CS 126 Lecture 34.
Operating Systems

Outline

* Introductions

* History

* General mechanisms
* Process management
°* Memory management
* File systems

* Conclusions

CSs126 23-1 Randy Wang

Why Learn About OS

* Be aninformed citizen in the age of hype, controversies
and lawyer talks

* | earn something about a big part of yoaily computing
life
* Gain an appreciation of “the big picture”

- In terms of the crucial role ¢échnology advanceand

- In terms ofsynthesisof many areas of computer science:
hardware, algorithms, language, and ...

* Gain some insight into how to put together arguably on
the mosthallenging softwares

e of

CSs126 23-2 Randy Wang

OS as Government

* Everyone learns to hate it, but you will miss it dearly if
not there

* Makes livessasy virtualizing resources. promises
everyone illusions of
- separate dedicatétPUs (using a single CPU)
- unlimited amount omemory (using limited physical memory)
- directories and filefusingdisk blocks)

* Makes livessasy providing standardervices
- development environment
- standard libraries
- window systems

* Makes livedair : arbitrate competing resource demands

* Makes livessafer. prevent accidental or malicious
damage/intrusion

* A good way of understanding OS is to look at the histor
where they come from.(We keep going back to the future

CSs126 23-3 Randy Wang

it's

y of

N

Outline

* introductions

* History

* General mechanisms
* Process management
°* Memory management
* File systems

* Conclusions

CSs126 23-4 Randy Wang

Phase 0: User at Console

* How things work
- One TOY machine for CS126, what do we do?
- No OS, just a sign-up shefetr reservations!
- Each user has complete control of machine

- Soon added device libraries, compilers, assembbers
convenience

* Advantages
- Interactive!
- No one can hurt anyone else

* Disadvantages
- Reservations not accurate, leads to inefficiency

- Loading/unloading tapes and cards takes forever and leaves
the machine idle

CSs126 23-5 Randy Wang

Phase 1: Batch Processing
(Expensive Hardware, Cheap Humans)

® How things work
- Sort jobs and batch those with similar needs to reduce unnecessary s¢
time
- A resident monitoprovides “automatic job sequencing”: it interprets
“control cards” to automatically run a bunch of programs without huma
intervention
® Advantage
- Good utilization of machine, (jargon: high throughgabs per second)
® Problems
- Loss of interactivity (unsolvable)
- One job can screw up other jobs, need protection (solvable)

CSs126 23-6 Randy Wang

Phase 2: Interactive Time-Sharing
(Cheap Hardware, Expensive Humans)

* How things work
- Multiple cheap terminals for multiple users per single mac

- OS keeps multiple programs active at the same time and
switches among them rapidly to provide the illusion of one
machine per user

* Advantage: interactivity, sharing (collaboration)

* Problems
- Must provide reasonable response tifsed sometimes)

- Must provide human friendly interfaces: command shell,
hierarchical name structure for file systems, @tgvable)

- Higher degree of multiprogramming places heavier deman
protection mechanisiiolvable but hard)

CSs126 23-7 Randy Wang

3tup

hine

don

Phase 3: Personal Computing
(Very Cheap Hardware, Very Expensive Humans)
* How things work
- One machine per person, now several machines per pers
- Initially, OS goes back to “square 1” (like those of Phase (
- Later added back multiprogramming and memory protecti

- Better response time
- Protection becomes a little easier
* Problems
- How do you share information? (sill not solved)
* What's next? Networked ubiquitous computing?
- Much of what we will talk about is motivated by the Phase

on

)

on
* Advantages

0-3
historical developments.
- Is the next phase fundamentally different? What kind of OS do
we need then?

Randy Wang

Technology Advances Determine OS

1981 1999 Factor
MIPS 1 1000 1,000

$IMIPS $100K $5 20,000
DRAM Capacity 128KB 256MB 2,000
Disk Capacity 10MB 50GB 5,000

Network B/W 9600b/s 155Mb/s 15,000

Address Bits 16 64 4

Users/Machine 10s <=1 <0.1

CS126

23-9

Randy Wang

Outline

* introductions

* History

* General mechanisms
* Process management
°* Memory management
* File systems

* Conclusions

CSs126 23-10 Randy Wang

Dual-Mode Operation

Application

User Mode Standard Library

Kernel Mode

Operating System

* The machine has two modes of operation: user rmade
kernel modgalso called monitor mode, supervisor mode,
system mode, privileged mode)

* Divide all instructions into two categories: unprivileged
and_privileged instructions

* Users can’t execute privileged instructions

* Users must ask the OS to do it on its behalf: system calls

* The OS gains control upon a system call, switches to
kernel mode, performs service, switches back to user
mode, and gives control back to user

CSs126 23-11 Randy Wang

Interrupts (cont.)

