CS 126 Lecture T1:
Pattern Matching

Outline

e Introduction

e Pattern matching in Unix

* Regular expressions in Unix

* Regular expressions as formal languages
* Finite State Automata

* Conclusions

CS126 14-1

Randy Wang

Introduction to Theoretical
Computer Science

* Two fundamental questions:

- Power? What are the things a computer can and cannot do”

- Spee® How quickly can a computer solve different classe
problems?
* Approach:

- We don't talk about specific physical machines or specific
problems, instead

- We reduce computers general minimalist abstract
mathematical entities

- We talk aboutieneral classe®sf problems

* Today: the simplest machine (an FSA) and the class o
problems it can solve

CS126 14-2 Randy Wang

s of

f

* In theory...

- Deeper understanding of what a computer or computing i

- Pure science: some of the most challenging “holy grails”
(why climb a mountain? because it's there!)

Why Learn

- Philosophical implications

heory?

* [n practice... (some examples)
- A sequential circuit: theory of finite state automata

- Compilers: theory of context free grammar

- Cryptography: complexity theories

S

CS126

14-3

Randy Wang

Outline

* Introduction
e Pattern matching in Unix

* Regular expressions in Unix

* Regular expressions as formal languages
* Finite State Automata

* Conclusions

CS126 14-4

Randy Wang

Unix Tools

* Remember what we said about the success of Unix?
- A large number of very simple small tools
- Unix provides “glue” that allows you to connect them toget
to perform useful tasks effortlessly

* Some of the most important tools have to do with patte
matching:
- grep
- awk
- sed
- more
- emacs
- perl

CS126 14-5 Randy Wang

Demos

* Words and partial words
* Which files have the pattern
* Interaction with other commands

CS126 14-6

Randy Wang

(grep)

general regular expression pattern matching
s filter
» stdout gets only those lines from stdin
that "match’ argument string

e Elementary examples: Any file names that
end with “.sI™:

“Wildcard” file name
Grep Smiti'-l-ﬂcmlaanslisg matching (“glob style”):

Unix shell feature,

*» Does a file contain a string?

q .
@ gre with grep syntax

e Just give me the data of interest..

{ a.out | grep -v DEBUD

(Dictionary)

¥ Crossword puzzle or Scrabble too time consuming?

usr/dict/words is list of words in dictionary
25,486 words

Grep and similar tools can be effective in
"finding"” words

C;:'ep hh /usrfd:.c:t/wc;rj A dot matches
beachhead any character,
highhanded part of grep
withheld syntax, not to be
withhold confused with theg

dots Iin file nameg

usr/dict/words | wc)

e e U Y

.
== .

grep .u.u.u usr/dict{w;:@

cumulus

L L L
WS e R R

0S|y 22¢
‘P24+O0UNLL 240 SDPUI| 42Bu0]

!S40Yd 95T 04 PILIWI 240 SDUIT

SUO014D14452Y
‘Y24ow jou op oy sauy o shodsiq A-
PUI] S YkiM Ul Buiyspow Yoo SIPd24g uU-
PPl 42442 2S0242M0| PUL 42ddn SAIPISU0)Y 1
‘hjuo sauy Buiyorow 30 Lunod> saonpoayq -
‘hjuo sauy buiysjow jo junod sadnpoayq o-

suoirdp

...nu._.o:_vu_mn_.mn_._.n.uﬁswsu:o_mmu..n_xs
4+UD Y4 2SO|DUD OF 4SDIOS SI 4| ‘||PUS Y4 04
d2W 05|® 240 h2y} 2SN©1>2q u0ISS24dx2d 244 ul

S424d040Yd |01d2ds BuisSn uaym 240> 30|

‘tndino paopuvis ay4 of paidod SI Punoy ul
Yoo ‘hjjowdoN -uazssod o buiyssow saul
404 ($No42p indul paopuvLs) s sndu

244 Y4025 hpwoy d246 244 40 spuvwwon

uo14di4ds2q

[**211}] uo1SS24dxDd [uoipdo] d24b

xotuhg
uo1ss24dxd 4onbad 404 P14 Y5492 - doub

2WON

ﬁ cidiasvs daib uvuw 3

Outline

* lnatroduction
- PatteraAmatehirg-H-dnix

e Reqular expressions in Unix

* Regular expressions as formal languages
* Finite State Automata
* Conclusions

CS126 14-10

Randy Wang

L grep pattern conventions -

conventions for grep:

c any non-special char matches itself
i beginning of line

e end of line

. any single character

[...] any character in [a-2z]

[~...] any character not in [a-2z]

rx zero or more occurrences of r

rte_ _ohe or more occurrences of r
egrep or grep -E only
® ‘regqular expression’
« name for grep patterns
» specific technical meaning in theoretical C5
[stay tuned for precise definition]

® “extended’ regular expressions (grep -E)
(r) grouping or egrep
ri | ra logical or

