Eﬁ‘%
ok

3D Rendering Pipeline

Thomas Funkhouser
Princeton University
CO0S 426, Fall 1999

-
3D Rendering Example

What issues must be addressed by a
3D rendering system?

-

3D Rendel’ing Pipeline (for direct illumination)

~

3D Geometric Primitives

Modeling.
Transformation

Lighting

Viewing
Transformation

Clipping

<
«Q Q

Prog'ection
Transformation

Scan_
Conversion

Image

-

3D Rendel’ing Pipeline (for direct illumination)

fe:
@

~

3D Geometric Primitives

Modeling . .
TaAStoT At Transform into 3D world coordinate system

Lighting

Viewing
Transformation

Clipping

it

Prog'ection
Transformation

Scan_
Conversion

Image

e
3D Rendel’ing Pipeline (for direct illumination)

~

3D Geometric Primitives

Modelin

Transformation Transform into 3D world coordinate system

<«
@

Lighting Simulate direct illumination and reflectance

Viewing
Transformation

Clipping

»a
@

Prog'ection
Transformation

Scan_
Conversion

Image

e
3D Rendel’ing Pipeline (for direct illumination)

~

3D Geometric Primitives

Modelin

Transformation Transform into 3D world coordinate system

il

Lighting Simulate direct illumination and reflectance
Viewing i i
Transformation Transform into 3D camera coordinate system

Clipping

I<-

Prog'ection
Transformation

Scan_
Conversion

Image

-

3D Rendel’ing Pipeline (for direct illumination)

\

3D Geometric Primitives

Modeling.
Transformation
Lighting

Viewing
Transformation

Clipping

Prog‘ection_
Transformation

Scan_
Conversion

Image

Transform into 3D world coordinate system

Simulate direct illumination and reflectance

Transform into 3D camera coordinate system

Clip primitives outside camera’s view

-

3D Rendel’ing Pipeline (for direct illumination)

\

3D Geometric Primitives

Modeling.
Transformation
Lighting

Viewing
Transformation

Clipping
A

Prog'ection_
Transformation

Scan_
Conversion

Image

Transform into 3D world coordinate system

Simulate direct illumination and reflectance

Transform into 3D camera coordinate system

Clip primitives outside camera’s view

Transform into 2D camera coordinate system

-

3D Rendel’ing Pipeline (for direct illumination)

\

3D Geometric Primitives
Modeling.

Transformation
Lighting

Viewing
Transformation

Clipping

Prog‘ection_
Transformation

Transform into 3D world coordinate system
Simulate direct illumination and reflectance
Transform into 3D camera coordinate system
Clip primitives outside camera’s view

Transform into 2D camera coordinate system

o Draw pixels (includes texturing, hidden surface, etc.)
v
Image)
4)

3D Rendel’ing Pipeline (for direct illumination)

3D Geometric Primitives
Modeling.
Transformation
Lighting

Viewing
Transformation

Clipping

Prog‘ection_
Transformation

Scan_
Conversion

Image

-

3D Geometric Primitives

Eﬁ‘%
ok

Point

Vector

Line

Ray

Triangle
Polygon
Quadric curve
Spline
Quadric solid
Curved surface
etc.

* How are these shapes described in a computer?

-

3D Point

Eﬁ‘%
ok

» Specifies a location
o Represented by three coordinates
o Infinitely small

typedef struct {
Coordinate x;
Coordinatey;
Coordinate z;
} Point;

®(xy.2)

-

3D Vector

Eﬁ‘%
ok

» Specifies a direction and a magnitude
o Represented by three coordinates
o Magnitude ||V|| = sqrt(dxdx + dydy + dzdz)
o Has no location

typedef struct {
Coordinate dx;
Coordinate dy;
Coordinate dz;
} Vector;

(dx,,dy,,dzy)

(dx,,dy, ,dz,)

» Dot product of two 3D vectors
o V-V, = dx,dx, + dy,dy, + dz,dz,
o V-V = [Vl [V2 || cos(©)

