
COS 426 Lecture Notes #13

Lecture Notes #13 - Global Illumination

Reading: Angel: 16.10; Foley: p.792
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Topics:

	 • Rendering equation

	 • Approximations

	      Ray tracing

	      Radiosity
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Ray Tracing
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The Rendering Equation (Kajiya '86)
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• L(x'->x'') is the total radiance from x' 
to x''

• E(x'->x'') is the emitted radiance from 
x' to x''

• non-zero for light sources

L x x E x x f x x x L x x V x x G x x dxr
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• f r is the BRDF

• V(x,x') is a visibility term:

• 1 if x is visible from x'; 0 
otherwise

• G(x,x') is a geometry term
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Ray Tracing as Approximation to Rendering Equation
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• Sample the integrand where it is likely to be large: at points x such that:

• x is at a light source

• x is in the reflected direction

• x is in the refracted direction
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Ray Tracing
Gross approximation to the rendering equation.

accounts for:

shadows

refraction

inter-object reflection

doesn't account for: 

caustics (focusing)

finite light sources

diffuse inter-object reflection

Relatively easy to implement.

Produces pretty nice images, although they're a little "too perfect".
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Radiosity

• Radiosity = energy/unit area leaving a surface:
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The Radiosity Equation

• Radiosity assumption: all surfaces totally diffuse

• Simplifications to rendering equation:

• BRDF comes outside the integral

• Radiance leaving each surface is equal in all directions

• => Radiosity describes everything

• Rendering equation becomes the radiosity equation:
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Solving the Radiosity Equation
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• Relatively hard:
• Unknown B(x) appears on both sides, once inside the integral, once 

outside.
• Analytic solutions generally don't exist.
• Must approximate using numerical methods.

• The "finite element" approach
• Divide scene up into small surface patches (discretize).
• Assume on each patch i=1,...,n:

• Radiosity Bi is constant.
• Emission Ei is constant.
• Reflectance ρi is constant.
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Finite Element Approach
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"form factor"
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Finite Element Approach

10

B E B Fi i i j ij
j

= + ∑ρ

• In matrix form:
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Issues

• How to compute form factors?

• How many patches to use?

• How best to solve the linear system?

• It is large and dense
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Computing Form Factors

• Quadrature using ray casting for visibility

• Use z-buffer hardware (hemi-cube [Cohen&Greenberg '85])
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Standard Radiosity

• Each entry of form factor matrix 
represents an "interaction"

• n2 interactions

• Small patches needed for accurate close 
interaction

• Small patches are overkill for distant 
interactions
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Hierarchical Radiosity

• Hanrahan, Salzman, Aupperle, 
Siggraph '91

• Hierarchically decompose

• patches (into a quadtree)

• FF matrix (matrix never explicitly 
formed)

• Claim: O( f(e) n) interactions for 
accuracy tolerance e
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Basic Algorithm

• Compute interactions:
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Refine(Patch *r, *s, eps) {
  Frs = FormFactor( r, s)
  Fsr = FormFactor( s, r)
  if (accurate to within eps) {
    Link(r,s);
  } else {
    if (SplitAndRefine(s)) {
      Subdiv(s)
      Refine(r, s->ne, eps)
      Refine(r, s->nw, eps)
      Refine(r, s->se, eps)
      Refine(r, s->sw, eps)
    } else {...}
}

• Solve:

Solve() {
  repeat {
    foreach top level patch r {
      Gather(r)
    }
    foreach top level patch r {
      Push(r)
      Pull(r)
    }
  until converged;
}
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Basic Algorithm
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Gather(Patch *r) {
  /* Gather radiosity to r */
  if (r) {
    r->B = r->emission
    for each link L btw r & s {
      r->B += L->FF * r->rho * s->B
    }
    Gather(r->nw)
    Gather(r->ne);
    Gather(r->sw)
    Gather(r->se);
  }
}

Push(Patch *r) {
  /*
    Add radiosity at r to radiosities of
   children
  */
}

Pull(Patch *r) {
  /*
    Set radiosity of each node to
    area weighted average of
    children
  */
}
    