Interrupt-Driven Operation

* Everything the OS does is interrupt-driven

* An interrupt stops the execution dead in its track, control is
transferred to the OS

*The OS saves the current execution contertemory.
These include the PC, the registers, and other stuff (later)

* The OS figures out what caused the interrupt

* Executes a piece of code (interrupt handierandle this
particular type of interrupt

* Loads some execution context (possibly the one saved
before the interrupt, or possibly some other saved one) and
resumes execution

CSs126 23-12 Randy Wang

user program A operating user program B
system

interrupt or SVC

execu[ingl /—\
ST

save registers

‘ ; FN idle

reload registers I ‘

interrupt or SVC

/\5_

I save registers ‘

- idle :
'a executing

™
,

. C > dle

S reload registers ‘

z:xccu[{ngI '_/

Interrupt-Driven Operation (cont.)

* Everything the OS does is interrupt-driven

* System call: when user asks service from OS
*When a device needs attention
* (Periodic) timer interrupts

* Program errors or “abnormal conditions”, such as illeg
instructions or attempts of referencing illegal memory
addresses

* More examples which we will see later...

CSs126 23-14 Randy Wang

Close Interaction Between
Architecture and OS

*The TOY architecture, as it is, is not sufficient to suppc
even a minimum OS

* Dual-mode operation and interrupts are a good examp
how architects and OS writers must work together to b
a working “system”

* We will see more examples of this dialogue

CSs126 23-15 Randy Wang

al

DIt

le of
uild

What Next?
* What next?
- Process management: a virt@@U for every user, and
indeed, every program
- Memory management: infinite and safemory for every
program
- File system: make files and directories outlisk blocks
* What features are we shooting for for each of these?
- Higher level (nicer) abstractions
- Fairness
- Protection
- Sharing
* What commonstrategiesdo we employ?
- Chop up resources into small pieces and allocate them at this
fine-grain level: time quantum, memory pages, disk blocks
- Introduce levels oihdirection: users use logical names which
are translated into physical names
- Use pashistory to predict future behavior for optimizations

)

CSs126 23-16 Randy Wang

Outline
* Introductions
 History
* Generalmechanisms

* Process management
- A process is a running program

- There are many of them
- How do we create the illusion that each has its own CPU?

°* Memory management
* File systems
* Conclusions

CSs126 23-17 Randy Wang

Context Switches

Life Cycle of a Process

T — Bl
new i
running halted

e -

waiting

* Running: instructions are being executed

* Waiting: the process is waiting for some event to occur
(such as an I/O completion)

* Ready: the process is waiting to be assigned to a processor

CSs126 23-18 Randy Wang
USEr prograim A Upcraliﬂg USEr program B
S}'S[t‘,ﬂ?

-

interrupt or SV

execu[ingl/—\
AT

™~ save registers

‘ . D > idle

reload registers J

I}’ idle executin
! interrupt or SVC &
l/\._ 7
1 save registers | : b
i
| . :
' > idle
L]
e ; |
g reload registers I J

execu[ingI ‘_/

Process Scheduling

*We have a whole bunch of processes that are ready to run
* Which one do we run next?
* The answer depends on what you're trying to optimize for

* In the following discussion, suppose
- We are interested in minimizirayerage wait timeof each,
- and we have the following processes

Process Burst Time
1 10
2 29
3 3
4 7
5 12

CSs126 23-20 Randy Wang

First-Come-First-Serve vs. Shortest-Job-First

process | process 2 Sen [m::""“ process 5
=H
10 39 42 49 61
;fm process 4| process | | process 5 process 2
=
3 10 20 32 g

* Sum of running time of all processes are the same for two strategies

*FCFS
- Average wait time of processes: (0+10+39+42+49)/5 = 28
- What's wrong: short processes getting stuck behind long ones

* SJF
- Average wait time of processes: (0+3+10+20+32)/5 = 13
- Provably optimal!
- Problem: we can't predict how long a job will take

* What happens when you run an infinite loop?