-

3D Line Segment

» Specifies a linear combination of two points
o Parametric representation:
»P=P,+t(P,-P;), (0<st<1)

typedef struct {

Point P1;
Point P2; P
} Segment; 2

-

3D Ray
» Line segment with one endpoint at infinity
o Parametric representation:
»P=P,+tV, (0<=t<wm)
typedef struct {
Point P1;
Vector V;
} Ling;
\Y
P,
-~
3D Line

» Line segment with both endpoints at infinity
o Parametric representation:
»P=P;+tV, (-0<t<o)

typedef struct {
Point P1;
Vector V;

} Ling;

-

3D Plane
» Specifies a linear combination of three points
o Implicit representation:
»P-N+d=0,or N = (a,b,c)
»ax+by+cz+d=0 ‘
typedef struct
ypVectornlj\l; { Pz. .P3
} I_!Distanced;
ine
P?
d
. - -
Origin
-
3D Polygon
» Area “inside” a sequence of coplanar points
o Triangle

[e]

[e]

Quadrilateral
Convex
Star-shaped

Concave

Self-intersecting
Holes

[e]

[e]

[e]

[e]

typedef struct {

Point * points;
int npaints;
} Polygon;

Points are in counter-clockwise order

4)
OpenGL Rendering
Transformation gl Begi n(G__PC]_YGCN) ;
gl Vertex3f (0.0, 0.0, 0.0);
gl Vertex3f (0.0, 0.0, 0.0);
gl Vertex3f (0.0, 0.0, 0.0);
gl Vertex3f (0.0, 0.0, 0.0);
Transformation gl End() ;
Prog'ection
Transformation
OpenGL executes steps of
2D and/or 3D rendering pipeline
Conversion
Image /
4)
Transformations
3D Geometiic Primitives
Transform into 3D world coordinate system
Simulate direct illumination and reflectance
Transform into 3D camera coordinate system
Clip primitives outside camera’s view
o] cL . Transform into 2D camera coordinate system
Draw pixels (includes texturing, hidden surface, etc.)
Image /

10

=
Basic 2D Transformations

* Translation:
o X' =X +tX
oy =y+ty

» Scale:

o X' = X*sx
oy =y*sy

e Shear:
o X' =X + hx*y
°o Y=y +hy*X

Transformations
can be combined
_ (with simple algebra)
* Rotation:
o X' = X*C0sO - y*sin®
o Yy = X*sin® + y*cosO©

=
Basic 2D Transformations

* Translation:
o X' =X +tX
oy =y+ty

» Scale:

o X' = X*sx
oy =y*sy

o Shear:
o X' =X + hx*y
°o Y=y +hy*X

» Rotation:
o X' = X*c0sO - y*sin®
o Yy =X*sin® + y*cos©

11

=
Basic 2D Transformations

e
oAry

mﬁ
L A

e Translation:
o X' =X+ 1x
oy =y+ty
» Scale:
o X' =X*sx ()
oy’:y*sy (va/.
==
e Shear:
° X' =X+ hxty X' = X*sX
o ' = *] *
y'=y+hyx |y = yrey
» Rotation:
o X' = X*C0sO - y*sin®
o Yy = X*sin® + y*cosO©

=
Basic 2D Transformations

g
oy

B
L 'ﬁa

e Translation:

o X' =X+ 1x

oy =y+ty
» Scale:

o X' =X *sX

oy =y*sy Py
e Shear: o

o X' =X+ hX*y X' = (X*SX)*COS@ _ (y*sy)*S|n@
o y' =Y+ hy*x ' = (y*ay)kai ey
y' = (X*sx)*sin@ + (y*sy)*cosO

» Rotation:
o X' = X*c0sO - y*sin®
o Yy =X*sin® + y*cos©

-

Basic 2D Transformations

Eﬁ‘%
ok

e Translation:
o X' =X+ 1Xx
oY =y +ty
e Scale:
o X' = X*sX
oy =y*sy
e Shear:
o X' =X + hx*y
°o Y=y +hy*X
* Rotation:

K
I

)

X" = ((X*sx)*cosO — (y*sy)*sin®) + tx
y' = ((x*sx)*sin® + (y*sy)*cosO®) + ty

o X' = X*C0sO - y*sin®
o Y = X*sin® + y*cos®

-

Basic 2D Transformations

Eﬁ‘%
ok

e Translation:

o X' =X+ 1Xx
oy =y+ty
e Scale:
o X' = X*sX
oy =y*sy
e Shear:
o X' =X + hx*y
oy =y +hy*x
* Rotation:

