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» Image sampling and reconstruction
o Pixels are discrete samples of continuous function
o Frequency analysis

» Image resampling
o Aliasing
o Filters and convolution
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Image Processing
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e Quantization
o Uniform Quantization
o Random dither
o Ordered dither
o Floyd-Steinberg dither

» Pixel operations
o Add random noise
o Add luminance
o Add contrast
o Add saturation

* Filtering
o Blur
o Detect edges

» Warping
o Scale
o Rotate
o Warps
o Morphs

» Combining
o Composite

-

Image Sampling
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* Animage is a 2D rectilinear array of samples
o Quantization due to limited intensity resolution
o Sampling due to limited spatial and temporal resolution
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Pixels are
infinitely small
point samples
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Image Reconstruction

» Re-create continuous image from samples
o Example: cathode ray tube

Image is reconstructed
by displaying pixels
with finite area
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Sampling and Reconstruction
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Sample Processing
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» Apply function to samples

o Linear functions
o Linear reconstructions

l Real world
Sample
¢ Discrete samples (pixels)

Transformed samples (pixels)

Reconstruct
¢ Display
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Adjusting Brightness
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» Simply scale pixel components
o Must clamp to range (e.g., 0 to 255)
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Adjusting Contrast
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« Compute mean luminance / for all pixels
o luminance = 0.30*r + 0.59*g + 0.11*b

« Scale deviation from / for each pixel component
o Must clamp to range (e.g., 0 to 255)
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Resampling
« What if samples are at new locations?
o Image scaling, warping, etc.
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Sampling Theory

 How many samples are required to represent a
given signal without loss of information?

« What signals can be reconstructed without loss
for a given sampling rate?
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Spectral Analysis
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» Spatial domain:
o Function: f(x)
o Filtering: convolution
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* Frequency domain:
o Function: F(u)
o Filtering: multiplication

|F(u)]
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Any signal can be written as a
sum of periodic functions.
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Fourier Transform
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Fourier Transform

e Fourier transform:

F(u) = I f (x)e™"“™dx
* |Inverse Fourier transform:

f(x)= }F(u)e”z”“du
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Aliasing
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« Artifacts due to undersampling

Figure 14.17 FVDFH
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Spatial Aliasing
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 Point sampling problems
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Spatial Aliasing
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« Jaggies
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Temporal Aliasing

Eﬁ‘%
ok

« Artifacts due to limited temporal resolution
o Strobing
o Flickering
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Temporal Aliasing
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« Artifacts due to limited temporal resolution
o Strobing
o Flickering
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Temporal Aliasing
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« Artifacts due to limited temporal resolution
o Strobing
o Flickering
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Temporal Aliasing
 Artifacts due to limited temporal resolution
o Strobing
o Flickering
J
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Sampling Theorem

T,

« A signal can be reconstructed from its samples,
if the original signal has no frequencies
above 1/2 the sampling frequency - Shannon

* The minimum sampling rate for bandlimited
function is called “Nyquist rate”

A signa is bandlimited if its
highest frequency is bounded.
The frequency is called the bandwidth.
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Antialiasing
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« Sample at higher rate
o Not always possible

* Pre-filter to form bandlimited signal
o Form bandlimited function (low-pass filter)

Unfortunately,
real image signals
are rarely bandlimited
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Convolution
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« Convolution of two functions (= filtering):

g(x) = f(X) O h(x) = I f (A)h(x-A)dA

e Convolution theorem

o Convolution in frequency domain is
same as multiplication in spatial domain,
and vice-versa
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Ideal Low-Pass Filter

* Frequency domain
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Image Processing
¢ Real world
Sample

¢ Discrete samples (pixels)

Reconstructed function

Transform

i Transformed function
Filter

J Bandlimited function
Sample

i Discrete samples (pixels)

Display
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Image Processing
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¢ Real world
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Continuous Function
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Image Processing
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Sample

¢ Discrete samples (pixels)
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Discrete Samples
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Image Processing
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Reconstructed function

— N\~

[
»

Reconstructed Function
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Image Processing
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Transform
i Transformed function

[
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Transformed Function
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Image Processing
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Filter
3 Bandlimited function
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Bandlimited Function
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Image Processing
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Sample

¢ Discrete samples (pixels)

Il

Discrete samples
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Image Processing
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Display
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Practical Image Processing
« Finite low-pass filters } Redl world

o Point sampling (bad)

o Triangle filter Discrete samples (pixels)

o Gaussian filter T [Reconstruct

¢ Reconstructed function

Transformed function

Filter
+ Bandlimited function
Sample

¢ Discrete samples (pixels)

Reconstruct
¢ Display
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Triangle Filter
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« Convolution with triangle filter

Input Output
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Gaussian Filter
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» Convolution with Gaussian filter
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Adjust Blurriness
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« Convolve with filter whose support covers more
than one pixel

-
Edge Detection
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» Convolve with a filter that finds differences
between neighbor pixels

20



[

Summary

* Image processing

o Aliasing
o Filtering
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