CS 126 Lecture T1:
Pattern Matching

Outline

¢ |ntroduction

* Pattern matching in Unix

* Regular expressions in Unix

* Regular expressions as formal languages
* Finite State Automata

* Conclusions

CSs126 14-1 Randy Wang

Introduction to Theoretical
Computer Science

* Two fundamental questions:
- Power? What are the things a computer can and cannot d
- Spee® How quickly can a computer solve different classe
problems?
* Approach:

- We don't talk about specific physical machines or specific
problems, instead

- We reduce computers teeneral minimalist abstract
mathematical entities

- We talk aboupeneral classesf problems

* Today: the simplest machine (an FSA) and the class o
problems it can solve

CSs126 14-2 Randy Wang

Why Learn Theory?

*|n theory...
- Deeper understanding of what a computer or computing i

- Pure science: some of the most challenging “holy grails”
(why climb a mountain? because it's there!)

- Philosophical implications
*|n practice... (some examples)
- A sequential circuit: theory of finite state automata

- Compilers: theory of context free grammar
- Cryptography: complexity theories

CSs126 14-3 Randy Wang

0?
s of

—

92}

* Introduction

Outline

e Pattern matching in Unix

* Regular expressions in Unix

* Regular expressions as formal languages

* Finite State Automata

e Conclusions

CS126

14-4

Randy Wang

* Remember what we said about the success of Unix?

Unix Tools

- A large number of very simple small tools

- Unix provides “glue” that allows you to connect them toget

to perform useful tasks effortlessly

* Some of the most important tools have to do with patte

matching:
- grep

- awk

- sed

- more

- emacs

- perl

her

2In

CS126

14-5

Randy Wang

Demos

* Words and partial words
* Which files have the pattern
* Interaction with other commands

CSs126 14-6 Randy Wang

(gres)

general reqular expression pattern matching
© afilter
» stdout gets only those lines from stdin
that "match’ argument string

F 3 EI‘-H‘-“"’H"H llqul.‘!: Any flle names that
end with “.s|”:

“Wildcard” file name
Q“F P cluﬁ@ matching (“glob style”):
Unix shell feature,

not to be confused

ﬂ .

» Poes a file contain a string?

s« Which file contains a string?

¢ Just give me the data of interest...

|: a.out | grep -v D@

[bictionary J

¥ Crossword puzzle or 5crabble too time consuming?

usr/dict/words is list of words in dictionary
15,486 words

Grep and similar tools can be effective aD
“finding” werds

@p hh fusr/dict/words A dot matches
beachhead any character,
highhanded part of grep
withheld syntax, not to be
withhold confused with the

dots in file names

34
@-p ..l ulrfdi-:t.fw;::@
cumulus
|L “man grap’ excerpts _]
Hame

grep = search file for regular expression
Syntax

grep [option..] expression [file..]
Bescription

Commands of the grep family search the

input files (standard input default] for

lines matching a pattern. MNormally, cach

line found is copied to the stoandard sutput.

Taket care when using special characters

in the expression because they are alse mec

to the 5hell It is safest to enclese the ent

txpression arqument in single quotes "
Options

=¢ Produces coeunt of matching lines only.

-2 Produces count of llq'l‘tl\h'l.! lines onky.

=i Considers upper and lowercase letter ide

=n Precedes cach matching line with its ling

=¥ Displays all lines that do mot match.
Restrictions

Lings are limited to 15 chars;

lenger lines are truncated.

e Alse
ex(i), sedlid; shii

Outline

* Introduction

* Pattern-matehing--Unix

* Reqular expressions in Unix

* Regular expressions as formal languages
* Finite State Automata

* Conclusions

CSs126 14-10 Randy Wang

(grep pattern conventions)
conventions for grep:

c any non-special char matches itseclf

- beginning of line

$ end of line

= any single character

Eisd any character in [a-z]

[~...] any character not in [a-z]

r¥ zero or more occurrences of r

r+ one or more occurrences of r

\egrep or grep -E only
e ‘regular expression’
« name for grep patterns
» specific technical meaning in theoretical C5
[stay tuned for precise definition]

® “extended’ regular expressions (grep -E)
(r) grouping or egrep
ri | ra logical or

More Demos

* regular expressions

* egrep or grep -E features
* escape characters

* command line options

CSs126 14-12 Randy Wang

Examples

Ex: Do spell checking by specifying what you know
grep -E 'n(ie|ei)ther’ /usr/dict/wor@

Ex: Search for encoding in genedata directory

—grép -E 'actg(atac) *gcta’ genedata/*
human.data: ggtactggctaggac wrong example
student.data: tatatcaatacatacatacgctattac g

taactgatacatacatacatacgctaat

CSs126 14-13 Randy Wang

(More Examples)

e Find all references to Java

grep ‘[Jjlava’ text .
: . 3reg ~t Java
grep -E ’‘javal|Java’ text
Unix command displaying disk usage

