types are imported from net.jini.core.event .

In all methods that have the parameter, txn may be null , which means that

no Transaction object is managing the operation (§3).

The JavaSpace interface is not a remote interface. Each implementation of a

JavaSpaces service exports objects that implement the JavaSpace interface

locally on the client, talking to the actual JavaSpaces service through an

implementation-specific interface. An implementation of any JavaSpace
method may communicate with a remote JavaSpaces service to accomplish its

goal; hence, each method throws RemoteException to allow for possible

failures. Unless noted otherwise in this specification, when you invoke

JavaSpace methods you should expect RemoteException s on method calls

in the same cases where you would expect them for methods invoked directly

on an RMI remote reference. For example, invoking snapshot may require

talking to the remote JavaSpaces service, and so may get a RemoteException
should the server crash during the operation.

The details of each JavaSpace method are given in the sections that follow.

2.2.1 InternalSpaceException

The exception InternalSpaceException may be thrown by a JavaSpaces

service that encounters an inconsistency in its own internal state or is unable to

process a request because of internal limitations (such as storage space being

exhausted). This exception is a subclass of RuntimeException . The exception

has two constructors: one that takes a String description and the other that

takes a String and a nested exception; both constructors simply invoke the

RuntimeException constructor that takes a String argument.

package net.jini.space;
public class InternalSpaceException extends RuntimeException {

public final Throwable nestedException ;
public InternalSpaceException(String msg) {…}
public InternalSpaceException(String msg, Throwable e) {…}
public printStackTrace() {…}
public printStackTrace(PrintStream out) {…}
public printStackTrace(PrintWriter out) {…}

}

Page 13

2

The nestedException field is the one passed to the second constructor, or

null if the first constructor was used. The overridden printStackTrace
methods print out the stack trace of the exception, and if nestedException
is not null , print out that stack trace as well.

2.3 write

A write places a copy of an entry into the given JavaSpaces service. The

Entry passed to the write is not affected by the operation. Each write
operation places a new entry into the specified space, even if the same Entry
object is used in more than one write .

Each write invocation returns a Lease object that is lease milliseconds long.

If the requested time is longer than the space is willing to grant, you will get a

lease with a reduced time. When the lease expires, the entry is removed from

the space. You will get an IllegalArgumentException if the lease time

requested is negative.

If a write returns without throwing an exception, that entry is committed to

the space, possibly within a transaction (§3). If a RemoteException is

thrown, the write may or may not have been successful. If any other

exception is thrown, the entry was not written into the space.

Writing an entry into a space may generate notifications to registered objects

(§2.7).

2.4 readIfExists and read

The two forms of the read request search the JavaSpaces service for an entry

that matches the template provided as an Entry . If a match is found, a

reference to a copy of the matching entry is returned. If no match is found,

null is returned. Passing a null reference for the template will match any

entry.

Any matching entry can be returned. Successive read requests with the same

template in the same JavaSpaces service may or may not return equivalent

objects, even if no intervening modifications have been made to the space.

Each invocation of read may return a new object even if the same entry is

matched in the JavaSpaces service.
Page 14 JavaSpaces™ Specification–1.0

2

A readIfExists request will return a matching entry, or null if there is

currently no matching entry in the space. If the only possible matches for the

template have conflicting locks from one or more other transactions, the

timeout value specifies how long the client is willing to wait for interfering

transactions to settle before returning a value. If at the end of that time no

value can be returned that would not interfere with transactional state, null is

returned. Note that, due to the remote nature of JavaSpaces services, read and

readIfExists may throw a RemoteException if the network or server fails

prior to the timeout expiration

A read request acts like a readIfExists except that it will wait until a

matching entry is found or until transactions settle, whichever is longer, up to

the timeout period.

In both read methods, a timeout of NO_WAIT means to return immediately,

with no waiting, which is equivalent to using a zero timeout.

