
1

2D Rendering Pipeline

Thomas Funkhouser

Princeton University

C0S 426, Fall 1999

2D Rendering Example

What issues must be addressed by a
2D rendering system?

2

2D Rendering Pipeline

Modeling
Transformation

Modeling
Transformation

Viewing
Transformation

Viewing
Transformation

Scan
Conversion

Scan
Conversion

ClippingClipping

Geometric Primitives

Image

2D Rendering Pipeline

Modeling
Transformation

Modeling
Transformation

Viewing
Transformation

Viewing
Transformation

Scan
Conversion

Scan
Conversion

ClippingClipping

Geometric Primitives

Image

Start with a set of 2D primitives

3

2D Rendering Pipeline

Modeling
Transformation

Modeling
Transformation

Viewing
Transformation

Viewing
Transformation

Scan
Conversion

Scan
Conversion

ClippingClipping

Geometric Primitives

Image

Transform geometric primitives
into world coordinate system

Start with a set of 2D primitives

2D Rendering Pipeline

Modeling
Transformation

Modeling
Transformation

Viewing
Transformation

Viewing
Transformation

Scan
Conversion

Scan
Conversion

ClippingClipping

Geometric Primitives

Image

Transform geometric primitives
into world coordinate system

Clip portions of geometric primitives
residing outside the window

Start with a set of 2D primitives

4

2D Rendering Pipeline

Modeling
Transformation

Modeling
Transformation

Viewing
Transformation

Viewing
Transformation

Scan
Conversion

Scan
Conversion

ClippingClipping

Geometric Primitives

Image

Transform geometric primitives
into world coordinate system

Clip portions of geometric primitives
residing outside the window

Transform the clipped primitives
from world to screen coordinates

Start with a set of 2D primitives

2D Rendering Pipeline

Modeling
Transformation

Modeling
Transformation

Viewing
Transformation

Viewing
Transformation

Scan
Conversion

Scan
Conversion

ClippingClipping

Geometric Primitives

Image

Fill pixels representing primitives
as described in last class

Transform geometric primitives
into world coordinate system

Clip portions of geometric primitives
residing outside the window

Transform the clipped primitives
from world to screen coordinates

Start with a set of 2D primitives

5

2D Rendering Pipeline

Modeling
Transformation

Modeling
Transformation

Viewing
Transformation

Viewing
Transformation

Scan
Conversion

Scan
Conversion

ClippingClipping

Geometric Primitives

Image

Fill pixels representing primitives
as described in last class

Transform geometric primitives
into world coordinate system

Clip portions of geometric primitives
residing outside the window

Transform the clipped primitives
from world to screen coordinates

Start with a set of 2D primitives

Result is an image

2D Rendering Pipeline

Modeling
Transformation

Modeling
Transformation

Viewing
Transformation

Viewing
Transformation

Scan
Conversion

Scan
Conversion

ClippingClipping

Geometric Primitives

Image

Start with a set of 2D primitives

6

2D Geometric Primitives

• Lines, polygons, circles, splines, etc.

2D Geometric Primitives

• It would be hard to define this scene all in one
coordinate system

7

2D Geometric Primitives

• Some primitives may be grouped into “objects”
and defined in their own coordinate systems

x

y

x

y

Coordinate System
for Object #1

Coordinate System
for Object #2

2D Rendering Pipeline

Modeling
Transformation

Modeling
Transformation

Viewing
Transformation

Viewing
Transformation

Scan
Conversion

Scan
Conversion

ClippingClipping

Geometric Primitives

Image

Transform geometric primitives
into world coordinate system

Start with a set of 2D primitives

8

2D Modeling Transformations

Scale
Rotate

Translate

Scale
Translate

x

y

World Coordinates

Modeling
Coordinates

2D Modeling Transformations

• Translation:
� x’ = x + tx
� y’ = y + ty

• Scale:
� x’ = x * sx
� y’ = y * sy

• Rotation:
� x = x*cosΘ - y*sinΘ
� y = x*sinΘ + y*cosΘ

• Shear:
� x’ = x + hx*y
� y’ = y + hy*x

9

2D Modeling Transformations

• Translation:
� x’ = x + tx
	 y’ = y + ty

• Scale:

