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3D Rendering Example

What issues must be addressed by a
3D rendering system?
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3D Rendel’ing Pipeline (for direct illumination)
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3D Geometric Primitives
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Point

Vector

Line

Ray

Triangle
Polygon
Quadric curve
Spline
Quadric solid
Curved surface
etc.

* How are these shapes described in a computer?
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3D Point
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» Specifies a location
o Represented by three coordinates
o Infinitely small

typedef struct {
Coordinate x;
Coordinatey;
Coordinate z;
} Point;

®(xy.2)
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3D Vector
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» Specifies a direction and a magnitude
o Represented by three coordinates
o Magnitude ||V|| = sqrt(dxdx + dydy + dzdz)
o Has no location

typedef struct {
Coordinate dx;
Coordinate dy;
Coordinate dz;
} Vector;

(dx,,dy,,dzy)

(dx,,dy, ,dz,)

» Dot product of two 3D vectors
o V-V, = dx,dx, + dy,dy, + dz,dz,
o V-V = [Vl [ V2 || cos(©)
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3D Line Segment

» Specifies a linear combination of two points
o Parametric representation:
»P=P,+t(P,-P;), (0<st<1)

typedef struct {

Point P1;
Point P2; P
} Segment; 2
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3D Ray
» Line segment with one endpoint at infinity
o Parametric representation:
»P=P,+tV, (0<=t<wm)
typedef struct {
Point P1;
Vector V;
} Ling;
\Y
P,
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3D Line

» Line segment with both endpoints at infinity
o Parametric representation:
»P=P;+tV, (-0<t<o)

typedef struct {
Point P1;
Vector V;

} Ling;
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3D Plane
» Specifies a linear combination of three points
o Implicit representation:
»P-N+d=0,or N = (a,b,c)
»ax+by+cz+d=0 ‘
typedef struct
ypVectornlj\l; { Pz. .P3
} I_!Distanced;
ine
P?
d
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Origin
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3D Polygon
» Area “inside” a sequence of coplanar points
o Triangle

[e]

[e]

Quadrilateral
Convex
Star-shaped

Concave

Self-intersecting
Holes

[e]

[e]

[e]

[e]

typedef struct {

Point * points;
int npaints;
} Polygon;

Points are in counter-clockwise order
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OpenGL Rendering
Transformation gl Begi n( G__PC]_YGCN) ;
gl Vertex3f (0.0, 0.0, 0.0);
gl Vertex3f (0.0, 0.0, 0.0);
gl Vertex3f (0.0, 0.0, 0.0);
gl Vertex3f (0.0, 0.0, 0.0);
Transformation gl End() ;
Prog'ection
Transformation
OpenGL executes steps of
2D and/or 3D rendering pipeline
Conversion
Image /
4 )
Transformations
3D Geometiic Primitives
Transform into 3D world coordinate system
Simulate direct illumination and reflectance
Transform into 3D camera coordinate system
Clip primitives outside camera’s view
o] cL . Transform into 2D camera coordinate system
Draw pixels (includes texturing, hidden surface, etc.)
Image /
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Basic 2D Transformations

* Translation:
o X' =X +tX
oy =y+ty

» Scale:

o X' = X*sx
oy =y*sy

e Shear:
o X' =X + hx*y
°o Y=y +hy*X

Transformations
can be combined
_ (with simple algebra)
* Rotation:
o X' = X*C0sO - y*sin®
o Yy = X*sin® + y*cosO©
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* Translation:
o X' =X +tX
oy =y+ty

» Scale:

o X' = X*sx
oy =y*sy
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Basic 2D Transformations
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e Translation:
o X' =X+ 1x
oy =y+ty
» Scale:
o X' =X*sx ()
oy’:y*sy (va/.
==
e Shear:
° X' =X+ hxty X' = X*sX
o ' = * ] *
y'=y+hyx |y = yrey
» Rotation:
o X' = X*C0sO - y*sin®
o Yy = X*sin® + y*cosO©
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Basic 2D Transformations
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e Translation:

o X' =X+ 1x

oy =y+ty
» Scale:

o X' =X *sX

oy =y*sy Py
e Shear: o

o X' =X+ hX*y X' = (X*SX)*COS@ _ (y*sy)*S|n@
o y' =Y+ hy*x ' = (y*ay)kai ey
y' = (X*sx)*sin@ + (y*sy)*cosO