2.5 takeIfExists and take

The take requests perform exactly like the corresponding read requests (§2.4),

except that the matching entry is removed from the space. Two take operations

will never return copies of the same entry, although if two equivalent entries

were in the JavaSpaces service the two take operations may return equivalent

entries.

If a take returns a non-null value, the entry has been removed from the space,

possibly within a transaction (§3). This modifies the claims to once-only

retrieval—A take is only considered to be successful if all enclosing

transactions commit successfully. If a RemoteException is thrown, the take

may or may not have been successful. If an UnusableEntryException is

thrown, the take removed the unusable entry from the space; the contents of

the exception are as described in the Entry Specification. If any other exception

is thrown, the take did not occur, and no entry was removed from the space.

With a RemoteException , an entry can be removed from a space and yet

never returned to the client that performed the take , thus losing the entry in

between. In circumstances where this is unacceptable, the take can be

wrapped inside a transaction that is committed by the client when it has the

requested entry in hand.
Page 15

2

2.6 snapshot

The process of serializing an entry for transmission to a JavaSpaces service will

be identical if the same entry is used twice. This is most likely to be an issue

with templates that are used repeated to search for entries with read or take .

The client-side implementations of read and take cannot reasonably avoid

this duplicated effort, since they have no efficient way of checking whether the

same template is being used without intervening modification.

The snapshot method gives the JavaSpaces service implementor a way to

reduce the impact of repeated use of the same entry. Invoking snapshot with

an Entry will return another Entry object that contains a snapshot of the

original entry. Using the returned snapshot entry is equivalent to using the

unmodified original entry in all operations on the same JavaSpaces service.

Modifications to the original entry will not affect the snapshot. You can

snapshot a null template — snapshot may or may not return null given

a null template.

An Entry object returned from snapshot on a particular space is only

guaranteed to work with that space. Using the snapshot with any other

JavaSpaces service will generate an IllegalArgumentException unless the

other space can use it because of knowledge about the original JavaSpaces

service. The entry returned from snapshot will only be equivalent to the

original unmodified object when used with the space. It will be a different

object from the original, and may or may not have the same hash code, and

equals may or may not return true when invoked with the original object,

even if the original object is unmodified.

A snapshot is only guaranteed to work within the virtual machine in which it

was generated. If a snapshot is passed to another virtual machine (for example,

in a parameter of an RMI call), using it — even with the same JavaSpaces

service — may generate an IllegalArgumentException .

We expect that an implementation of JavaSpaces technology will return a

specialized Entry object that represents a pre-serialized version of the object,

either in the object itself, or as an identifier for the entry that has been cached

on the server. Although the client may cache the snapshot on the server it must

guarantee that the snapshot returned to the client code is always valid—the

implementation may not throw any exception that indicates that the snapshot

has become invalid because it has been evicted from a cache. An

implementation that uses a server-side cache must, therefore, guarantee that
Page 16 JavaSpaces™ Specification–1.0

2

the snapshot is valid as long as it is reachable (not garbage) in the client, such

as by storing enough information in the client to be able to re-insert the

snapshot into the server-side cache.

No other method returns a snapshot. Specifically, the return values of the read
and take methods are not snapshots, and are usable with any implementation

of JavaSpaces technology.

2.7 notify

A notify request invoked on a template registers interest in future incoming

entries, to the specified JavaSpaces service, that match the template. Matching

is done as it is for read . The notify method is a particular registration

method under the Jini™Distributed Event Specification. When matching entries

arrive, the specified RemoteEventListener will eventually be notified.

When you invoke notify you provide an upper bound on the lease time,

which is how long you want the registration to be remembered by the server.

The server decides the actual time for the lease. You will get an

IllegalArgumentException if the lease time requested is not Lease.ANY
and is negative. The lease time is expressed in the standard millisecond units,

although actual lease times will usually be of much larger granularity. A lease

time of Lease.FOREVER is a request for an indefinite lease; if the server

chooses not to grant an indefinite lease it will return a bounded (non-zero)

lease.

