CS 126 Lecture S1.;
Introduction to Java

“Systems” Part of the Class

* What is the “system”™?
- Loosely defined as anything that’s not your application

* Why should you care?

- Learn more about the pieces that constitute a large part of
daily computing life: compilers, operating systems, ...

- The boundaries between the different pieces are becomir

Increasingly fussy in this age, so an “application” can have

elements of compilers and OS built in.

- For example, a browser that has a Java Virtual Machine g
Just-In-Time compiler built in is simultaneously an applicat
a compliler, and to some extent, an OS!

- Synthesis of much stuff that we learned about programmi
hardware, and theory

CS126 20-1 Randy Wang

your

19

| =4

\nd a
on,

ng,

Roadmap

* S51-S2: Java

- More like a continuation of the programming part of the cl

- S0, really, it's an excuse to teach you some Java :-)

- But, there is a profound connection between Java and O3S
we shall see: fundamental question of how to structure a
system in terms of issues such as protection. So Java is f;
more than just another programming language

* S3: Compilers

- A good meeting place of three previous pieces: programn

hardware, and theory
* S4: Operating systems
- The missing link between hardware and applications

CS126 20-2 Randy Wang

asSs

5, aS

Al

ning,

Outline

* Introduction
- History
- Javavs. C
- How to learn

* The basics
* Object-oriented niceties
* Conclusions

CS126 20-3

Randy Wang

History

* Bill Joy and Sun
- BSD god at Berkeley
- Founding of Sun (early 80s)
- “The network is the computer” (a little ahead of its time)
- Missed the boat on PC revolution
- Sun Aspen Smallworks (1990)
* James Gosling
- Early fame as the author of “Gosling Emagdiled by GNU)
- Then onto Sun’s “NeWS” window systeRilled by X)
- Lesson 1: keeping things proprietary is kiss of death
- Lesson 2: power of integrating three things:
+ an expressive language
+ network-awareness, and
+ a GUI (graphical user interface)

CS126 20-4 Randy Wang

History (cont.)

* Joy and Gosling joined forces, FirstPerson, Inc. (1992

- Targeting consumer electronics: PDASs, appliances, phone
with cheap infra-red kind of networks

* Need a language that’s small, robust, safe, secure, wir

- Started working oiC++--
- Soon gave up hope, decided to start from scratch

* Again, a little ahead of its time
- PDAs died with the demise of Apple Newton
- Switched to interactive TV (ITV)
- The resulting language was called “Oak”
- Then ITV died too

* The net exploded in 1993
- Oak became Javal!

CS126 20-5 Randy Wang

s all

ed

History (cont.)

* Many success stories in CS
- Very much like what we said about Unix
- Not a technological breakthrough

- All of the features of Java were present in earlier research
systems

- The “genius” lies in the good taste of assembling a small and
elegant set of powerful primitives that fit together well and
tossing everything else!

* Luck helps a lot too!

CS126 20-6 Randy Wang

Java vs. C

e Comparison inevitable, but...

*“Java is best taught to people not contaminated by C”
- Important to “think Java”, instead of “translating C to Java”

* Similarities between C and Java are skin-deep
- Syntatic sugar to make it easy to swallow
- Terseness is good
- Underlying philosophies are like day and night

e Theme of this class: levels of abstraction
- C exposes the raw machine
- Java hides a lot of it

CS126 20-7 Randy Wang

Java vs. C (cont.)

* Bad things yowan do in C that yogan'’t do in Java
- Shoot yourself in the foot (safety)
- Others shoot you in the foot (security)
- Ignoring wounds (error handling)
* Dangerous things yaduave todo in C that youlon't in
Java
- Handling ammo (memory management: malloc/free)
* Good things that yogan do in C but you don'’t; Java
makesyou
- Good hunting practices (objected-oriented methodology)
* Good things that yooan'’t do in C but yowan now
- Kills with a single bullet (portability)
* An interesting lesson in abstraction (and politics?): ma
things better by “taking away” power
* [We will revisit these differences after we learn more akl
Java]

CS126 20-8 Randy Wang

King

Dout

How to Learn

* The best language to learn on-line, which is the best way to
learn Java!

- http://www.javasoft.com

- http://java.sun.com/docs/books/tutorial/index.html
- http://java.sun.com/products/jdk/1.1/docs/api/packages.html
- http://java.sun.com/products/jdk/1.2/docs/api/index.html

e Start with existing code, read code, read docs

* Experiment by making small changes and adding
functionality progressively

* My personalbpinion: learning a second programming
language in a class a waste of time :-)

* So, It’s really just a highlight

CS126 20-9 Randy Wang

Outline

{rtreduction
* The basics
- First Java program and tools of trade
- Classes, methods, and objects
- Arrays
- “Pointers”
- Libraries

* Object-oriented niceties
* Conclusions

CS126 20-10

Randy Wang

Your First Java Program

mocha:tmp% cat > hello.java

class hello {
public static void main(String[] args) {
System.out.printin("Hello World!");

}
mocha:tmp% javac hello.java

mocha:tmp% Is hello.*
hello.class hello.java

mocha:tmp% java hello
Hello World!

