Eﬁ‘%
ok

2D Rendering Pipeline

Thomas Funkhouser
Princeton University
CO0S 426, Fall 1999

-

2D Rendering Example

Eﬁ‘%
ok

B
!

What issues must be addressed by a
2D rendering system?

-

2D Rendering Pipeline

Eﬁ‘%
ok

Geometric Primitives

Modeling
kTransformatlon

v

()

Clipping

\\

v
Viewing
kTransformatlon

v

Scan

()

L Conversion

v

Image

-

2D Rendering Pipeline

Eﬁ‘%
ok

Geometric Primitives

Modeling
kTransformatlon

v

()

Clipping

\\

v
Viewing
kTransformatlon

v

Scan

()

L Conversion

v

Image

Start with a set of 2D primitives

[

2D Rendering Pipeline

Eﬁ‘%
ok

Geometrlc Primitives

Modellng
Transformatlo

r

Cllpplng
v

Viewing
kTransformatlon

v

Scan
L Conversion

v

Image

\\

()

Start with a set of 2D primitives

Transform geometric primitives
into world coordinate system

[

2D Rendering Pipeline

Eﬁ‘%
ok

Geometric Primitives

Modeling
kTransformatlon

v
Clipping]
v

Viewing
kTransformatlon

v

Scan

()

L Conversion

v

Image

Start with a set of 2D primitives

Transform geometric primitives
into world coordinate system

Clip portions of geometric primitives
residing outside the window

-~

2D Rendering Pipeline

Eﬁ‘%
ok

Geometric Primitives

Modeling
kTransformatlon

v

()

Clipping
v

Viewing]
n

\\

Transformatio

v

Scan
L Conversion

v

Image

Start with a set of 2D primitives

Transform geometric primitives
into world coordinate system

Clip portions of geometric primitives
residing outside the window

Transform the clipped primitives
from world to screen coordinates

-~

2D Rendering Pipeline

Eﬁ‘%
ok

Geometric Primitives

Modeling
kTransformatlon

v

()

Clipping
v

Viewing
kTransformatlon

S :]
can

\\

Conversion

v

Image

Start with a set of 2D primitives

Transform geometric primitives
into world coordinate system

Clip portions of geometric primitives
residing outside the window

Transform the clipped primitives
from world to screen coordinates

Fill pixels representing primitives
as described in last class

-

2D Rendering Pipeline

Eﬁ‘%
ok

Geometric Primitives

Start with a set of 2D primitives

2D Rendering Pipeline

Modeling Transform geometric primitives
Transformation into world coordinate system
v
Clipping Cllp portlons_of geome_trlc primitives
. residing outside the window
v
Viewing Transform the clipped primitives
_Transformation from world to screen coordinates
v
Scan Fill pixels representing primitives
_ Conversion as described in last class
v
Image Result is an image y
4 N

Eﬁ‘%
ok

Geometric Primitives

Modeling
\Transformatlon

v

7

Clipping

\\

~\

v

Viewing
\Transformatlon

v

Scan

\ Conversion

v

Image

Start with a set of 2D primitives

=
2D Geometric Primitives

Eﬁ‘%
ok

* Lines, polygons, circles, splines, etc.

A@ "
<4 &s

=
2D Geometric Primitives

Eﬁ‘%
ok

* |t would be hard to define this scene all in one
coordinate system

FiRe LR A

-

2D Geometric Primitives

Eﬁ‘%
ok

» Some primitives may be grouped into “objects”
and defined in their own coordinate systems

» »
» »

X X
Coordinate System Coordinate System
for Object #1 for Object #2

-

Eﬁ‘%
ok

2D Rendering Pipeline

Geometric Primitives Start with a set of 2D primitives

Modeling] Transform geometric primitives
Transformation into world coordinate system

v

()

Clipping
v

Viewing
kTransformatlon

v

Scan
L Conversion

v

Image

\§

()

