
CS 126 Lecture T1:
Pattern Matching

CS126 14-1 Randy Wang

Outline

• Introduction

• Pattern matching in Unix

• Regular expressions in Unix

• Regular expressions as formal languages

• Finite State Automata

• Conclusions

CS126 14-2 Randy Wang

Introduction to Theoretical
Computer Science

• Two fundamental questions:
- Power? What are the things a computer can and cannot do?
- Speed? How quickly can a computer solve different classes of
problems?

• Approach:
- We don’t talk about specific physical machines or specific
problems, instead

- We reduce computers to general minimalist abstract
mathematical entities

- We talk about general classes of problems

• Today: the simplest machine (an FSA) and the class of
problems it can solve

CS126 14-3 Randy Wang

Why Learn Theory?

• In theory...
- Deeper understanding of what a computer or computing is
- Pure science: some of the most challenging “holy grails”
(why climb a mountain? because it’s there!)

- Philosophical implications

• In practice... (some examples)
- A sequential circuit: theory of finite state automata
- Compilers: theory of context free grammar
- Cryptography: complexity theories

CS126 14-4 Randy Wang

Outline

• Introduction

• Pattern matching in Unix

• Regular expressions in Unix

• Regular expressions as formal languages

• Finite State Automata

• Conclusions

CS126 14-5 Randy Wang

Unix Tools

• Remember what we said about the success of Unix?
- A large number of very simple small tools
- Unix provides “glue” that allows you to connect them together
to perform useful tasks effortlessly

• Some of the most important tools have to do with pattern
matching:
- grep

- awk

- sed

- more

- emacs

- perl

CS126 14-6 Randy Wang

Demos

• Words and partial words

• Which files have the pattern

• Interaction with other commands

Any file names that

end with “.sl”:

“Wildcard” file name

matching (“glob style”):

Unix shell feature,

not to be confused

with grep syntax

A dot matches
any character,
part of grep
syntax, not to be
confused with the
dots in file names

CS126 14-10 Randy Wang

Outline

• Introduction

• Pattern matching in Unix

• Regular expressions in Unix

• Regular expressions as formal languages

• Finite State Automata

• Conclusions

or egrep

egrep or grep -E only

CS126 14-12 Randy Wang

More Demos

• regular expressions

• egrep or grep -E features

• escape characters

• command line options

CS126 14-13 Randy Wang

Examples

wrong example

taactgatacatacatacatacgctaat

Unix command displaying disk usage

How to say it if you want a “real” dot?
use an “escape character” in front...

CS126 14-15 Randy Wang

“Escape” Character

escape characters
bunch of spaces

bunch of letters
or bunch of numbers but not both

CS126 14-17 Randy Wang

Testament to Flexibility and Power of
Unix Philosophy

• Simple general tools + glue (scripting, and shell)

• The advantages are being magnified in the age of web

CS126 14-18 Randy Wang

Outline

• Introduction

• Pattern matching in Unix

• Regular expressions in Unix

• Regular expressions as formal language
- Regular expression generator

• Finite State Automata

• Conclusions

CS126 14-19 Randy Wang

Unix vs. Theory

• Unix regular expressions are useful

• But more complex than the theoretical minimum

• But are they any more powerful? no.

CS126 14-20 Randy Wang

Formal Languages
• Formal definitions
- An alphabet: a finite set of symbols
- A string: a finite sequence of symbols from the alphabet
- A language: a (potentially infinite) set of strings over an
alphabet

• Intriguing topic: finite representation of a language
- How?
 + language generators (a set of rules for producing strings)
 + language recognizers
- We will study different classes of languages, their generators,
and their recognizers, each more powerful than the previous
ones

- There are even strange languages that fail all these finite
representational methods!

CS126 14-21 Randy Wang

Why Study Formal Languages

CS126 14-22 Randy Wang

(Bare Minimum) Regular Expression:
Generator Rules

CS126 14-23 Randy Wang

Regular Languages

CS126 14-24 Randy Wang

Outline

• Introduction

• Pattern matching in Unix

• Regular expressions in Unix

• Regular expressions as formal languages

• Finite State Automata
- Regular expression recognizer and beyond

• Conclusions

CS126 14-25 Randy Wang

Finite State Automata:
Regular Language Recognizers

0 0 1 1 0 1 0 0
0

1
2

34
5

6
7

input tape

read head

fin
ite

 s
ta

te
s

CS126 14-26 Randy Wang

FSA Example Demo

CS126 14-27 Randy Wang

FSA Example

dead state

beginning state read a 1, and
the string still
has a chance

read a 0, and the
string is accepted
if we stop now

state
input

Can kill any number of
these “ears”, and the
string will still be accepted!
Important implication later.

CS126 14-28 Randy Wang

Second FSA Example

CS126 14-29 Randy Wang

An Application

CS126 14-30 Randy Wang

Third FSA Example: Add Outputs

CS126 14-31 Randy Wang

Bounce Filter Demo

CS126 14-32 Randy Wang

State Meaning

CS126 14-33 Randy Wang

Fourth FSA Example

• How does it work?
- Every time we scan one more digit: x = x<<1 + y
- Equivalent to: x = x*2 + y
- Three states: x%3==0, x%3== 1, x%3== 2
- Six transitions:

(0*2+0)%3== 0, (0*2+1)%3== 1
(1*2+0)%3== 2, (1*2+1)%3== 0
(2*2+0)%3== 1, (2*2+1)%3== 2

CS126 14-35 Randy Wang

Outline

• Introduction

• Pattern matching in Unix

• Regular expressions in Unix

• Regular expressions as formal languages

• Finite State Automata

• Conclusions

CS126 14-36 Randy Wang

Looking Ahead...
• Regular expressions are very simple languages, and FSAs

are very simple machines
• What kind of languages cannot be expressed by regular

expressions? What tasks can’t be performed by FSAs?
• Basic idea: because the machine only has a finite number

of states N, it can’t remember more than N things
• So any language that requires remembering infinite

number of things is not regular
• This is something that we will do a couple more times:
- Define a machine, and understand its behavior
- Find things it can’t do
- Define a more powerful machine
- Repeat until we either run out of machines or problems
- (Hmm... which will we run out first?)

CS126 14-37 Randy Wang

CS126 14-38 Randy Wang

A Warm-up Result

• Remember we said we could cut any ear when showing the
first example of FSA?

• More formally, if a(s)*b is accepted, then ab is accepted

x

a

b

s

repeat visits to the same state

CS126 14-40 Randy Wang

What Have We Learned Today

• How to write Unix-style regular expressions

• How to use their associated Unix tools to perform useful
and interesting tasks

• “Formal” regular expressions

• FSAs, how to trace their execution

• Constructing simple FSAs to solve problems

• Understanding the limits of REs and FSAs: being able to
spot what problems they cannot solve (you’ll get better at
this after a few more lectures...)