Each notify returns a net.jini.core.event.EventRegistration
object. When an object is written that matches the template supplied in the

notify invocation, the listener’s notify method is eventually invoked, with

a RemoteEvent object whose evID is the value returned by the

EventRegistration object’s getEventID method, fromWhom being the

JavaSpaces service, seqNo being a monotonically increasing number, and

whose getRegistrationObject being that passed as the handback
parameter to notify . If you get a notification with a sequence number of 103

and the EventRegID object’s current sequence number is 100, there will have

been three matching entries written since you invoked notify . You may or

may not have received notification of the previous entries due to network

failures or the space compressing multiple matching entry events into a single

call.
Page 17

2

If the transaction parameter is null , the listener will be notified when

matching entries are written either under a null transaction or when a

transaction commits. If an entry is written under a transaction and then taken

under that same transaction before the transaction is committed, listeners

registered under a null transaction will not be notified of that entry.

If the transaction parameter is not null , the listener will be notified of

matching entries written under that transaction in addition to the notifications

it would receive under a null transaction. A notify made with a non-null
transaction is implicitly dropped when the transaction completes.

The request specified by a successful notify is as persistent as the entries of

the space. They will be remembered as long as an un-taken entry would be,

until the lease expires, or until any governing transaction completes,

whichever is shorter.

The server will make a “best effort” attempt to deliver notifications. The server

will retry at most until the notification request’s lease expires. Notifications

may be delivered in any order.

See the Jini™Distributed Event Specification for details on the event types.

2.8 Operation Ordering
Operations on a space are unordered. The only view of operation order can be

a thread’s view of the order of the operations it performs. A view of inter-

thread order can be imposed only by cooperating threads that use an

application-specific protocol to prevent two or more operations being in

progress at a single time on a single JavaSpaces service. Such means are

outside the purview of this specification.

For example, given two threads T and U, if T performs a write operation and

U performs a read with a template that would match the written entry, the

read may not find the written entry even if the write returns before the

read . Only if T and U cooperate to ensure that the write returns before the

read commences would the read be ensured the opportunity to find the entry

written by T (although it still may not do so because of an intervening take
from a third entity).
Page 18 JavaSpaces™ Specification–1.0

2

2.9 Serialized Form
The serialVersionUID of InternalSpaceException is

-4167507833172939849L. The only serialized field is the declared public field.
Page 19

2

Page 20 JavaSpaces™ Specification–1.0

Transactions 3
The JavaSpaces API uses the package net.jini.core.transaction to

provide basic atomic transactions that group multiple operations across

multiple JavaSpaces services into a bundle that acts as a single atomic

operation. JavaSpaces services are actors in these transactions; the client can be

an actor as well, as can any remote object that implements the appropriate

interfaces.

Transactions wrap together multiple operations. Either all modifications within

the transactions will be applied or none will, whether the transaction spans

one or more operations and/or one or more JavaSpaces services.

The transaction semantics described here conform to the default transaction

semantics defined in the Jini™ Transaction Specification.

3.1 Operations Under Transactions
Any read , write , or take operations that have a null transaction act as if

they were in a committed transaction that contained exactly that operation. For

example, a take with a null transaction parameter performs as if a

transaction was created, the take performed under that transaction, and then

the transaction was committed. Any notify operations with a null
transaction apply to write operations that are committed to the entire space.
Page 21

3

Transactions affect operations in the following ways:

◆ write : An entry written is not visible outside its transaction until the

transaction successfully commits. If the entry is taken within the transaction,

the entry will never be visible outside the transaction and will not be added

to the space when the transaction commits. Specifically, the entry will not

generate notifications to listeners not registered under the writing

transaction. Entries written under a transaction that aborts are discarded.

◆ read : A read may match any entry written under that transaction or in the

entire space. A JavaSpaces service is not required to prefer matching entries

written inside the transaction to those in the entire space. When read, an

entry is added to the set of entries read by the provided transaction. Such an

entry may be read in any other transaction to which the entry is visible, but

cannot be taken in another transaction.

