Lecture Notes#9 - Curves

Reading:
Angel: Chapter 9
Foley et al., Sections 11(intro) and 11.2

Overview
Introduction to mathematical splines
Bezier curves
Continuity conditions€?, Ct, C?, G, G?)
Creating continuous splines
C? interpolating splines
B-splines

Catmull-Rom splines
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Introduction

Mathematical splines are motivated by the "loftsman's spline™:
* Long, narrow strip of wood or plastic
* Used to fit curves through specified data points
» Shaped by lead weights called "ducks"
* Gives curves that are "smooth" or "fair"

Such splines have been used for designing:
» Automobiles
* Ship hulls
* Aircraft fuselages and wings
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Requirements

Here are some requirements we might like to have in our
mathematical splines:

* Predictable control
* Multiple values

* Local control

* Versatility

* Continuity
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Mathematical splines

The mathematical splines we'll use are:
* Piecewise
» Parametric

* Polynomials

Let's look at each of these terms......
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Parametric curves

In general, a "parametric” curve in the plane is expressed as:
X =X(t)
y=y()
Example:A circle with radius r centered at the origin is given by:

X =r cost

y =r sint

By contrast, an "implicit" representation of the circle is:
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Parametric polynomial curves

A parametric "polynomial” curve is a parametric curve where each
function x(t), y(t) is described by a polynomial:

X() = 3 at
i=0

y( = 3 bt
i=0

Polynomial curves have certain advantages:
» Easy to compute

* Infinitely differentiable
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Piecewise parametric polynomial curves

A "piecewise" parametric polynomial curve usiféerent
polynomial functions fodifferent parts of the curve.

 Advantage: Provides flexibility

* Problem: How do you guarantee smoothness at the
joints? (Problem known as "continuity.")

In the rest of this lecture, we'll look at:
1. Bezier curves -- general class of polynomial curves

2. Splines -- ways of putting these curves together
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Bezier curves

* Developed simultaneously by Bezier (at Renault) and deCasteljau
(at Citroen), circa 1960.

* The Bezier curv&)(u) is defined by nested interpolation:

* V's are "control points"

*{V, ...,V }is the "control polygon"
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Bezier curves. Basic properties
Bezier curves enjoy some nice properties:
» Endpoint interpolation:
Q(0) =V,
Q1) =V,

» Convex hull:The curve is contained in the convex hull of its
control polygon

» Symmetry:
Q(u) defined by ¥, ...,V }
= Q(1 -u) defined by ¥, ... ,V,}
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Bezier curves: Explicit formulation

Let's giveV, a superscrip¥] to indicate the level of nesting.
An explicit formulation forQ(u) is given by the recurrence:

Vi=(1-u) Vit +uvi
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Explicit formulation, cont.

Forn =2, we have:

Qu) =Vy?
=1 -uVi+uv
=Q-u[1-uyVe+uV+[(1-u)V,L+uV)
= (1 -uVe+ 201 -u)V,0 + LV

In general:
Q(u) = izo V, %ﬁu'(l— u)"!

Br(u)

B(u) is thei'th Bernstein polynomial of degree
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Bezier curves: More properties

Here are some more properties of Bezier curves

aw= y v -y
i=0

* Degree Q(u) is a polynomial of degree

* Control points: How many conditions must we specify to uniquely
determine a Bezier curve of degree n?
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Mor e properties, cont.
» Tangents:
Q(0) =n(V,-V,)
Q1) =n(V,-V,)

* K'th derivativesin general,
* Q®(0) depends only oW, ...,V,
* Q®(1) depends only o, ...,V_,

* (At intermediate points € (0, 1), all control points are
involved for every derivative.)
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Cubic curves
For the rest of this discussion, we'll restrict ourselvgadoewise
cubiccurves.
* In CAGD, higher-order curves are often used
» Gives more freedom in design

» Can provide higher degree of continuity between pieces

« For Graphics, piecewise cubic let's you do just about anything

» Lowest degree for specifiying points to interpolate and
tangents

» Lowest degree for specifying curve in space

All the ideas here generalize to higher-order curves
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Matrix form of Bezier curves

Bezier curves can also be described in matrix form:

3 ) .
=y ViR -y
i=0

=(1-upV,+ 3 -upV,+32(1-u)V,+ WV,

13 -3 1\(V,
B 36 3 0|V,
=(vvul)| 33 0 oflV
10 0 0/\V,
VO
V
=S(kwrul ™m !
( ) Bezier V2
V,

w
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Display: Recursive subdivision

Q: Suppose you wanted tliaw one of these Bezier curves -- how
would you do it?