9]1[0-9]1[0-9]1"™

® Find all lines with dollar amounts on them
grep -E ’[$1[0-91+.[0-91%*" myfile)
BUG: matches $7A46. $7.9¢

Ex: fix this bug How to say it if you want a “real” dot?

use an “escape character” in front...
oFind all words with no vowels and é or more let+e

(jgrep -v ’[aeioul’ fﬁéf!dicflﬁo;ds | grep " :;)
rhythm
SYzygy

“Escape” Character

® Matches involving special chars can be complex
Ex: excerpt from “man grep
grep -E '\(*([a-zA-Z]*IM} *\)! my.tx
This command dfsplays fines infmy.txt guch as
(783902) gr (y), but net (al
escape characte

unch ofispaces
bunch of letters

or bunch of numbers but not both

CSs126 14-15 Randy Wang

{ Fattern Matching alternatives in UNIX }

rep
=f "extended’ regular expressions
=f search for muliple patterns

more: (Try it
——
Substitution (editingl, net just matching

gmacs, X (various ways)
sinteractive

sad
—
« filter
¢ line=by=line editing
-~ :
sed ‘8 fapplesforanges g’ :E:.lu::'

awh, perl Pattern matching languages’
* matching
» Substitution
. pattern manipulation
« Yariables
. Mumeric capabilities
= contrel and legic

Testament to Flexibility and Power of
Unix Philosophy

* Simple general tools + glue (scripting, and shell)
* The advantages are being magnified in the age of web

CSs126 14-17 Randy Wang

Outline

~Introduction

* Pattern-matehing--Unix

* Regular-expressions--Unix

* Regular expressions as formal language
- Reqular expression generator

* Finite State Automata
* Conclusions

CSs126 14-18 Randy Wang

Unix vs. Theory

5pecifying "pattern” for grep can be complex
—— . : -
Al*asicou] *a[*asiou] *a[*aeiou] *1

[*aesiocu] *o[*aeiocu] *u[*aeiou] *§

et

What kinds of patterns can be specified?
+» match all lines containing an even number?
» match all lines containing a prime number?

a Which aspects are essential?

* Unix regular expressions aneeful
* But morecomplexthan the theoretical minimum
* But are they any mongowerful? no.

CSs126 14-19 Randy Wang

Formal Languages

* Formal definitions
- An alphabet a finite set of symbols
- A string: a finite sequence of symbols from the alphabet

- A language a (potentially infinite) set of strings over an
alphabet

* Intriguing topic:finite representation of a language
- How?
+ languageyenerators(a set of rules for producing strings
+ languageecognizers
- We will study differentlasses of languagesheir generators

and their recognizers, each more powerful than the previo
ones

- There are even strange languages that fail all these finite
representational methods!

CSs126 14-20 Randy Wang

Why Study Formal Languages

Can cast any computation as a lanquage problem

m——

® 5tart by trying to understand simple lanquages

® Do so by building a machine specifically
designed for the task

CSs126 14-21 Randy Wang

(Bare Minimum) Regular Expression:
Generator Rules

l'\:gulnr Expression
0 or 1 symbols

(a) grouping

ab concatenation

a+b logical or

a* closure (0 or more replications)
where o cmd__b are regular expressions ;
Ex:
Loy

(10)*

(0+011+101+110)*
(01*01*01L*)*

Cs126 14-22 Randy Wang

Regular Languages

Every reqular expression (RE) describes a languag
(the set of all strings that “mateh’)

[Eﬂulnr Language:
= any language that can be described by an RE

(What languages are regular?)

Examples (all but one of the following are rq_gulnr)
——— —

all bit strings °(ar)*|
that begin with ¢ and end with
whose number of ¢'s is a multiple of 5
with more I's than o's
with no consecutive 1I's

Cs126 14-23 Randy Wang

Outline

~Introduction
- Patternrmatehig+H-Unix
* Regular-expressions--Unix
- Regular-expressions-as-formaHanguages
* Finite State Automata
- Reqular expression recognizer and beyond

e Conclusions

CSs126 14-24 Randy Wang

Finite State Automata:
Regular Language Recognizers

[0]0[1[1]0[1]0]Q nputtape

dh O 0
read nea 2
g 7 1
n
26y 2
= 3
s ~— 4
(S —
Simple machine with N states SR

e Start in state o
= read a bit
= move to new state
(depends on bit, current state)
s stop when last bit read
ACCEPT if in specified state X
REJECT otherwise 4