* Source file: hello.java ”

* Java compilerfavac

* Byte code: hello.class ”

* Java interpretejava

* Can install JDK on any machine, including your PC
* Other tools in JDKjdb , javadoc

CS126 20-11 Randy Wang

Compiling vs. Interpreting

compile

run

gcc native binglrguct:ode - harg\ﬁlﬁre
C code :
compile
hello.c native binary code run
<— hardware
gce a.out PC
L MEPe finterpreter | 4" fhardware
java code compile byte code java Sun
hello.java javac pello.class |gMePrEt finterpreter 1N [hardware
J - |
java PC

* Interpreter: a level of abstraction: the “virtual machine’

* The advantage of interpreting is beyond portability

* A convenient place to exercise all sorts of control

* Disadvantage: slower

CS126

20-12

Randy Wang

Classes, Methods, and Objects

public class MyStack {
Object[] items;
int n;
public MyStack() {
items = new Object[1000];
n=0;

}
public void push(Object item) {
items[n++] = item;

public Object pop() {

import MyStack;

class StackTest {
public static void
main(String[] args) {

MyStack s = new MyStack();

s.push(“first");

s.push("second");

s.push("third");

while (!s.empty())
System.out.printin

return items[--n]; (s.pop();
public boolean empty() { }
return n == 0;
}
MyStack.java StackTest.java

® (Don't need to understand everything in this code, yet)
® A program is a sequence of classes (no .h files!)

® A classis like a struct, one difference: methodperations that act on the data

that makes up the class

® A methodis like a function. (Note how they are invoked.)
® An objectto a_classn Java is like a variable to a type in C

CS126

20-13 Randy Wang

More Thoughts/Detalils on This Example

public class MyStack
Object[] items;
int n;

import MyStack;

class StackTest {
public static void
main(String[] arg

public MyStack()
MyStack s = new MyStack();

sAush("first");
publlcvodpush(ObJect ite .push("secong@”);
items[p++] s.push("third"

}
MyStack.java StackTAstjava

® Other than the primitiveféjch as, ghar booleang@lpvariables are objects
® Concepts of object declaraticallocation and a constructor
® How to design a Java program: think objects!

- What objects do | break the problem into?

- What operations do they allow?

- How do | implement them using even smaller objects?

CS126 20-14 Randy Wang

ArrayS (still same example)

public class MyStack {
Object[] items; -

p declaration

int n;

public MyStack() {
items = new Object[1000];
n=0;

}
public void push(Object item) {
items[n++] = item;

public Object pop() {
return items[--n];

public boolean empty() {
return n == 0;

}

-

— - allocation

MyStack.java

® Arrays are first class citizen of Java.

® No other back-doors of accessing them, for example, no pointer arithme

® Array reference bounds are checked at run time
- No seg faults possible, tremendous help in reducing headaches
- Also important implications for safety, security, and encapsulation

tic

CS126

20-15

Randy Wang

Pointers anc

Linked List

class MyNode {
Object item;
MyNode next;

MyNode(Object item,
MyNode next) {
this.item = item;
this.next = next;

}
}

public class MyStack {
MyNode list = null;

public MyStack() {}
public void push(Object item) {
list = new MyNode
(item, list);

}

public Object pop() {
Object obj = list.item;
list = list.next;
return obj;

}

public boolean empty() {
return list == null;

}

® Officially no pointers anywhere, behind the scene, each object is a point
called a referen¢epeciahull

}
MyStack.java

reference part of language

® No pointer arithmetic, nd, no->, nofree() , no pointer bugs, no pain
® Reimplement stack using a linked list
- push() code tricky: it allocates a new node, made by calling the

constructor, which puts the old list head into the next field of the new nq

er,

pde.

CS126

20-16

Randy Wang

Java Libraries (Packages)

* Hugenumber of pre-written libraries
* Always check before you reinvent something of your o

* Watch out for version differences
- http://java.sun.com/products/jdk/1.1/docs/api/packages.ht
- http://java.sun.com/products/jdk/1.2/docs/api/index.html

- Reading these docs is a major part of learning/programm
Java

- Get a big picture of what they are but read details on-demn
* 1.2 Is a significant improvement, for CS126, the “java.L

library has everything you can ask for: linked list, stack

* On the next slide, | will give a third implementation of t
stack using a library clasgectoris an array that doesn’t
require you to pre-specify a size and doesn't fill up!