 x’ = x * sx
� y’ = y * sy

• Rotation:
� x = x*cosΘ - y*sinΘ

 y = x*sinΘ + y*cosΘ

• Shear:
� x’ = x + hx*y
� y’ = y + hy*x

2D Modeling Transformations

• Translation:
� x’ = x + tx
� y’ = y + ty

• Scale:
� x’ = x * sx
� y’ = y * sy

• Rotation:
� x = x*cosΘ - y*sinΘ
� y = x*sinΘ + y*cosΘ

• Shear:
� x’ = x + hx*y
� y’ = y + hy*x

10

2D Modeling Transformations

• Translation:
� x’ = x + tx
� y’ = y + ty

• Scale:
� x’ = x * sx
� y’ = y * sy

• Rotation:
� x = x*cosΘ - y*sinΘ
� y = x*sinΘ + y*cosΘ

• Shear:
� x’ = x + hx*y
� y’ = y + hy*x

1. Scale

2D Modeling Transformations

• Translation:
 x’ = x + tx
! y’ = y + ty

• Scale:
" x’ = x * sx
y’ = y * sy

• Rotation:
$ x = x*cosΘ - y*sinΘ
% y = x*sinΘ + y*cosΘ

• Shear:
& x’ = x + hx*y
' y’ = y + hy*x

1. Scale
2. Rotate

11

2D Modeling Transformations

• Translation:
(x’ = x + tx
) y’ = y + ty

• Scale:
* x’ = x * sx
+ y’ = y * sy

• Rotation:
, x = x*cosΘ - y*sinΘ
- y = x*sinΘ + y*cosΘ

• Shear:
. x’ = x + hx*y
/ y’ = y + hy*x

1. Scale
2. Rotate
3. Translate

2D Modeling Transformations

• Translation:
0 x’ = x + tx
1 y’ = y + ty

• Scale:
2 x’ = x * sx
3 y’ = y * sy

• Rotation:
4 x = x*cosΘ - y*sinΘ
5 y = x*sinΘ + y*cosΘ

• Shear:
6 x’ = x + hx*y
7 y’ = y + hy*x

1. Scale
2. Rotate
3. Translate

12

2D Rendering Pipeline

Modeling
Transformation

Modeling
Transformation

Viewing
Transformation

Viewing
Transformation

Scan
Conversion

Scan
Conversion

ClippingClipping

Geometric Primitives

Image

Transform geometric primitives
into world coordinate system

Clip portions of geometric primitives
residing outside the window

Start with a set of 2D primitives

Clipping

• Avoid drawing parts of primitives outside window
8 Window defines part of scene being viewed
9 Must draw geometric primitives only inside window

Window

World Coordinates

13

Point Clipping

Window
wx1 wx2

wy2

wy1

(x,y)

• Is point (x,y) inside the clip window?

inside =
 (x >= wx1) &&
 (x <= wx2) &&
 (y >= wy1) &&
 (y <= wy2);

inside =
 (x >= wx1) &&
 (x <= wx2) &&
 (y >= wy1) &&
 (y <= wy2);

Line Clipping

• Find the part of a line inside the clip window

P1

P10

P9

P8

P7

P4P3

P6

P5

P2

Before Clipping

14

P’8

P’7

P4P3

P6

P’5

After Clipping

Line Clipping

• Find the part of a line inside the clip window

Cohen Sutherland Line Clipping

• Use simple tests to classify easy cases first

P1

P10

P9

P8

P7

P4P3

P6

P5

P2

15

Cohen Sutherland Line Clipping

• Classify some lines quickly by AND of bit codes
representing regions of two endpoints (must be 0)

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P1

P10

P9

P8

P7

P4P3

P6

P5

P2

Cohen Sutherland Line Clipping

• Classify some lines quickly by AND of bit codes
representing regions of two endpoints (must be 0)

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P1

P10

P9

P8

P7

P4P3

P6

P5

P2

16

Cohen Sutherland Line Clipping

• Classify some lines quickly by AND of bit codes
representing regions of two endpoints (must be 0)

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P10

P9

P8

P7

P4P3

P6

P5

Cohen Sutherland Line Clipping

• Classify some lines quickly by AND of bit codes
representing regions of two endpoints (must be 0)

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P10

P9

P8

P7

P4P3

P6

P5

17

Cohen-Sutherland Line Clipping

• Compute interesections with window boundary for
lines that can’t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P10

P9

P8

P7

P4P3

P6

P5

Cohen-Sutherland Line Clipping

• Compute interesections with window boundary for
lines that can’t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P10

P9

P8

P7

P4P3

P6

P5

18

Cohen-Sutherland Line Clipping

• Compute interesections with window boundary for
lines that can’t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P10

P9

P8

P7

P4P3

P6

P’5

Cohen-Sutherland Line Clipping

• Compute interesections with window boundary for
lines that can’t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P10

P9

P8

P7

P4P3

P6

P’5

19

Cohen-Sutherland Line Clipping

• Compute interesections with window boundary for
lines that can’t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P10

P9

P8

P7

P4P3

P6

P’5

Cohen-Sutherland Line Clipping

• Compute interesections with window boundary for
lines that can’t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P10

P9

P8

P7

P4P3

P6

P’5

20

Cohen-Sutherland Line Clipping

• Compute interesections with window boundary for
lines that can’t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P10

P9

P8

P’7

P4P3

P6

P’5

Cohen-Sutherland Line Clipping

• Compute interesections with window boundary for
lines that can’t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P10

P9

P8

P’7

P4P3

P6

P’5

21

Cohen-Sutherland Line Clipping

• Compute interesections with window boundary for
lines that can’t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P10

P9

P’8

P’7

P4P3

P6

P’5

Cohen-Sutherland Line Clipping

• Compute interesections with window boundary for
lines that can’t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P10

