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2D Rendering Example

What issues must be addressed by a 
2D rendering system?
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2D Geometric Primitives

• Lines, polygons, circles, splines, etc.

2D Geometric Primitives

• It would be hard to define this scene all in one
coordinate system
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2D Geometric Primitives

• Some primitives may be grouped into “objects”
and defined in their own coordinate systems
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2D Modeling Transformations

Scale
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Translate

Scale
Translate
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World Coordinates

Modeling
Coordinates

2D Modeling Transformations

• Translation:
� x’ = x + tx
� y’ = y + ty

• Scale:
� x’ = x * sx
� y’ = y * sy

• Rotation:
� x = x*cosΘ - y*sinΘ
� y = x*sinΘ + y*cosΘ

• Shear:
� x’ = x + hx*y
� y’ = y + hy*x
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• Translation:
0 x’ = x + tx
1 y’ = y + ty

• Scale:
2 x’ = x * sx
3 y’ = y * sy

• Rotation:
4 x = x*cosΘ - y*sinΘ
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• Shear:
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Clipping

• Avoid drawing parts of primitives outside window
8 Window defines part of scene being viewed
9 Must draw geometric primitives only inside window

Window

World Coordinates



13

Point Clipping

Window
wx1 wx2

wy2

wy1

(x,y)

• Is point (x,y) inside the clip window?

inside = 
  (x >= wx1) &&
  (x <= wx2) &&
  (y >= wy1) &&
  (y <= wy2);

inside = 
  (x >= wx1) &&
  (x <= wx2) &&
  (y >= wy1) &&
  (y <= wy2);

Line Clipping

• Find the part of a line inside the clip window

P1

P10

P9

P8

P7

P4P3

P6

P5

P2

Before Clipping
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P’8

P’7

P4P3

P6

P’5

After Clipping

Line Clipping

• Find the part of a line inside the clip window

Cohen Sutherland Line Clipping

• Use simple tests to classify easy cases first
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Cohen Sutherland Line Clipping

• Classify some lines quickly by AND of bit codes
representing regions of two endpoints (must be 0)
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Cohen-Sutherland Line Clipping

• Compute interesections with window boundary for
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Cohen-Sutherland Line Clipping

• Compute interesections with window boundary for
lines that can’t be classified quickly
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Polygon Clipping

• Find the part of a polygon inside the clip window?

Before Clipping
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Polygon Clipping

• Find the part of a polygon inside the clip window?

After Clipping

Sutherland Hodgeman Clipping

• Clip to each window boundary one at a time
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Sutherland Hodgeman Clipping

• Clip to each window boundary one at a time
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Sutherland Hodgeman Clipping
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Clipping to a Boundary
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Clipping to a Boundary

• Do inside test for each point in sequence,
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2D Viewing Transformation

• Transform 2D geometric primitives
from application’s world coordinate system
to device’s screen coordinate system

ScreenWorld

Viewport
Window

2D Viewing Transformation

vx1 vx2
vy1

vy2

wx1 wx2
wy1

wy2
Window Viewport

World Coordinates Screen Coordinates

(wx,wy) (vx,vy)

vx = vx1 + (wx - wx1) * (vx2 - vx1) / (wx2 - wx1);
vy = vy1 + (wy - wy1) * (vy2 - vy1) / (wy2 - wy1);
vx = vx1 + (wx - wx1) * (vx2 - vx1) / (wx2 - wx1);
vy = vy1 + (wy - wy1) * (vy2 - vy1) / (wy2 - wy1);

• Window-to-viewport mapping
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Image

Fill pixels representing primitives 
as described in last class

Transform geometric primitives
into world coordinate system 

Clip portions of geometric primitives
residing outside the window  

Transform the clipped primitives
from world to screen coordinates  
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Scan Conversion

• Fill pixels representing geometric primitive
: Been there, done that … last class

P1

P2

P3
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Modeling
Transformation

Modeling
Transformation

Viewing
Transformation

Viewing
Transformation

Scan
Conversion

Scan
Conversion

ClippingClipping

Geometric Primitives

Image

Fill pixels representing primitives 
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Start with a set of 2D primitives  

Result is an image

Summary

• 2D Rendering Pipeline
; Modeling transformation
< Clipping
= Viewing transformation
> Scan conversion

• Transformations change coordinate systems
? Modeling-to-world mapping
@ Window-to-viewport mapping


