CS 126 Lecture T5:
Algorithm Design/Analysis

Second Midterm Stats

Mean: 318.8 26.4%
Median: 39.5
20.5%
126%
9
|7 3% 2 5%
. - [|
20 20+ 2 30+ 35+ 40+ 45+ 50,

F D C B H A+

CSs126 18-1 Randy Wang

Outline

* |ntroduction

* Insertion sort: algorithm

* Insertion sort: performance
* Quick sort: algorithm

* Quick sort: performance

* Conclusions

CSs126 18-2 Randy Wang

Where We Are

°T1-T4:
- Computability : whether a problem is solvable at all
- Bad news: “most” problems are not solvable!
*T5-T6:
- Complexity: how long it takes to solve a problem

- Bad news: many hard problems take so long to solve that
are almost as bad as non-solvable!

* Today:
- Examplesof “fast” vs. “slow” algorithms

* Thursday:
- Classesof problems depending on how “hard” they are

CSs126 18-3 Randy Wang

they

Algorithm Design Tradeoffs

* Algorithm: step-by-step instruction of how to solve a
problem

* There are usually many different algorithms for solving
single problem

* Goals
- Correctness
- Simplicity (elegance, ease of programming and debuggin
- Time-efficient
- Space-efficient
- Other than correctness, the remaining goals are more ofte

than not conflicting ones and can be traded off against ea
other

* We focus on speed here

CSs126 18-4 Randy Wang

How to Solve a Problem “Faster”?

* Wait till next year: bet on Moore’s Law: +60% per year
- Can’t wait till next year
- 1.6 speedup is not enough

* Buy more machines
- 2X machines result in <®speedup
- Requires cleverness to use more machines efficiently

* Buy a faster machine
- Supercomputers are a dying breed
- This option is increasingly converging towards the last op

* Find a more clever algorithm
- Potentially much greater gain than any of the above
- Enables qualitative leaps instead of quantitative crawl

CSs126 18-5 Randy Wang

~NJ

tion

Example Problem: Sorting

* Problem: Given an array of integers, rearrange them sc
they are in increasing order

* Of great practical importance in databases
* Important “data-intensive” benchmark (more on this la

CSs126 18-6 Randy Wang

Outline

ntreduction

* |Insertion sort: algorithm

* Insertion sort: performance
* Quick sort: algorithm

* Quick sort: performance

* Conclusions

CSs126 18-7 Randy Wang

) that

ter)

“Cat Sort” Demo

CS126 18-8 Randy Wang

Insertion Sort

Each iteration of the outer loop EXAMPLE
sorts everything to the left of onefe&—a-—sS{O)YR T 1 E X AMPLE
array element a[i]. e T

Each iteration of the inner loop
compares this element to an
element to its left ().

By repeatedly swapping adjacen
pairs from right to left, we put
this element in its right spot at
the end of the iteration.

awiL

void inslertion(Item af[], int 1, int r)
{ imnt|di, 3J;
or] (i = 1+1; i <= x; i++)

or (j = 1i; 3 > 1; j--)

compexch%a[j—lll&a[j]);
} 4——"—J

The Rest of the Code

void
compexch (int *a, int *b) {
intt;
if (*b <*a) {
t=*a;
*g = *b;
b=t

}

* The course packet uses macros (#define), not wrong,
bad idea--bad style, for many reasons, don't follow it.

CSs126 18-10 Randy Wang

Outline

* Introduction

* Insertion-sortalgerithim

* Insertion sort: performance
* Quick sort: algorithm

* Quick sort: performance

* Conclusions

CSs126 18-11 Randy Wang

but

How Many Comparisons?

OcomparisonforAn RTINGEXAMPLE

1 comparison for S A RTINGEXAMPLE

2 comparisons for A O 5 TINGEIXAMPLE

3 comparisons for “P@l NGEXAMPLE

4 comparisons for T RSTINGEXAMPLE 5'

. AIlORSTNGEXAMPLE |3

e AINOCRSTGEXAMPLE |
AGINORSTEXAMPLE (2
AEGINORSTXAMPLE |o
AEGINORSTXAMPLE |3
AAEGINORETXMELE |3
AAEG I MNORSTXELE |U
AAEGlan&}\HE'f:{LE
AAEGI LMNOPRSTIEXTE

N-2 comparisons for M Ew T T T T W R o PRS0 x

N-1comparisonsfor X4 £ E & | | M N OB H 1:1_1_@'

* Total comparisons: 0+1+2+3+...+4(N-1) = (N-1)*N/2

CSs126 18-12 Randy Wang

Essential Description of Running Time:
Big-O Notation
N2 N

* Insertion sort take§g%2 =55 comparisons

* N/2 grows much slower than’k®, so we can toss that

* The constant 1/2 is affected by the details of a machin
which are not essential either.

*We are left only with N
*We say the complexity of insertion sortdgN?)