CSs126 14-25 Randy Wang

FSA Example Demo

CS126 14-26 Randy Wang

FSA Example
beginning state read a 1, and
Can kill any number of the string still
these “ears”, and the has a chance

string will still be accepted!
Im@gtr:tant implication later.
a0

_ N
input 101010107
state 013131313 »~

read a 0, and the
string is accepted
if we stop now

dead state

CS126 14-27 Randy Wang

Second FSA Example

Ex: odd number of o's IS
00011107 o)
01011110 ¥

'FsAs and REs are equivalent
[stay tuned]

[

CS126 14-28 Randy Wang

An Application

"Bounce” filter to remove noise from data
[————
e remove isolated o's and 1I's in a bitstream

ingu-r:
0

0 0 0 1 1 11 114
)

outpuy (one-bit delay
<00 0 0 0 1 1 : (SN BN

x/y

CS126 14-29 Randy Wang

Third FSA Example: Add Outputs

if input is x, change state and output y

state [in [out pept
0 ol 0 o
0 1 0]
(5
E A
2 0 3
2 1 Z
3 0 (4]
3 1 1 2

CS126 14-30 Randy Wang

Bounce Filter Demo

G3eisb0e0: 11 =

CS126 14-31 Randy Wang

State Meaning

5tate interpretations
o: at least two consecutive o's
I seq. of o's followed by a i
2: at least two consecutive i's

3: seq. of I's followed by a o

Cs126 14-32 Randy Wang

Fourth FSA Example

Ex: FSA to decide if input is divisible by 3
[magic!?] i

11101010

241 2 010122310
* o is both start and accept state in this F5A

* How does it work?

- Every time we scan one more digits x<<1 +vy

- Equivalent tox = x*2 +y

- Three statesx%3==0, x%3== 1, x%3== 2

- Six transitions:
(0*2+0)%3== 0, (0*2+1)%3== 1
(1*2+0)%3== 2, (1*2+1)%3== 0
(2*2+0)%3== 1, (2*2+1)%3== 2

Cs126 14-33 Randy Wang

(C program to Simulate F5As)

#include <stdio.h> ﬁu“”“\\\

main(int argc, char*argv([])
{

int zero[100], one[1l00]; char c;
FILE *fsa = fopen(argv[l1l], "x"):;
int state, N, accept;
fscanf(fsa, "%d ", &accept):;
for (N = 0; !feof(fsa); N++)
fscanf (fsa, "%d %d ", &zero[N], &one[N])
_Epate = 0;
while ((¢ = getchar()) != EOF)
if (¢ == ’0’) state = zero[state];

else state = onel[state];

if (state == accept) printf ("Accepted ");
else printf ("Rejected "); _‘//

Outline

Introduction

* Pattern-matehing--dnix

* Regular-expressions--Unix

* Regular-expressions-as-fermal-anguages
 Finite State Automata

* Conclusions

CSs126 14-35 Randy Wang

Looking Ahead...

* Regular expressions are very simple languages, and F

are very simple machines
* What kind of languages cannot be expressed by regul

expressions? What tasks can’t be performed by FSAS?.

* Basic idea: because the machine only has a finite nun
of states N, it can’t remember more than N things

* So any language that requires remembering infinite
number of things is not regular

* This is something that we will do a couple more times:
- Define a machine, and understand its behavior
- Find things it can’t do
- Define a more powerful machine
- Repeat until we either run out of machines or problems
- (Hmm... which will we run out first?)

CSs126 14-36 Randy Wang

(A lanquage that is not reqular)

FSAs can't

Theorem: No finite state machine can decide
whether or not its input has the same
number of o's and I's.

CSs126 14-37 Randy Wang

SAsS

ar
?

\ber

A Warm-up Result

* Remember we said we could cut any ear when showing the
first example of FSA?

* More formally, ifa(s)*b _is accepted, theab is accepted

CSs126 14-38 Randy Wang

Proof:
® Suppose an N-state machine does it.
e Give it N+1 o's followed by N+ 1's
* Some state must be revisited
* Machine would accept the same string
without the intervening o's
* That string doesn’t have the same
number of o's and I's
Contradiction.
-F_x_:'
. 00q00000000000/00011111111111111111
. 4 . e X
. &; repeat visits to the same state
i 00000011111111111111111

X

(Need to consider more powerful machines)

What Have We Learned Today

* How to write Unix-style regular expressions

* How to use their associated Unix tools to perform useful
and interesting tasks

*“Formal” regular expressions
* FSAs, how to trace their execution
* Constructing simple FSAs to solve problems

* Understanding the limits of REs and FSAS: being able to
spot what problems they cannot solve (you’ll get better at
this after a few more lectures...)

CS126 14-40 Randy Wang