=
2D Modeling Transformations

Modeling
Coordinates

Scale
Translate

Scale
Rotate
Translate

World Coordinates

=
2D Modeling Transformations

e Translation:
o X' =X+ 1Xx
oy =y+ty

» Scale:
o X' =X *sX
oy =y*sy

» Rotation:
o X = X*C0SO - y*sin®
o Yy = X*sIin® + y*cosO®

e Shear:
o X' =X + hx*y
oy =y +hy

=
2D Modeling Transformations

e Translation:

o X' =X+ 1x

oy =y+ty
» Scale:

o X' =X *sX

oy =y*sy

» Rotation:
o X = X*C0SO - y*sin®
o Yy =X*sin® + y*cos®

2D Modeling Transformations

e Shear:
o X' =X + hx*y
o V =V + hy*
y =y +tny*X)
(

e Translation:

o X' =X+ 1x

oy =y+ty
» Scale:

o X' =X *sX

oy =y*sy
» Rotation:

o X = X*C0SO - y*sin®
o Yy =X*sin® + y*cos®

e Shear:
o X' =X + hx*y
°o Y=y +hy*X

=
2D Modeling Transformations

e Translation:

o X' =X+ 1x
oy =y+ty
» Scale:
o X' =X *sX
o y’ - y * Sy n/
» Rotation:
1. Scale

o X = X*C0SO - y*sin®
o Yy =X*sin® + y*cos®

2D Modeling Transformations

e Shear:
o X' =X + hx*y
o V =V + hy*
y =y +tny*X)
(

e Translation:

o X' =X+ 1Xx
oy =y+ty
e Scale:
o X' = X*sX
oy =y*sy
* Rotation:
1. Scale

o X = X*C0SO - y*sin®

o Y = X*sin® + y*cos® 2. Rotate

e Shear:
o X' =X + hx*y
°o Y=y +hy*X

10

-

2D Modeling Transformations

e Translation:
o X' =X+ 1Xx
oy =y+ty

» Scale:
o X' =X *sX
oy =y*sy
Il

» Rotation: 1l
o X = X*C0SO - y*sin®
o Yy =X*sin® + y*cos®

e Shear:
o X' =X + hx*y
°o Y=y +hy*X

1. Scale
2. Rotate
3. Translate

-

2D Modeling Transformations

e Translation:

o X' =X+ 1x
oy =y+ty
» Scale:
o X' =X *sX m
oy =y*sy
» Rotation:

o X = X*C0SO - y*sin®
o Yy =X*sin® + y*cos®

e Shear:
o X' =X + hx*y
°o Y=y +hy*X

1. Scale
2. Rotate
3. Translate

11

-
2D Rendering Pipeline

Eﬁ‘%
ok

Geometric Primitives Start with a set of 2D primitives

Modeling] Transform geometric primitives
_Transformation into world coordinate system
v
A Clip portions of geometric primitives
Clippin] . : :
PPIng residing outside the window
v

Viewing
kTransformatlon

v

Scan
L Conversion

v

Image

()

e A
Clipping

« Avoid drawing parts of primitives outside window
o Window defines part of scene being viewed
o Must draw geometric primitives only inside window

World Coordinates

-

~N
Point Clipping
* Is point (x,y) inside the clip window?
V\Q/Z i nside =
(x >= wl) &&
(x,y) (x <= wx2) &&
° (y >= wl) &&
(y <= w2);
wyl
Wx 1< — WX2
Window
J
4)
Line Clipping

» Find the part of a line inside the clip window

\

Before Clipping

13

=
Line Clipping

» Find the part of a line inside the clip window

After Clipping

=
Cohen Sutherland Line Clipping

5]
LHrg

» Use simple tests to classify easy cases first

=
Cohen Sutherland Line Clipping

~

» Classify some lines quickly by AND of bit codes
representing regions of two endpoints (must be 0)

P

\\ Bit 4

=
Cohen Sutherland Line Clipping

~

» Classify some lines quickly by AND of bit codes
representing regions of two endpoints (must be 0)