A: Recursive subdivision:
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Display, cont. Splines
To build up more complex curves, we can piece together different
Here's pseudocode for the recursive subdivision display algorithm: Bezier curves to make "splines."

procedure Display{V,, ...,V }): For example, we can get:
if {V,, ...,V } flat within & then
Output line segment,V,

« Positional C° continuity:

else
Subdivide to producel{, ...,.L } and {R, ...,R}
Display({L,, ....L.}) * Derivative C*) continuity:
Display{R,, ....R})

end if

end procedure

Q: How would you build an interactive system to satisfy these constraints?
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Advantages of splines Tangent (GY) continuity

Q: Suppose the tangents were in opposite directionsdiaf same

Advanta of splines over higher- i : .
dvantages plines o gher-order Bezier curves magnitude -- how does the curve appear?

* Numerically more stable
« Easier to compute

» Fewer bumps and wiggles

This construction gives "tanger@y continuity."

Q: How isGt continuity different fromC'?
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Curvature (C?) continuity

Q: Suppose you want evéiigherdegrees of continuity -- e.g., not just
slopesbut curvatures- what additional geometric constraints are imposed?

We'll begin by developing some more mathematics.....
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Operator calculus

Let's use a tool known as "operator calculus.”

Define the operatdDd by:
DVi = Vi+1

Rewriting our explicit formulation in this notation gives:

Qu= 3 BB a-y™y,

u'(1-u"'D Vg

I
e

(uD)' 1- W)V

1]
1
a1z
O oM™

Applying the binomial theorem gives:

ubE (1-u)v,
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Taking the derivative

One advantage of this form is that now we can take the derivative:
Q) =nD + (1 -w) (D- 1V,
What's D - 1)V,?

Plugging in and expanding:

n-lrn -1 . L
Qw = n3 B B0 o (v vy)

This gives us a general expression for the derivals).
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Specializington =3

What's the derivativ®'(u) for a cubic Bezier curve?

Note that:
* Whenu =0:Q'(u) = 3(v, - V,)
* Whenu =1:Q'(u) = 3(v,-V,)

Geometric interpretation:

So forC1 continuity, we need to set:

3(\/3 - Vz) = 3(\N1 - Wo)
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Taking the second derivative

Taking the derivative once again yields:

Q'uW=n(M-1)UD+ @ -u)2(D-1rV,

What does[p - 1¥ do?
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Second-order continuity

So the conditions for second-order continuity are:
(V5- V) = (W, - W)
(V3'V2) - (Vz'vl) = (\Nz'Wl) - (\Nl'Wo)

Putting these together gives:

Geometric interpretation
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C3 continuity

Summary of continuity conditions

* Co straightforward, but generally not enough
* C?is too constrained (with cubics)
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Creating continuous splines

We'll look at three ways to specify splines w@thandC? continuity:
1. C?interpolating splines
2. B-splines

3. Catmull-Rom splines
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C? Interpolating splines

The control points specified by the user, called "joints, [r@eFpolated
by the spline.

For each ok andy, we needed to specify conditions for each
cubic Bezier segment.

So if there are m segments, we'll need constraints.

Q: How many of these constraints are determined by each joint?
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In-depth analysis, cont.

At eachinterior joint j, we have:

1. Last curve ends at

2. Next curve begins @t

3. Tangents of two curves jaare equal
4. Curvature of two curves pare equal

Them segments give:
. interior joints
. conditions
The 2 end joints give 2 further contraints:

1. First curve begins at first joint
2. Last curve ends at last joint

Gives constraints altogether.
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End conditions

The analysis shows that specifyimgt 1 joints for m segments leaves 2
extra degrees of freedom.