CS126 20-17 Randy Wang

wWn

ml

ng

land

1til”
S, ...

he

Example Use of Library

import java.util.*; = = Sort of like #include
public class MyStack { _ _
Vector items; = p Vector is a class implemented
public MyStack() { by the java.util library,
items = new Vector(); calleda package
}
public void push(Object item) {
items.addElement(item); -
}
public Object pop() {
int end = items.size()-1; -
Object obj = items.elementAt - All of th :
(end); implemented by the package
|tems.removeEIe(r:r<]aCrI1)tA t - You find out about them by
return obj: ’ reading the documentation,

}

public boolean empty() {
return items.isEmpty(); -

}

which you can download as
a whole or read online.

MyStack.java

CS126

20-18 Randy Wang

Outline

* Introduction

* The basics

e Object-oriented niceties
- Inheritance
- Encapsulation

- Code reuse
- Multiple implementations

e Conclusions

CS126 20-19

Randy Wang

Inheritance

public class MylmprovedStack extends MyStack { Inherits everything

ic Obj from MyStack
puﬁh(c;(il::)]%():t{pop(Overwrites old rom Hy=tace

return null; implementation

}

return items[--nJ;

}
public Object peek(@ Adds new functionality
f(n<=0){
return null:

}

return items[n-1];

}
}

MylmprovedStack.java

* MylmprovedStacks a_subclasef MyStack

* This example: adding functionality

* Another example use: “specialization”stdentclass
Inherits from goersonclass

CS126 20-20 Randy Wang

Encapsulation and Access Control

\yStack {

publicete
protected OBject[] items;
protected int p;
,q‘_m :Em Stack() {
items = new Object[1000];

n=0;

}
public void push(Object item) {
items[n++] = item;

public Object pop() {
return items[--n];

public boolean empty() {
return n == 0;

}
MyStack.java

® User of this class sees only what he’s allowed to see
® Three key words:
- private : accessible only by this class
- protected : subclasses can see it too
- public : accessible to all
- (additional deals for “packages”, read about them on-line if you care)

CS126 20-21 Randy Wang

Code Reuse

import MyStack;
class StackTest {
public static void main(Stu
MyStack s1 =
s1.push ("first");
while (Is1.empty()ySystem.out.printin(s1.@p());

while ('s2.empty()) System.out.printin(s2.pop()\;

} But different things in the stacks

Same code, same type

StackTest.java

* This example: no need to write different codes for stag

Strings and stack of Integers

CS126 20-22

Randy Wang

k of

Multiple Implementations

import MyStack;
import MyArrStack;
import MyListStack;
class StackTest {
public static void mat

Common interface

s.push (“first"

, S.p "sef®nd”);
while (Is.empty()) System.out.println(s.pop());
- ~Different implementations
s = new MyListStack(); g
S.push ("first";; lp'l:l?ﬁts. ;:;second");

while (Is.empty()) System.out.printin(s.pop());

StackTest.java

* As long as a common interface is agreed upon
* We can pick and choose different implementations
* How’s this done? Next slide...

CS126 20-23 Randy Wang

Abstract Classes

public abstract class MyStack {
public abstract void push(Object item);
public abstract Object pop();
public abstract boolean empty();

}

MyStack.java

import MyStack;
public class MyArrStack extends MyStack {

MyArrStack.java

import MyStack;
public class MyListStack extends MyStack {

MyListStack.java

* Abstract classes specify interfaces, no implementation
* Implementations inherit abstract classes and fill in

Implementation detalls

CS126 20-24

Randy Wang

Outline
- Introduction
- Fhebasies
. Obi . nicatios

e Conclusions

CS126 20-25

Randy Wang

Java vs. C (Reuvisit)
* Bad things yowan do in C that yogan'’t do in Java

- Shoot yourself in the foot (safety)
- Others shoot you in the foot (security)
- Ignoring wounds (error handling)

* Dangerous things yaduave todo in C that youlon't in
Java

- Handling ammo (memory management: malloc/free)

* Good things that yogan do in C but you don'’t; Java
makesyou

- Good hunting practices (objected-oriented methodology)
* Good things that yooan'’t do in C but yowan now
- Kills with a single bullet (portability)

CS126 20-26 Randy Wang

Closing

* These are highlights, by no means complete

* Best way of learning
- Study the tutorial online
- Read and experiment with existing code
- Read docs

e | don't expect people to memorize or be able to
reproduce syntatic details

* | do expect people to be ablerad andunderstand
given code and concepts discussed

CS126 20-27 Randy Wang