X" = ((X*sx)*cosO — (y*sy)*sin®) + tx
y' = ((x*sx)*sin® + (y*sy)*cosO) + ty

o X' = X*c0sO - y*sin®
o Y = X*sin® + y*cosO®

13

=
Matrix Representation

B

&)

g
o

* We can represent a 2D transformation

by a matrix
@ bO
[df

» Multiplying a matrix by a column vector
corresponds to applying the transformation to

a point
XO_[@& bOxO X'=ax+by
BVE f& dEEyE y'=cx+dy

=
Matrix Representation

B

&)

g
o

» Transformations can be combined by
matrix multiplication

XCLrma bre foo jOxO
BE & dbg hikk 1EYE

Matrices are a convenient and efficient way
to represent a sequence of transformations

-

2X2 Matrices

Eﬁ‘%
ok

» What types of transformations can be
represented with a 2x2 matrix?

2D ldentity?
X=X XO_ [00xO
y=Yy e 0 1fEyH
2D Scale around (0,0)?
X'=SX" X XO_Bx 0OXO
y=%"Yy BE B0 syERyH

-

2X2 Matrices

Eﬁ‘%
ok

» What types of transformations can be
represented with a 2x2 matrix?

2D Rotate around (0,0)?

X'=C0s@* Xx-SinO*y [(X[O_ [©0s©® —sinOIX[
y'=89n©* x+cos@* y Y Bn®© cosO [EyH

2D Shear?
X'= X+ shx* y XO_0O1 shxIxO
y'=shy*x+y B'E [shy 1 Eyp

15

-

2X2 Matrices

Eﬁ‘%
ok

» What types of transformations can be

represented with a 2x2 matrix?

2D Mirror over Y axis?

ey X0 -1 OIXO
Ve B0 1EEYE
2D Mirror over (0,0)?
Y=y XO_F1 0mxO
e B0 -1ffyH
J
4)
2x2 Matrices
» What types of transformations can be
represented with a 2x2 matrix?
2D Translation?
X'=X+1tx
y'=y+ty NO!
Only linear 2D transformations
can be represented with a 2x2 matrix
J

16

=
Linear Transformations

Eﬁ‘%

B

e Linear transformations are combinations of ...

o Scale,
o Rotation, XO_[@& bIxO
o Shear, and e fe dEfyE
o Mirror

» Properties of linear transformations:
o Satisfies: T(SP, +SP,) =ST(P,) +S,T(P,)
o Origin maps to origin

Lines map to lines

Parallel lines remain parallel

Ratios are preserved

Closed under composition

[e]

[e]

[e]

[e]

=
2D Translation

Eﬁ‘%

B

« 2D translation can be represented with a

3x3 matrix
= x4t X0 [0 tx(IxO
= L O
y'= y+ty %D‘%) 1 ty%/m
Al ® 0 1FH

-

Homogeneous Coordinates

Eﬁ‘%
ok

» Add a 3rd coordinate to every 2D point

o (X, Yy, W) represents a point at location (x/w, y/w)
o (X, Y, 0) represents a point at infinity

o (0, 0, 0) is not allowed
A
21
1,,

(2,1,1) or (4,2,2) or (6,3,3)

A

1

v

"X

Convenient coordinate system to
represent many useful transformations

-

Basic 2D Transformations

Eﬁ‘%
ok

D(E 1 o txDD(B

5"5:%’ 1 W%’D

HE B 0 1HF
Translate

XO [@os® -sn® OIxO

Sf’%%n@ cos© O%B

HE HO 0 1
Rotate

* Basic 2D transformations as 3x3 matrices

X0 3 0 0mxOo

Yoed v oy

Al B0 0 1f{H
Scale

xXO 01 shx OO

Vorgy 1o

FLH HO 0 1A
Shear

18

=
Affine Transformations

Eﬁ‘%

o

o Affine transformations are combinations of ...
o Linear transformations, and

o Translations
XD A b clkO

W [0 0 1

» Properties of affine transformations:
o Origin does not map to origin

Lines map to lines

Parallel lines remain parallel

Ratios are preserved

Closed under composition

[e]

[e]

[e]

[e]

=
Projective Transformations

Eﬁ‘%

o

* Projective transformations ...