More Demos

* regular expressions

* egrep or grep -E features
* escape characters

* command line options

CS126 14-12

Randy Wang

Examples

Ex: Do spell checking by specifying what you khow
Egrep -E 'n(ie|ei)ther’ /usr/dict/words)

Ex: Search for encoding in genedata directory
/grep -E 'actg(atac) *gcta’ genedata/*

human.data: ggtactggctaggac wrong example

 student.data: tatatcaatacatacatacgctattac/ .

taactgatacatacatacatacgctaat

CS126 14-13 Randy Wang

(: | M;rf Exfm;:lﬂ.s : J

e Find all references to Java
r [Jjlava’ text
grep -E javalJava' text

R

Umx command dlsplaylng disk usage

grep —E_:[glib—§5+:[0-9]*' m
BUG: matches $7A46.

Ex: fix this bug How to say it if you want a “real” dot?

use an “escape character” in front...
«Find all words with no vowels and é or more let+te

(grep -V '[ae1cu]f fusrfdictfwnrda
rhythm

sYzygy

“Escape” Character

® Matches involving special chars can be complex
Ex: excerpt from "man grep
grep -E '\(*([a-zA-Z]*[[0-9]*) *\)' my.tx
This command dfsplays ﬁinas infmy.txt guch as
(783902) gr (y), but n

i

unch of
bunch of letters

or bunch of numbers but not both

CS126 14-15 Randy Wang

51bo; puo [oajuod -
saitijiqodod d4vwny °
S?|qPi40A
uoisondivow u4aiiod
uoisniissqns
Buiyoow .
s2bonbuv|. Buiys>iow uadLL04 Tj42d RMD

-

mm._“..nm B/sebuero/setdde/s, GMW
Buisip? 2uy-hq-auy ¢
A4} o

pP2s

DA1LODADLUL ¢
T R i T R

(shom snoilioA) x? ‘SoOwW?

Buiysiow snl jou ‘(Buipip?) uoigngipsqng

(i+' hayl) :o40m

Sudd44o0d |dipnu 40} Yd4928 §-
Suoiss24dx?> 4onba4 papurixd . 13-

auLw

XINN Ul SPAILOULDLO Buiydiop uddiivy u

estament to Flexibility and Power of
Unix Philosophy

* Simple general tools + glue (scripting, and shell)
* The advantages are being magnified in the age of wel

CS126 14-17 Randy Wang

A4

Outline

* lntroduction

- PatteraAmatehirg-H-dnix

* Regular-expressionsHr-Unix

e Reqular expressions as formal language
- Reqular expression generator

* Finite State Automata
e Conclusions

CS126 14-18

Randy Wang

Unix vs. Theory

@ Specifying pattern’ for grep can be complex

S e m— —

' A[+Aaeioul]*a[*aeioul] *e[*aeiou] *i
&thhﬁqﬁ [~aeiou] *o[*aeiou] *u[*aeiou] *$

® What kinds of patterns can be specified?
s match all lines containing an even number?
» match all lines containing a prime number?

& Which aspects are essential?

* Unix regular expressions aneeful
e But morecomplexthan the theoretical minimum

* But are they any mongowerful? no.

CS126 14-19 Randy Wang

Formal Languages

* Formal definitions
- An alphabet a finite set of symbols
- A string: a finite sequence of symbols from the alphabet
- A language a (potentially infinite) set of strings over an
alphabet
* Intriguing topic:finite representation of a language
- How?
+ languageenerators(a set of rules for producing strings)

+ languageecognizers

- We will study differentlasses of languagesheir generators
and their recognizers, each more powerful than the previo
ones

- There are even strange languages that fail all these finite
representational methods!

CS126 14-20 Randy Wang

us

Why Study Formal Languages

® Can cast any computation as a lanquage problem

e 5tart by trying to understand simple languages

» Do so by building a machine specifically

designed for the task

CS126

14-21 Randy Wang

(Bare Minimum) Regular Expression:
Generator Rules

Rc:ulnr Exgrtsgign

0 or 1 symbols

(a) grouping

ab concatenation

a+b logical or

a* closure (0 or more replications)

where a and b are regular expressions ,

= B e -

—

Ex:
(10) *
(0+011+101+110)*

(0O1*01*01*)*

CS126 14-22 Randy Wang

Regular Languages

Every reqular expression (RE) describes a languag
(the set of all strings that "match’)

= Ragulqr Lnnﬂunst:

e any language that can be described by an RE

(What languages are regqular?)