» Rotation:
o X' = X*c0sO - y*sin®
o Yy =X*sin® + y*cos©
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Basic 2D Transformations
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e Translation:
o X' =X+ 1Xx
oY =y +ty
e Scale:
o X' = X*sX
oy =y*sy
e Shear:
o X' =X + hx*y
°o Y=y +hy*X
* Rotation:

K
I

)

X" = ((X*sx)*cosO — (y*sy)*sin®) + tx
y' = ((x*sx)*sin® + (y*sy)*cosO®) + ty

o X' = X*C0sO - y*sin®
o Y = X*sin® + y*cos®
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Basic 2D Transformations
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e Translation:

o X' =X+ 1Xx
oy =y+ty
e Scale:
o X' = X*sX
oy =y*sy
e Shear:
o X' =X + hx*y
oy =y +hy*x
* Rotation:

X" = ((X*sx)*cosO — (y*sy)*sin®) + tx
y' = ((x*sx)*sin® + (y*sy)*cosO) + ty

o X' = X*c0sO - y*sin®
o Y = X*sin® + y*cosO®
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Matrix Representation
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* We can represent a 2D transformation

by a matrix
@ bO
[ df

» Multiplying a matrix by a column vector
corresponds to applying the transformation to

a point
XO_[@& bOxO X'=ax+by
BVE f& dEEyE y'=cx+dy

=
Matrix Representation
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» Transformations can be combined by
matrix multiplication

XCLrma bre foo jOxO
BE & dbg hikk 1EYE

Matrices are a convenient and efficient way
to represent a sequence of transformations
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2X2 Matrices
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» What types of transformations can be
represented with a 2x2 matrix?

2D ldentity?
X=X XO_ [ 00xO
y=Yy e 0 1fEyH
2D Scale around (0,0)?
X'=SX" X XO_Bx  0OXO
y=%"Yy BE B0 syERyH
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2X2 Matrices
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» What types of transformations can be
represented with a 2x2 matrix?

2D Rotate around (0,0)?

X'=C0s@* Xx-SinO*y [(X[O_ [©0s©® —sinOIX[
y'=89n©* x+cos@* y Y Bn®© cosO [EyH

2D Shear?
X'= X+ shx* y XO_0O1  shxIxO
y'=shy*x+y B'E [shy 1 Eyp

15
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2X2 Matrices
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» What types of transformations can be

represented with a 2x2 matrix?

2D Mirror over Y axis?

ey X0 -1 OIXO
Ve B0 1EEYE
2D Mirror over (0,0)?
Y=y XO_F1 0mxO
e B0 -1ffyH
J
4 )
2x2 Matrices
» What types of transformations can be
represented with a 2x2 matrix?
2D Translation?
X'=X+1tx
y'=y+ty NO!
Only linear 2D transformations
can be represented with a 2x2 matrix
J

16
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Linear Transformations
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e Linear transformations are combinations of ...

o Scale,
o Rotation, XO_[@& bIxO
o Shear, and e fe dEfyE
o Mirror

» Properties of linear transformations:
o Satisfies: T(SP, +SP,) =ST(P,) +S,T(P,)
o Origin maps to origin

Lines map to lines

Parallel lines remain parallel

Ratios are preserved

Closed under composition

[e]

[e]

[e]

[e]

=
2D Translation
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« 2D translation can be represented with a

3x3 matrix
= x4t X0 [ 0 tx(IxO
= L O
y'= y+ty %D‘%) 1 ty%/m
Al ® 0 1FH
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Homogeneous Coordinates
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» Add a 3rd coordinate to every 2D point

o (X, Yy, W) represents a point at location (x/w, y/w)
o (X, Y, 0) represents a point at infinity

o (0, 0, 0) is not allowed
A
21
1,,

(2,1,1) or (4,2,2) or (6,3,3)

A

1

v

"X

Convenient coordinate system to
represent many useful transformations
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Basic 2D Transformations
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D(E 1 o txDD(B

5"5:%’ 1 W%’D

HE B 0 1HF
Translate

XO [@os® -sn® OIxO

Sf’%%n@ cos© O%B

HE HO 0 1
Rotate

* Basic 2D transformations as 3x3 matrices

X0 3 0 0mxOo

Yoed v oy

Al B0 0 1f{H
Scale

xXO 01 shx OO

Vorgy 1o

FLH HO 0 1A
Shear

18



=
Affine Transformations
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o Affine transformations are combinations of ...
o Linear transformations, and

o Translations
XD A b clkO

W [0 0 1

» Properties of affine transformations:
o Origin does not map to origin

Lines map to lines

Parallel lines remain parallel

Ratios are preserved

Closed under composition

[e]

[e]

[e]

[e]
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Projective Transformations
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* Projective transformations ...