P

\\ Bit 4

15

-

Cohen Sutherland Line Clipping

%

~

P

~

» Classify some lines quickly by AND of bit codes
representing regions of two endpoints (must be 0)

Bit 4

-

Cohen Sutherland Line Clipping

%

~

» Classify some lines quickly by AND of bit codes
representing regions of two endpoints (must be 0)

Bit 4

16

-

Cohen-Sutherland Line Clipping

\
3?
e £

Bit 1

« Compute interesections with window boundary for
lines that can’t be classified quickly

Bit 4

-

Cohen-Sutherland Line Clipping

\
3?
e £

Bit 1

/ -
Py Pg/

Bit 2

« Compute interesections with window boundary for
lines that can’t be classified quickly

Bit 4

17

-

Cohen-Sutherland Line Clipping

\
3?
e £

Bit 1

« Compute interesections with window boundary for
lines that can’t be classified quickly

Bit 4

-

Cohen-Sutherland Line Clipping

\
3?
e £

Bit 1

« Compute interesections with window boundary for
lines that can’t be classified quickly

Bit 4

18

-

Cohen-Sutherland Line Clipping

\
3?
e £

Bit 1

« Compute interesections with window boundary for
lines that can’t be classified quickly

Bit 4

-

Cohen-Sutherland Line Clipping

\
3?
e £

Bit 1

« Compute interesections with window boundary for
lines that can’t be classified quickly

Bit 4

19

-

Cohen-Sutherland Line Clipping

\
3?
e £

Bit 1

P,7
\\
Pg/P4 P8
/P6 /Plo
P >
9

« Compute interesections with window boundary for
lines that can’t be classified quickly

Bit 4

-

Cohen-Sutherland Line Clipping

\
3?
e £

Bit 1

P,7
/P\-\ I:)8
P, 4
/P6 / P10
P >

« Compute interesections with window boundary for
lines that can’t be classified quickly

Bit 4

20

-

Cohen-Sutherland Line Clipping

\
3?
e £

Bit 1

P,7
\ P,8
P.—T000 4
/P6 /Plo
P S
9

« Compute interesections with window boundary for
lines that can’t be classified quickly

Bit 4

-

Cohen-Sutherland Line Clipping

\
3?
e £

Bit 1

P,7
\ P,8
P.—T000 4
/P6 /Plo
P S

« Compute interesections with window boundary for
lines that can’t be classified quickly

Bit 4

21

-

Cohen-Sutherland Line Clipping

\
3?
e £

Bit 1

P’
\ P,8
P.—T000 4
/P6 / P1o
P’s o /
9

« Compute interesections with window boundary for
lines that can’t be classified quickly

Bit 4

-

Cohen-Sutherland Line Clipping

\
3?
e £

Bit 1

P,7
\ P,8
P.—T000 4
/P6 / P1o
P, . i

« Compute interesections with window boundary for
lines that can’t be classified quickly

Bit 4

22

-

Cohen-Sutherland Line Clipping

\
3?
e £

P’
\ P,S
P.—T000 4
/P6 / P1o
P’s Pg[
Bit 1 Bit 2

« Compute interesections with window boundary for
lines that can’t be classified quickly

Bit 4

-

Cohen-Sutherland Line Clipping

\
3?
e £

P’
\ P,S
P.—T000 4
/P6 / P1io
P’s P i
Bit 1 Bit 2

« Compute interesections with window boundary for
lines that can’t be classified quickly

Bit 4

23

=
Cohen-Sutherland Line Clipping

~

« Compute interesections with window boundary for
lines that can’t be classified quickly
P,7
\ Bit 4
I:),8
P.—T000 4
P
L Bit 3
P75
Bit 1 Bit 2)
4)
Polygon Clipping
» Find the part of a polygon inside the clip window?
Before Clipping
J

24

=
Polygon Clipping

~

» Find the part of a polygon inside the clip window?