Examples (all but one of the following are rtgulnr)

all bit strings 0(5*1)*|
that begin with o and end with |
whose number of o's is a multiple of 5
with more I's than o's
with no consecutive I's

CS126 14-23 Randy Wang

Outline

e Finite State Automata
- Reqular expression recognizer and beyond

e Conclusions

CS126 14-24

Randy Wang

Finite State Automata:
Regular Language Recognizers

O[O[1]1[0[1[0]O0 |inputtape

7O

1
6 4 2
5, 3

read heaa\

finite states

Simple machine with N states SR
e Start in state o
s read a bit
® move to new state
(depends on bit, current state)
* stop when last bit read
ACCEPT if in specified state X
REJECT otherwise o

CS126 14-25 Randy Wang

FSA Example Demo

FSA Example

beginning state read a 1, and

Can kill any number of the string still
these “ears”, and the has a chance

string will still be accepted!
Imegr:tant Implication later.
oo

input 101010107?
state 013131313 »™

read a O, and the
string Is accepted
If we stop now

dead state

CS126 14-27 Randy Wang

Second FSA Example

Ex: odd number of o's &
b
o '
00011107 >
010111730 ¥

FSAs and REs are E.cluivnlth“l‘
[stay tuned] T

| .

CS126 14-28 Randy Wang

An Application

"Bounce’ filter to remove noise from data
e e LS
e remove isolated o's and I's in a bitstream

ingui:
0

0 0 0 131 1 1.1 4
)

output (one-bit delay
<uu 0 -0 0 11 : (SRR o e

x/y

CS126 14-29 Randy Wang

hird FSA Example: Add Outputs

if input is x, change state and output y

CS126 14-30 Randy Wang

Bounce Filter Demo

i1

g

\

e

State Meaning

5tate interpretations
o: at least two consecutive o's
I seq. of o's followed by a |
2: at least two consecutive I's
E seq. of I's followed by a o

CS126 14-32 Randy Wang

Fourth FSA Example

Ex: FSA to decide if input is divisible by 3

s] o 1

o* 0 1

1| 2 o 11101010
20102 01012210 ¢«

* o is both start and accept state in this Fi.ﬁg,;

* How does it work?
- Every time we scan one more digits x<<1 +y
- Equivalent tox = x*2 +vy
- Three statex%3==0, x%3== 1, x%3== 2
- Six transitions:

(0*2+0)%3== 0, (0*2+1)%3== 1
(1*2+0)%3== 2, (1*2+1)%3== 0
(2*2+0)%3== 1, (2*2+1)%3==

CS126 14-33 Randy Wang

i
\ ! (n pPO3DefLey,)Fjutad ssI°
!{(u P®3deodV¥,)F3uTtad (3dedde == 93®3s) IT
{[e23e3sS]ouo = 93B31S 9STO

{[®@3e3s]oxsz = e3e3s (,0, == D) IT
(doF =i (()xeyoasb = D)) OTTUM
Ip = °93e3s
([N]lsuo®m ‘[N]ox=ezZz® ', P% P%a ‘©SJ)IFJuedsI

(++N ‘(es3z)3o®3i ‘0 = N) IOI
f(adeooeny ‘, P%u ‘ESI)IJueDSI

{3deooe ‘N ‘®3e3s JUT
{(uxu "[T]labae)usdoy = e©SIyx HIIA
ID xeyo [o0T]leuc ‘[Q0T]oxez JuT

}
([Jabxeyxeyn ‘DHBie juT)uTtTeuw

<Y° OTP3sS> SPNIOUTH

. e gy e
. et = — -

\\. Evsers At minnite, Al mm ihard A J

Outline

e Conclusions

CS126 14-35 Randy Wang

Looking Ahead...

* Regular expressions are very simple languages, and FSAs
are very simple machines
* What kind of languages cannot be expressed by regular
expressions? What tasks can’t be performed by FSAs?
* Basic idea: because the machine only has a finite number
of states N, it can’t remember more than N things
* So any language that requires remembering infinite
number of things is not regular
* This iIs something that we will do a couple more times:
- Define a machine, and understand its behavior
- Find things it can’t do
- Define a more powerful machine
- Repeat until we either run out of machines or problems
- (Hmm... which will we run out first?)

CS126 14-36 Randy Wang

F5As can't “count”

A Iongungc that is not reqular

Theorem: No finite state machine can decide

whether or not its input has the same
number of o's and I's.

CS126 14-37 Randy Wang

A Warm-up Result

* Remember we said we could cut any ear when showin

first example of FSA?

* More formally, ifa(s)*b _Is accepted, thesb Is accepted

g the

o

CS126 14-38

Randy Wang

Frroei.

® Suppose an N-state machine does it.

e Give it N+ o's followed by N+i 1's

* Some state must be revisited

* Machine would accept the same string
without the intervening o's

* That string doesn’'t have the same
number of o's and I's

Contradiction.

Ex:
. 00¢{0000000000000011111111111111111
. = P =
. T &. repeat visits to the same state
. 00000011111111111111111
. b 4

(Need to consider more powerful machines)

What Have We Learned Today

* How to write Unix-style regular expressions

* How to use their associated Unix tools to perform useful
and interesting tasks

* “Formal” regular expressions
* FSAs, how to trace their execution
* Constructing simple FSAs to solve problems

* Understanding the limits of REs and FSAs: being able| to
spot what problems they cannot solve (you'll get better at
this after a few more lectures...)

CS126 14-40 Randy Wang