These 2 extra constraints can be specified in a variety of ways:

» An interactive system

* Constraints specified as

» "Natural" cubic splines

 Second derivatives at endpoints defined to be 0

* Maximal continuity
* RequireC? continuity between first and last pairs of curves
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C? Interpolating splines
Problem:Describe an interactive system for specifiying C2 interpolating splines.
Solution:
1. Let user specify first four Bezier control points.
2. This constrains next control points -- draw these in.

3. User then picks more
4. Repeat steps 2-3.
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Global vs. local control

TheseC? interpolating splines yield only "global control" -- moving any
one joint (or control point) changes the entire curve!

Global control is problematic:
» Makes splines difficult to design
» Makes incremental display inefficient

There's a fix, but nothing comes for free. Two choices:
* B-splines
» KeepC? continuity
* Give up interpolation
» Catmull-Rom splines
» Keep interpolation
* Give upC? continuity -- provide<* only
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B-splines

Previous constructio(C? interpolating splines):

» Choose joints, constrained by the "A-frames."

New constructior{B-splines):

» Choose points on A-frames
* Let these determine the rest of Bezier control points and joints

The B-splines I'll describe are known more precisely as "uniform
B-splines.”
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B-spline construction

The points specified by the user in this construction are called "de Boor points."
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B-spline properties
Here are some properties of B-splines:
* C?continuity

* Approximating
* Does not interpolate deBoor points

* Locality
» Each segment determined by 4 deBoor points
» Each deBoor point determines 4 segments

* Convex hull
* Curve lies inside convex hull of deBoor points
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Algebraic construction of B-splines Algebraic construction of B-splines, cont.
Once again, this construction can be expressed in terms of a matrix:
A 1 4 1 0)\/[B
vi| _1]0 4 2 0]|B,
v, 610 2 4 0]/|B,
A 0 1 4 1/\B
Vl = Bl + BZ
V2 = Bl + BZ
V, = [ B, + B+ L B, + B,]
= BO + Bl + BZ
V3 = Bl + BZ + B3
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Drawing B-splines Multiple vertices
Drawing B-splines is therefore quite simple: Q: What happens if you put more than one control point in the same

place?

procedur e Draw-B-Spline({B,, ...,B}): Some possibilities:

fori=0ton-3do » Triple vertex
ConvertB, ...,B,_, into a Bezier control polygoy, ...,V, * Double vertex
Display ({V,, ... ,\V}) + Collinear vertices
end for

end procedure
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End conditions
You can also use multiple vertices at the endpoints:
 Double endpoint
* Curve tangent to line between first distinct points

* Triple endpoint

* Curve interpolates endpoint

* Starts out with a line segment
» Phantom vertices

* Gives interpolation without line segment at ends
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Catmull-Rom splines
The Catmull-Rom splines
* Give upC? continuity
» Keep interpolation

For the derivation, let's go back to the interpolation algorithm. We had 4
conditions at each joirt

1. Last curve ends at
2. Next curve begins @t
3. Tangents of two curves jaare equal
4. Curvature of two curves pare equal
If we ...
« Eliminate condition 4
» Make condition 3 depend only on local control points
... then we can havecal control
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Derivation of Catmull-Rom splines
Idea (Same as B-splines)
* Start with joints to interpolate

* Build a cubic Bezier curve between successive points

The endpoints of the cubic Bezier are obvious:
V,=B,
V, =B,

Q: What should we do for the other two points?
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Derivation of Catmull-Rom, cont.

A: Catmull & Rom uséalf the magnitude of the vector between
adjacent control points

Many other choices work -- for example, using an arbitrary constant
times this vector gives a "tension" control.
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Matrix formulation

The Catmull-Rom splines also admit a matrix formulation:

v, 0 6 0 0|/(B,
Vi _ 1|16 1 0||B
v, 6|0 1 6 -1||B,
v, 0 0 6 0/\B,

Exercise:Derive this matrix.
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Properties

Here are some properties of Catmull-Rom splines:
« Ct Continuity
* Interpolating
* Locality

* No convex hull property
* (Proof left as an exercise.)
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