Ao o (Mo
0 n i

» Properties of projective transformations:

o Origin does not map to origin
Lines map to lines
Parallel lines do not necessarily remain parallel
Ratios are not preserved (but “cross-ratios” are)
Closed under composition

[e]

[e]

[e]

[e]
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Matrix Composition

» Transformations can be combined by
matrix multiplication

k'O 0 txOecos® -sn©® Ofsx 0 O O
"= 1 tyll$§n® cos® OO0 sy O O
H 0 150 0 1P 0 1wy

p

T = T(txty) R(O) S(sx.sy) p

-
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Matrix Composition

* Matrices are a convenient and efficient way to

represent a sequence of transformations
o General purpose representation
o Hardware matrix multiply
o Efficiency with premultiplication
» Matrix multiplication is associative

=(T*(R*(S*p) ) )
(T*R*S) * p B

20
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Matrix Composition
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 Be aware: order of transformations matters
» Matrix multiplication is not commutative

p’:T*R*S*p

“Global” “Local”

[

Matrix Composition
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» Rotate by © around arbitrary point (a,b)

o M=T(-a,-b) * R(©) * T(a,b)

-
(ab) .

» Scale by sx,sy around arbitrary point (a,b)

o M=T(-a,-b) * S(sx,sy) * T(a,b)

(ab). - . l

21



-

3D Transformations
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X0 & b
yo_Ce f
OGO
WwH Hnon

O xXKQOoO

 Same idea as 2D transformations
o Homogeneous coordinates: (X,y,z,w)
o 4x4 transformation matrices

dOx0O
hy O
| U0
pthvH
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Basic 3D Transformations
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00X O
oy 0
ol
e

2N
'—EEH:H:I
BedH
ocoro
oroo

Identity

XX O
tyllyQd
tz[L O
1ERWE!

Translation

SN
'—I-'__H:H:H:I
‘B gH
coro
or oo

XO x 0 0 0mIxO

yO_0 sy 0 OyO

O 0 sz o0

el FO 0 0 1fRWH
Scale

XO 1 0 0 oOXxOd
yO_0Oo 1 0 ofyd
(yO00 0 1 odfrU

! HO 0 0 1fp]

Mirror over X axis

22
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Basic 3D Transformations
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Rotate around Z axis:

X0 [@os® -sn® 0 0OxO
yO_En© cos©@ 0 OOyO
(OO0 0 1 odkU
Fwgl B 0 0 0 1w

Rotate around Y axis:
XO [©os® 0 -sn® OXxO
yO_Oo 1 0 oy
(O ENO® 0 cosO® OoUgO

B BHO 0 0 1

Rotate around X axis:
XO 0 0 oaxnad
yO_O cos®@ -sinO© OOyO
OO sn® cos® o0o0F0O

Bl B0 0 1ERW

=
OpenGL Matrix Stacks
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* OpenGL stores stacks of 4x4 matrices
o GL_MODELVIEW
o GL_PROJECTION
o GL_TEXTURE

* OpenGL calls to push, pop, multiply top of stack
o glLoadMatrix
o glMultMatrix
o glPushMatrix
o glPopMatrix

 All vertices are multiplied by top of stack

23
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3D Transformation Example
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Mike Marr

COS 426, 1995
J
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Summary
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3D Geometric Primitives
Modeling
Transformation

3D Rendering implemented
as a pipelined sequence of steps

24
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Summary
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o

» Representations of transformations
o 4x4 Matrices
o Homogeneous coordinates

» Types of transformations
o Linear transformations
o Affine transformations
o Projective transformations
o Others (deformations)

« Composition of transformations
o Transformation hierarchies
o Order matters

25