- A

After Clipping

B

=
Sutherland Hodgeman Clipping

LG parey

~

» Clip to each window boundary one at a time

/A

-

25

s N
Sutherland Hodgeman Clipping

LG parey

» Clip to each window boundary one at a time

/A

-

B

s N
Sutherland Hodgeman Clipping

LG parey

» Clip to each window boundary one at a time

/A

-

s N
Sutherland Hodgeman Clipping

LG parey

» Clip to each window boundary one at a time

A

B

s N
Sutherland Hodgeman Clipping

LG parey

» Clip to each window boundary one at a time

/A

-

Clipping to a Boundary

* Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

I:)2
Pl
Window
Boundary Inside
Outside
P3
I:,5
I:)4
Clipping to a Boundary

» Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

P
Pl
Window
Boundary Inside
Outside
P3
I:,5

2
I:)4

28

Clipping to a Boundary

* Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

I:)2
\ .
Window
Boundary Inside
Outside
P3
I:,5
I:)4
Clipping to a Boundary

» Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

P2
P,

Window
Boundary Inside

Outside

-

Clipping to a Boundary

~

* Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

P,
Py

Window
Boundary p’ Inside

Outside

Ps

-

Clipping to a Boundary

~

» Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

P,
Py

Window
Boundary p’ Inside

Outside

Ps

30

-

Clipping to a Boundary

~

* Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

P,
Py

Window
Boundary p’ Inside

Outside

Ps

-

Clipping to a Boundary

~

» Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

P,
Py

Window
Boundary p’ pr Inside

Outside

Ps

31

~ R
Clipping to a Boundary

* Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

P,
Py

Window
Boundary p’ p» Inside

Outside

-
2D Rendering Pipeline

Eﬁ‘%
ok

Geometric Primitives Start with a set of 2D primitives

Modeling) Transform geometric primitives
_Transformation into world coordinate system
v
e \ P
Clipping Cllp portlons_of geome_trlc primitives
. residing outside the window
v
Viewing] Transform the clipped primitives
Transformation from world to screen coordinates
—
Scan
_ Conversion
v
Image

32

-

Eﬁ‘%
ok

2D Viewing Transformation

» Transform 2D geometric primitives
from application’s world coordinate system
to device’s screen coordinate system

World Screen

- Viewport
Window
J
4)
2D Viewing Transformation
» Window-to-viewport mapping
wy?2 Window w2 Viewport
./ \0
(wx,wy) (vx,vy)
Wyv&xl: > WX2 Vy&xl: > VX2
World Coordinates Screen Coordinates
vx = vx1 + (wx - wx1l) * (vx2 - vx1) / (wx2 - wxl);
vy = vyl + (wy - wyl) * (vy2 - vyl) / (w2 - wl);
J

33

-~

2D Rendering Pipeline

Eﬁ‘%
ok
J

Geometric Primitives

Modeling

kTransformation

v

r

\\

Clipping

~

v

Viewing

kTransformation

v

Scan
Conversion

]

v

Image

Start with a set of 2D primitives

Transform geometric primitives
into world coordinate system

Clip portions of geometric primitives
residing outside the window

Transform the clipped primitives
from world to screen coordinates

Fill pixels representing primitives
as described in last class

-
Scan Conversion

Eﬁ‘%
ok
J

* Fill pixels representing geometric primitive
o Been there, done that ... last class

Py

34

[

2D Rendering Pipeline

Eﬁ‘%
ok

Geometric Primitives

Start with a set of 2D primitives

Modeling Transform geometric primitives
_Transformation into world coordinate system
v
(™ R R . . L.
Clipping Cllp portlons_of geome_trlc primitives
L residing outside the window
v
Viewing Transform the clipped primitives
| Transformation from world to screen coordinates
v
[Scan | Fill pixels representing primitives
_ Conversion as described in last class
v
Image Result is an image)
4)
Summary

» 2D Rendering Pipeline
Modeling transformation

[e]

[e]

Clipping

[e]

[e]

» Transformations change coordinate systems
o Modeling-to-world mapping
o Window-to-viewport mapping

Viewing transformation
Scan conversion

35