P9

P’8

P’7

P4P3

P6

P’5

22

Cohen-Sutherland Line Clipping

• Compute interesections with window boundary for
lines that can’t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P10

P9

P’8

P’7

P4P3

P6

P’5

Cohen-Sutherland Line Clipping

• Compute interesections with window boundary for
lines that can’t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P10

P9

P’8

P’7

P4P3

P6

P’5

23

Cohen-Sutherland Line Clipping

• Compute interesections with window boundary for
lines that can’t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P10

P9

P’8

P’7

P4P3

P6

P’5

Cohen-Sutherland Line Clipping

• Compute interesections with window boundary for
lines that can’t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P10

P9

P’8

P’7

P4P3

P6

P’5

24

Cohen-Sutherland Line Clipping

• Compute interesections with window boundary for
lines that can’t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P’8

P’7

P4P3

P6

P’5

Polygon Clipping

• Find the part of a polygon inside the clip window?

Before Clipping

25

Polygon Clipping

• Find the part of a polygon inside the clip window?

After Clipping

Sutherland Hodgeman Clipping

• Clip to each window boundary one at a time

26

Sutherland Hodgeman Clipping

• Clip to each window boundary one at a time

Sutherland Hodgeman Clipping

• Clip to each window boundary one at a time

27

Sutherland Hodgeman Clipping

• Clip to each window boundary one at a time

Sutherland Hodgeman Clipping

• Clip to each window boundary one at a time

28

Clipping to a Boundary

• Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

Outside

Inside
Window

Boundary

P1

P2

P5

P4

P3

Clipping to a Boundary

• Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

Outside

Inside
Window

Boundary

P1

P2

P5

P4

P3

29

Clipping to a Boundary

• Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

Outside

Inside
Window

Boundary

P1

P2

P5

P4

P3

Clipping to a Boundary

• Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

Outside

Inside
Window

Boundary

P1

P2

P5

P4

P3

30

Clipping to a Boundary

• Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

Outside

Inside
Window

Boundary

P1

P2

P5

P4

P3

P’

Clipping to a Boundary

• Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

Outside

Inside
Window

Boundary

P1

P2

P5

P4

P3

P’

31

Clipping to a Boundary

• Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

Outside

Inside
Window

Boundary

P1

P2

P5

P4

P3

P’

Clipping to a Boundary

• Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

Outside

Inside
Window

Boundary

P1

P2

P5

P4

P3

P’ P’’

32

Clipping to a Boundary

• Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

Outside

Inside
Window

Boundary

P1

P2

P’ P’’

2D Rendering Pipeline

Modeling
Transformation

Modeling
Transformation

Viewing
Transformation

Viewing
Transformation

Scan
Conversion

Scan
Conversion

ClippingClipping

Geometric Primitives

Image

Transform geometric primitives
into world coordinate system

Clip portions of geometric primitives
residing outside the window

Transform the clipped primitives
from world to screen coordinates

Start with a set of 2D primitives

33

2D Viewing Transformation

• Transform 2D geometric primitives
from application’s world coordinate system
to device’s screen coordinate system

ScreenWorld

Viewport
Window

2D Viewing Transformation

vx1 vx2
vy1

vy2

wx1 wx2
wy1

wy2
Window Viewport

World Coordinates Screen Coordinates

(wx,wy) (vx,vy)

vx = vx1 + (wx - wx1) * (vx2 - vx1) / (wx2 - wx1);
vy = vy1 + (wy - wy1) * (vy2 - vy1) / (wy2 - wy1);
vx = vx1 + (wx - wx1) * (vx2 - vx1) / (wx2 - wx1);
vy = vy1 + (wy - wy1) * (vy2 - vy1) / (wy2 - wy1);

• Window-to-viewport mapping

34

2D Rendering Pipeline

Modeling
Transformation

Modeling
Transformation

Viewing
Transformation

Viewing
Transformation

Scan
Conversion

Scan
Conversion

ClippingClipping

Geometric Primitives

Image

Fill pixels representing primitives
as described in last class

Transform geometric primitives
into world coordinate system

Clip portions of geometric primitives
residing outside the window

Transform the clipped primitives
from world to screen coordinates

Start with a set of 2D primitives

Scan Conversion

• Fill pixels representing geometric primitive
: Been there, done that … last class

P1

P2

P3

35

2D Rendering Pipeline

Modeling
Transformation

Modeling
Transformation

Viewing
Transformation

Viewing
Transformation

Scan
Conversion

Scan
Conversion

ClippingClipping

Geometric Primitives

Image

Fill pixels representing primitives
as described in last class

Transform geometric primitives
into world coordinate system

Clip portions of geometric primitives
residing outside the window

Transform the clipped primitives
from world to screen coordinates

Start with a set of 2D primitives

Result is an image

Summary

• 2D Rendering Pipeline
; Modeling transformation
< Clipping
= Viewing transformation
> Scan conversion

• Transformations change coordinate systems
? Modeling-to-world mapping
@ Window-to-viewport mapping