◆ take : A take matches like a read with the same template. When taken, an

entry is added to the set of entries taken by the provided transaction. Such

an entry may not be read or taken by any other transaction.

◆ notify : A notify performed under a null transaction applies to write
operations that are committed to the entire space. A notify performed

under a non-null transaction additionally provides notification of writes

performed within that transaction. When a transaction completes, any

registrations under that transaction are implicitly dropped. When a

transaction commits, any entries that were written under the transaction

(and not taken) will cause appropriate notifications for registrations that

were made under a null transaction.

If a transaction aborts while an operation is in progress under that transaction,

the operation will terminate with a TransactionException . Any statement

made in this chapter about read or take apply equally to readIfExists or

takeIfExists , respectively.

3.2 Transactions and ACID Properties
The ACID properties traditionally offered by database transactions are

preserved in transactions on JavaSpaces systems. The ACID properties are:

◆ Atomicity: All the operations grouped under a transaction occur or none of

them do.
Page 22 JavaSpaces™ Specification–1.0

3

◆ Consistency: The completion of a transaction must leave the system in a

consistent state. Consistency includes issues known only to humans, such as

that an employee should always have a manager. The enforcement of

consistency is outside of the transaction—a transaction is a tool to allow

consistency guarantees, and not itself a guarantor of consistency.

◆ Isolation: Ongoing transactions should not affect each other. Any observer

should be able to see other transactions executing in some sequential order

(although different observers may see different orders).

◆ Durability: The results of a transaction should be as persistent as the entity

on which the transaction commits.

The timeout values in read and take allow a client to trade full isolation for

liveness. For example, if a read request has only one matching entry, and that

entry is currently locked in a take from another transaction, read would

block indefinitely if the client wanted to preserve isolation. Since completing

the transaction could take an indefinite amount of time, a client may choose

instead to put an upper bound on how long it is willing to wait for such

isolation guarantees, and instead proceed to either abort its own transaction or

ask the user whether to continue or whatever else is appropriate for the client.

Persistence is not a required property of JavaSpaces technology

implementations. A transient implementation that does not preserve its

contents between system crashes is a proper implementation of the

JavaSpace contract, and may be quite useful. If you choose to perform

operations on such a space, your transactions will guarantee as much

durability as the JavaSpaces service allows for all its data, which is all that any

transaction system can guarantee.
Page 23

3

Page 24 JavaSpaces™ Specification–1.0

References and Further Reading 4
4.1 References
[1] A Note on Distributed Computing, Jim Waldo, Geoff Wyant, Ann Wollrath,

and Sam Kendall. Sun Microsystems Laboratories technical report SMLI TR-

94-29, http://www.sunlabs.com/technical-reports/1994/abstract-29.html

[2] Java Remote Method Invocation Specification,
http://java.sun.com/products/jdk/rmi

[3] Java Object Serialization Specification, http://java.sun.com/products/jdk/rmi

[4] Jini™ Distributed Event Specification

[5] Jini™ Distributed Leasing Specification

[6] Jini™ Transaction Specification

4.2 Further Reading

4.2.1 Linda Systems

[8] How to Write Parallel Programs: A Guide to the Perplexed, Nicholas Carriero

and David Gelernter, ACM Computing Surveys, Sept., 1989.
Page 25

4

[9] Generative Communication in Linda, David Gelernter, ACM Transactions on
Programming Languages and Systems, Vol. 7, No. 1, pp. 80-112 (January 1985)

[10] Persistent Linda: Linda + Transactions + Query Processing, Brian G. Anderson,

Dennis Shasha, Proceedings of the 13th Symposium on Fault-Tolerant Distributed
Systems, 1994.