Ao o (Mo
0 n i

» Properties of projective transformations:

o Origin does not map to origin
Lines map to lines
Parallel lines do not necessarily remain parallel
Ratios are not preserved (but “cross-ratios” are)
Closed under composition

[e]

[e]

[e]

[e]

-

Eﬁ‘%
ok

Matrix Composition

» Transformations can be combined by
matrix multiplication

k'O 0 txOecos® -sn©® Ofsx 0 O O
"= 1 tyll$§n® cos® OO0 sy O O
H 0 150 0 1P 0 1wy

p

T = T(txty) R(O) S(sx.sy) p

-

Eﬁ‘%
ok

Matrix Composition

* Matrices are a convenient and efficient way to

represent a sequence of transformations
o General purpose representation
o Hardware matrix multiply
o Efficiency with premultiplication
» Matrix multiplication is associative

=(T*(R*(S*p)))
(T*R*S) * p B

20

[

Matrix Composition

Eﬁ‘%
ok

 Be aware: order of transformations matters
» Matrix multiplication is not commutative

p’:T*R*S*p

“Global” “Local”

[

Matrix Composition

Eﬁ‘%
ok

» Rotate by © around arbitrary point (a,b)

o M=T(-a,-b) * R(©) * T(a,b)

-
(ab) .

» Scale by sx,sy around arbitrary point (a,b)

o M=T(-a,-b) * S(sx,sy) * T(a,b)

(ab). - . l

21

-

3D Transformations

Eﬁ‘%
ok

X0 & b
yo_Ce f
OGO
WwH Hnon

O xXKQOoO

 Same idea as 2D transformations
o Homogeneous coordinates: (X,y,z,w)
o 4x4 transformation matrices

dOx0O
hy O
| U0
pthvH

-

Basic 3D Transformations

Eﬁ‘%
ok

00X O
oy 0
ol
e

2N
'—EEH:H:I
BedH
ocoro
oroo

Identity

XX O
tyllyQd
tz[L O
1ERWE!

Translation

SN
'—I-'__H:H:H:I
‘B gH
coro
or oo

XO x 0 0 0mIxO

yO_0 sy 0 OyO

O 0 sz o0

el FO 0 0 1fRWH
Scale

XO 1 0 0 oOXxOd
yO_0Oo 1 0 ofyd
(yO00 0 1 odfrU

! HO 0 0 1fp]

Mirror over X axis

22

=
Basic 3D Transformations

Eﬁ‘%
ok

Rotate around Z axis:

X0 [@os® -sn® 0 0OxO
yO_En© cos©@ 0 OOyO
(OO0 0 1 odkU
Fwgl B 0 0 0 1w

Rotate around Y axis:
XO [©os® 0 -sn® OXxO
yO_Oo 1 0 oy
(O ENO® 0 cosO® OoUgO

B BHO 0 0 1

Rotate around X axis:
XO 0 0 oaxnad
yO_O cos®@ -sinO© OOyO
OO sn® cos® o0o0F0O

Bl B0 0 1ERW

=
OpenGL Matrix Stacks

Eﬁ‘%
ok

* OpenGL stores stacks of 4x4 matrices
o GL_MODELVIEW
o GL_PROJECTION
o GL_TEXTURE

* OpenGL calls to push, pop, multiply top of stack
o glLoadMatrix
o glMultMatrix
o glPushMatrix
o glPopMatrix

 All vertices are multiplied by top of stack

23

(

3D Transformation Example

Eﬁ‘%
ok
J

Mike Marr

COS 426, 1995
J

(

Summary

Eﬁ‘%
ok
J

3D Geometric Primitives
Modeling
Transformation

3D Rendering implemented
as a pipelined sequence of steps

24

-

Summary

s
<

mﬁ
&)

o

» Representations of transformations
o 4x4 Matrices
o Homogeneous coordinates

» Types of transformations
o Linear transformations
o Affine transformations
o Projective transformations
o Others (deformations)

« Composition of transformations
o Transformation hierarchies
o Order matters

25