Round-Robin Scheduling

process
4

process 5 process 2 w| process 2

3

process 1 process 2

process

10 20 23 30 40 50 52 61

* Divide up time into_ quantum@.0 in this case)
* Timer set to interrupt at the end of each quantum
* Two things can happen during a quantum
- The process finishes before the timer goes off, OS picks someone else

- The process doesn’t finish by the end of the quantum, OS suspends this process
and pick someone else

® Average wait time of processes in this case: (0+32+20+23+40)/5 = 23, thisis in
between FCFS and SJF

* Infinite loops are not a problem!
* Quantum length is an important consideration for performance

Outline

Introductions

 History

- General-mechanisms
° Precessmanagement

* Memory management

* File systems
* Conclusions

CSs126 23-23 Randy Wang

TOY Memory Problems

* Problem 1:

- Can’t run two instances of the same program simultaneously!

- Why? Consider the instructiomem[0x30]<-rl

- Two people modify the same memory location at the same

time
* Problem 2:

- How do you make sure other people don’t accidentally or

maliciously change or snoop your memory?

* Problem 3:
- Can’'t access more than 256 words of memory

* There are many hacks around these and many other

memory management problems, but it turns out_that virtual
memoryprovides a common elegant solution to all of them

CSs126 23-24 Randy Wang

Virtual vs. Physical Memory Add
— logical physical
address address

; BEEETA

resses

physical
MEemory

page table

Basic Idea Behind Virtual Memory

* Basic idea
- Programs don’t (and can’t) narpéysical memory

addresses
- Instead, they usertual addresses each process has its own

memory

- Each virtual address must be translated to physical address
before the memory operation can be carried out

* Why does this fix our problems? Considem[ox30]<-r1

- We can run two instances of the same program, because

Is only a logical name that can be translated to different

physical locations, and each process has its own trans. ta

- One person can't hurt another because he can’t see or ust

people’s page table (he can't touch others’ 0x30)

- We can run program that uses more physical memory th

0x30

ble
> other

nwe

have because we can name a huge amount of virtual memory,

not all of which fit in physical memory (can name OxF9AB

CSs126 23-26 Randy Wang

Paging

* Basic idea: allowing remapping of memorynaird
granularity is too much trouble
* So only remap gtagegranularity:
- Divide up memory into blocks that are called pages
- Each virtual page can be placed in any physical memory {
- Each translation involves two steps:
+ Decide which physical frame holds the logical page
+ Decide where the address is inside page (the offset)

+ The physical address is formed by gluing together the
physical page number and the offset

rame

Randy Wang

CS126 23-27

e Paging Example i
1
2:1c physical memory
3 i ’ ® Each process haf, its own page tabIF 4] i
3 i)
6| 8 i k
71 h ('> I
81 i 0| 5 g m
b 6 | 5
10| k | %1 :
i
5 Tm 211 12
131 1 3| 2
14 | o
15| p
page table 16
logical memory
* 4-byte pages »
* Consider the virtual address;$31011, S0l a
® Chop it into two parts b
- Virtual page number =10, c
- Offset within page g=11, d
* Look up the page table and find th age 24| ¢
2 is stored at physical pag f
* The physical address ig#0111, 7
28

Loc

)k up the page table%ﬁ@imtﬁgt Q}%Iél page

* If we can't fit all the virtual memory in physical memory
we need to temporarily stash some pages on disk

* To optimize performance, we need to decide which ones to
toss out and which ones to keep, this is called page

replacement
* The provably optimal strategy:

- Replace the page which will not be needed for the longes
period in the future

- Problem: requires prediction of future, which is impossible
* Many heuristics used in real life
- One of the most popular ones is LRU: |least recently used

—F

)

CS126

23-29 Randy Wang

Outline

Introductions

* History

- General-mechanisms
° Precessmanagement
* Memery-management
* File systems

* Conclusions

CSs126 23-30 Randy Wang

Storage Hierarchies

e Each lower level is

| registers | slower
_ l - bigger,
{ cache [- farther away, and
7'y ' - cheaper
[L * Who manages what
rr:emory (- registers: compiler
l - cache: hardware
- memory: OS
disks] - disk: OS
T * The performance of lower
level is becoming

magnetic tapes increasingly important

A T

Storage Hierarchy Latency oy Jim Gray)