*What is it good for? for example,
- If we increase the size of the problenX10
- We increase the running time 200

e,

CSs126 18-13 Randy Wang

More Examples of Growth Rate ofO(N?)
o insertion sort time is O(N~2) “n
¢ takes about 1 sec for N = 1000
» how long for N = 10000 ? -

about oo times as long (10 sec)

« how long for N =1 million ?

another factor of 104 (11 days)

+how long for(N = 1 billion)?

another factor of 1076 @

CSs126 18-14 Randy Wang

Outline

ntreduction
Insertion-sort—algorithm

* Insertion-sort—performance
* Quick sort: algorithm

* Quick sort: performance

* Conclusions

CSs126 18-15 Randy Wang

Demo Recursive Quicksort:
Divide-and-Conquer

& Pivot element
* Pivot element t Pivot element
Recursively Recursively
Finigh it Finish it

CS126 18-16 Randy Wang

Quicksort Example

To sort an array, first divide it so that
* some element ali]l is in its final position
* no larger clement left of i
* no smaller clement right of i

Then sort the left and right parts recursively

- |
AampP L(E)
s M P

I N G
N G

E X
O X

W

AAEEGILMNOTPRSTX

Partition Demo
ASORTINEUZXAMEPTL

}‘!‘91;“ -4t 11 e

< E2|EPx E2|E?

AAORTINEZXSMPLE

pr———rt

> RK? <ERE?

AAERTINOXSMPULE

f ~
<E #E?: E2|Ax E?

AAE@TINOXSMPLR

Cs126 18-18 Randy Wang

P

(Partitioning j

To partition an array, pick a por-ti'fiohihg elemen-
* scan from right for smaller clemendt

scan from left for larger clemen+t
g c<hange
/::pe.n-r until pointers cross

A S ORT I NGEJXAMP L®E

@®€_|NGOXSMPLD

A
£ € =

Partitioning Implementation

int partition(Item a[], int 1, int r)

y: partitioning element ¢

it left-to-right pointer
J: right-to-left pointer

int i, j; Item v;
v = al[r]l; 1 = 1-1; j = r;
for (;:;

Scan from left

while (al[++1i] < v) ;
while (v < al[--31)
if (j == 1) break;

Scan from right

Stop scanning if pointers cros

if (i >= j) break;
Swap > exchtalil,&aljl);

}
Put the pivot in place————— exch&a[i] ,&alr]);

return 1i;

Quicksort implementation J

e N

cksort{lnt @il 10t 1, 16t %)
{
int i;
if (r > 1)
{
i = partition(a, 1, r);
quicksort(a, 1, i-1);
quicksort(a, i+l, r);

} i —

Outline

ntroduction

* Insertion-sortalgerithm

* Insertion-sort—performance
« Quic! . alaorit

* Quick sort: performance

e Conclusions

CS126 18-22 Randy Wang

How Many Comparisons?

Each patrtition is linear scan:O(N) -

Can divide O(logN) times

Pivot element

Prvot element L

y 3 }

Recursively Focursively
v Finish it Fimnish it

| Piviot element |

4

* Quick sort isSO(N*LogN)

CS126 18-23 Randy Wang

So What Doe<O(N*LogN) Mean in Time?

Qs

ru’nning time for N = 100,000
about .4 seconds

how long for N = 1 million ?
slightly more than 1o times (about ¢ sec:

Whereas insertion sort would take 108, or 40 sec

CSs126 18-24 Randy Wang

Outline

~Introduction

- Insertion-sort-algorthim
Insertion-sortperformance
« Quie! . alaoritl

- Quick-sort—performance

e Conclusions

CSs126 18-25 Randy Wang

(Sorting analysis summary J

Good algorithms
are {(*more powerfulx) than supercomputers

Ex: assume tha+t
home PC executes 1008 comparisons/second
supercomputer does 10”12 comparisons/second

Running time estimates

thousand million billion
Insertion sort
home PC instant 2 hours 310 wear:
supercomputer instant 1 sec 1.6 week:
Quicksort
home PC instant .28 sec 6 minute:
supercomputer i instant instant instant

Can We Do Better Than O(N*Log(N))?

* LOWER BOUND for sorting
THM: Al algorithms use) N log N comparison:
Proof sketch:
N! ditferent situations
lg(N!) comparisons to separate them

differ by no more
|9(N” N |9 N than a constant factor

Cs126 18-27 Randy Wang

What's the Real World Like?

* Highly contested “land speed record®aytona vs. Indy
- Daytona: commercially available systems
- Indy: experimental systems

* 1999 sort records
- Daytona Minute Sort: 7.6 GB, SGI 32-CPU Origin
- Indy Minute Sort: 10.3 GB, 60 NT PCs, UIUC/UCSD

* Observations from previous records held at Berkeley:
- The real world is a lot uglier!
- Details hidden in the constant@(c*N*LogN)
- Hard to make a giant cluster appear as a seamless whole

- Difficult challenge for system software to optimize utilizati
of networks and disks

CS126 18-28 Randy Wang

Obsession with Speed

* The obsession with speed is as old as computers, adv
on all fronts

* The sort land speed records are a good illustration

* Theory
- Better algorithms
- New computation models: quantum computing?

* Architecture
- Faster processors
- Faster everything else: networks, disks, ...

* Systems software
- Deliver the potential of the pile of silicon to applications

CS126 18-29 Randy Wang

Oon

ances

What We Have Learned Today

* Sort

- How does insertion sort work? What'’s its complexity? Why is
it s0?

- Same questions for quick sort.
* Complexity

- Given simple/similar code, you should be able to analyze its
complexity. Is itO(LogN) O(N), O(N*LogN) O(NZ), O(N3),
7

- Performance prediction by scaling problem size

CSs126 18-30 Randy Wang

