Lecture Notes #13 - Global [llumination

Reading: Angel: 16.10; Foley: p.792

Topics:
* Rendering equation
* Approximations
Ray tracing
Radiosity

COS 426 1 Lecture Notes #13

Ray Tracing

transmitted

reflected

Let I(b,r) = intensity seen along direction r from point b.
I(E,R) = ldirect * lindirect

= ldirect * Ireflected* ltransmitted

| girect = computed from the Phong moc
Ireflected = Reflectance | (P, Reflected

ltransmitted= Transmittancé | (P, Rransmitted

COS 426 2 Lecture Notes #13

The Rendering Equation (Kajiya '86)

£

A=

L(X - X")=E(X - x")+J'fr (X, X, X")L(X = X)V(X,X)G(X,X)dx
X

* L(x'->X") is the totafadiancefrom x' « f is the BRDF

X * V(x,x") is avisibility term:

* E(x'->X") is theemittedradiance from

; " 1if x is visible from x'; 0
X' to x

otherwise

* non-zero for light sources .
g * G(x,X") is ageometryterm

COS 426 3 Lecture Notes #13

Ray Tracing as Approximation to Rendering Equation

L(X - X")=E(X - x")+J'f,(x,>(,x")L(x - XO)V(X, X)G(X, X)dx
X

» Sample the integrand where it is likely to be large: at points x such that:
* X is at a light source
* X is in the reflected direction

* X is in the refracted direction

COS 426 4 Lecture Notes #13

Ray Tracing
Gross approximation to the rendering equation.
accounts far
shadows
refraction

inter-object reflection

doesn't account for
caustics (focusing)
finite light sources

diffuse inter-object reflection
Relatively easy to implement.

Produces pretty nice images, although they're a little "too perfect".

COS 426 5 Lecture Notes #13

Radiosity

» Radiosity = energy/unit area leaving a surface:

B(x):IL(x - X)cosfdw
w

COS 426 6 Lecture Notes #13

The Radiosity Equation

* Radiosity assumptiorall surfaces totally diffuse

* Simplifications to rendering equation:
» BRDF comes outside the integral
+ Radiance leaving each surface is equal in all directions
» => Radiosity describes everything

* Rendering equation becomes the radiosity equation:

V(x, X)G(x,x’)dx
T

B(x) = E() + P(X)I B(x)
X.

p(x) ="hemisphericalreflectancé=kym 0< p(x)<1

COS 426 7 Lecture Notes #13

Solving the Radiosity Equation

B(X) = E(x) + p(x)J’ B(X)M:(Xf)dx
4

* Relatively hard:

* Unknown B(x) appears on both sides, once inside the integral, once
outside.

* Analytic solutions generally don't exist.
* Must approximate using numerical methods.
* The "finite element" approach
« Divide scene up into small surface patches (discretize).
» Assume on each patch i=1,...,n:
+ Radiosity Bis constant.
» Emission Eis constant.
* Reflectance, is constant.

COS 426 8 Lecture Notes #13

Finite Element Approach
1 1 1 V(XX)G(X, X)
A J‘B(X)dX_EIE(X)dX-FE J' pIB(x)in dx dx
x4 xd x0O

Finite Element Approach

B=E+p BF = Hiwx XIGX) g
] X0, x Oj

n
1 V(X, X)G(x, X . : .
B = E'“"KZ J’ B; ()n()dx dx In matrix form:
=1 xO X0j FEBLD (10 iR mF2 - PlFJnDEB1[
n O VO G ¢ 0 %2 %32':21 pok2 - %2[
—E|+PiZBjEI dexg gooion: s
1=l B&O X0 g B%H BEnH E’nFnl PnanHB3nE
n
=E + 0 B: E:
' ”'jzzll J d-ptF1 -pR2 - -p1F1n DEBm =18
B‘szn 1-pok2 - : %2[
o : . m: D O:C
"form factor" B_pn':nl 1‘PnanHB3nH BEnE
COS 426 9 Lecture Notes #13 COS 426 10 Lecture Notes #13
Issues Computing Form Factors

» How to compute form factors?
» How many patches to use?

* How best to solve the linear system?

* Itis large and dense

COS 426 11 Lecture Notes #13

F = J.J-V(x ,X)G(X,)()d dx
A‘ xO,x0j

* Quadrature using ray casting for visibility

* Use z-buffer hardware (hemi-cube [Cohen&Greenberg '85])

COS 426 12 Lecture Notes #13

Standard Radiosity

» Each entry of form factor matrix
represents an "interaction”

* n? interactions

» Small patches needed for accurate close

interaction

» Small patches are overkill for distant

Hierarchical Radiosity

* Hanrahan, Salzman, Aupperle,
Siggraph '91
* Hierarchically decompose
* patches (into a quadtree)
* FF matrix (matrix never explicitly

formed)

interactions * Claim: O(f@e) n) interactions for
accuracy tolerance e
COS 426 13 Lecture Notes #13 COS 426 14 Lecture Notes #13
Basic Algorithm Basic Algorithm
» Compute interactions: * Solve:
_ Gather(Patch *r) { Push(Patch *r) {
Refine(Patch *r, *s, eps) { Solve() { [* Gather radiosity to r */ /*
Frs = FormFactor(r, s) repeat { if (r) { Add radiosity at r to radiosities of
Fsr = FormFactor(s, r) foreach top level patch r { r->B = r->emission children
if (accurate to within eps) { Gather(r) foreach link Lbtwr & s { */
Link(r,s); } r->B += L->FF * r->rho * s->B| }
}else { foreach top level patch r { }
if (SplitAndRefine(s)) { Push(r) Gather(r->nw) Pull(Patch *r) {
Subdiv(s) Puli(r) Gather(r->ne); /*
Refine(r, s->ne, eps) } Gather(r->sw) Set radiosity of each node to
Refine(r, s->nw, eps) until converged; Gather(r->se); area weighted average of
Refine(r, s->se, eps) } } children
Refine(r, s->sw, eps) } */
}else {..} }
}
COS 426 15 Lecture Notes #13 COS 426 16 Lecture Notes #13