Andromdeda
109 Tape /Optical 2,000 Years
Rahot
ul
ig 10~ Disk 2 Years
&
Q
LQ
O
100 Memory 1>hr
10 On Board Cache This Campus 10 min
2 On Chip Cache ~—mmm NiS ROOM
1 Reqgisters My Head 1 min

® And the “universe” is expanding -- farther things are getting farther faste

[

CSs126 23-32 Randy Wang

Have You Ever Opened Up a Disk Drive?

isk Drive Basics

Disk Drive

ng Thin Film Disk

CSs126 23-33 Randy Wang

Have You Ever Opened Up a Disk Drive? (cont.)
State-of-art (1999):

Read/Write Head * Rotation speed:
10,000 RPM
Upper Surface * Capacity: 50 GB
Platter * Bandwidth:
Lower Surface ~20MB/s
* Average latency:
~10ms

* Improvement:
both capacity and
bandwidth are
increasing at the
rate of about 50%
per year!

Actuator

Levels of Abstractions

* Inside the disk: things are complicated

* Abstraction exported by the disk to the operating system:
an array of blocks, which are called sect&®&? bytes each

* The abstraction exported by the operating system to the
user: directories and files

* In reality, the abstraction isn’t quite as clean: problem:
disks have non-uniform access time and we need to worry
about where things sit

CS126 23-35 Randy Wang

Unix File System Internals

/ \ name i-number

58

. 7

. 25
directory foo

bar 37

\/

i-number| attributes| pointers

24 | ... | .. F»

25 | .. e
26 | .. | oo
27 |

—_ file blocks
i-node table

e ——

CSs126 23-36 Randy Wang

Outline

ntroductions

* History

- General-mechanisms
* Processmanagement
* Memeory-management
- File-systems

* Conclusions

CSs126 23-37 Randy Wang

Common Strategies

* Chop up resources into small pieces and allocate then
thisfine-grain level: time quantum, memory pages, dis
sectors

* Introduce levels oindirection: users use logical names

which are translated into physical names: virtual memory

addresses, file system directory names, inode number

* Use pashistory to predict future behavior for
optimizations: CPU scheduling, memory replacement,
disk block allocation

CSs126 23-38 Randy Wang

Challenge to OS Designers:
Distributed Systems

Someexample problems for each of the areas we looked at

* CPU scheduling: it can be proven that optimal schedu
for multiple CPUs is NP-complete!

S, ...

and

ing

* Memory management: how to form a giant global memory

to cache, for example, web pages?

* File system: how to gain access to your files anywhere
time?

* How to provide security and reliability for all these
resources?

CSs126 23-39 Randy Wang

any

A More Fundamental Question: Do We
Need to Reexamine How We Make OSes

V)

* Much of everything in OS we looked at is inherited from
the historical development omultiprogramming

* Some predicted that the PC revolution would kill OSes,
didn’t happen, we ended up “going back to the future”

* |s the next wave fundamentally different?
* Or are we doomed to “going back to the future” again?

CSs126 23-40 Randy Wang

AY/

What Does Java Have To Do with All This’
From NY Times article, May 25, 1998

¢« “necessary to fundamentally blunt Java momentum” in order
“to protect our core asset, Windows" - Paul Maritz, a Microsoft
group vice president

» “Strategic Objective: kill cross-platform Java by growing the
polluted Java market.” - internal Microsoft planning document

* JVM provides far more than simple portablity

* [t manages resources, provides security, and provides
sharing

*So it’s in effect arDS!

* Intriguing: fundamentally different way of providing
protection: at language level
- Java:s/w based protection based pe safety of objects
- Virtual memory:h/w protection based gragesof memory
- Can you tell which is better??

CSs126 23-41 Randy Wang

Meta-Advice: Stay Broad

* The developments in OS are a perfect example of why you
want to stay broad, as this class is

* Why don’t you just teach me programming?

- Robot programmers never get to define the future

- Robot programmers die along with obsolete systems
* Today there is a shortage of 25-year old engineers, and a

surplus of 45-year-old ones. Why? How do you make sure
that you don’t become a surplus when you're 45?

CS126 23-42 Randy Wang