[11] Adding Fault-tolerant Transaction Processing to LINDA, Scott R. Cannon, David

Dunn, Software—Practice and Experience, Vol. 24(5), pp. 449-446 (May 1994)

[12] ActorSpaces: An Open Distributed Programming Paradigm, Gul Agha, Christian

J. Callsen, University of Illinois at Urbana-Champaign, UILU-ENG-92-1846,

4.2.2 The Java Platform

[13] The Java Language Specification, James Gosling, Bill Joy, Guy Steele, Addison-

Wesley

[14] The Java Virtual Machine Specification, Tim Lindholm, Frank Yellin, Addison-

Wesley

[15] The Java Class Libraries, Patrick Chan, Rosanna Lee, Addison-Wesley

4.2.3 Distributed Computing

[16] Distributed Systems, Sape Mullender, Addison-Wesley

[17] Distributed Systems: Concepts and Design, George Coulouris, Jean Dollimore,

Tim Kindberg, Addison-Wesley

[18] Distributed Algorithms, Nancy A. Lynch, Morgan Kaufmann
Page 26 JavaSpaces™ Specification–1.0

	JavaSpaces™ Specification
	The JavaSpaces™ technology package provides a dist...
	1. Introduction 1
	1.1 Overview 1
	1.2 The JavaSpaces Application Model and Terms 1
	1.3 Benefits 4
	1.4 JavaSpaces Technology and Databases 6
	1.5 JavaSpaces System Design and Linda Systems 7
	1.6 Goals & Requirements 8
	1.7 Dependencies 9
	1.8 Changes Since Beta 9
	1.9 Comments 10

	2. Operations 11
	2.1 Entries 11
	2.2 net.jini.space.JavaSpace 12
	2.3 write 14
	2.4 readIfExists and read 14
	2.5 takeIfExists and take 15
	2.6 snapshot 16
	2.7 notify 17
	2.8 Operation Ordering 18
	2.9 Serialized Form 19

	3. Transactions 21
	3.1 Operations Under Transactions 21
	3.2 Transactions and ACID Properties 22

	4. References and Further Reading 25
	4.1 References 25
	4.2 Further Reading 25

	Introduction
	1
	1.1 Overview
	1.2 The JavaSpaces Application Model and Terms
	1.2.1 Distributed Persistence
	1.2.2 Distributed Algorithms as Flows of Objects

	1.3 Benefits
	1.4 JavaSpaces Technology and Databases
	1.5 JavaSpaces System Design and Linda Systems
	1.6 Goals & Requirements
	1.7 Dependencies
	1.8 Changes Since Beta
	1.9 Comments
	Operations
	2

	2.1 Entries
	2.2 net.jini.space.JavaSpace
	2.2.1 InternalSpaceException

	2.3 write
	2.4 readIfExists and read
	2.5 takeIfExists and take
	2.6 snapshot
	2.7 notify
	2.8 Operation Ordering
	2.9 Serialized Form
	Transactions
	3

	3.1 Operations Under Transactions
	3.2 Transactions and ACID Properties
	References and Further Reading
	4

	4.1 References
	[1] A Note on Distributed Computing, Jim Waldo, Ge...
	[2] Java Remote Method Invocation Specification, h...
	[3] Java Object Serialization Specification, http:...
	[4] Jini™ Distributed Event Specification
	[5] Jini™ Distributed Leasing Specification
	[6] Jini™ Transaction Specification
	[7] Jini™ Distributed Security Specification

	4.2 Further Reading
	4.2.1 Linda Systems
	[8] How to Write Parallel Programs: A Guide to the...
	[9] Generative Communication in Linda, David Geler...
	[10] Persistent Linda: Linda + Transactions + Quer...
	[11] Adding Fault-tolerant Transaction Processing ...
	[12] ActorSpaces: An Open Distributed Programming ...

	4.2.2 The Java Platform
	[13] The Java Language Specification, James Goslin...
	[14] The Java Virtual Machine Specification, Tim L...
	[15] The Java Class Libraries, Patrick Chan, Rosan...

	4.2.3 Distributed Computing
	[16] Distributed Systems, Sape Mullender, Addison-...
	[17] Distributed Systems: Concepts and Design, Geo...
	[18] Distributed Algorithms, Nancy A. Lynch, Morga...

