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What We Have
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What We Want to Do

• Remember the TOY simulator written in C?

• Now it’s time to use the components we have to implement 
this loop in hardware!

repeat
fetch instruction;
update PC;
decode instruction;
execute instruction;

until halt signal
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Single Cycle vs. Multicycle Design

• Single cycle design: each iteration is completed within one 
clock cycle, long cycles, simple

• Multi-cycle design: each iteration is broken down into 
multiple clock cycles: short cycles, more complex

• More tradeoffs later

repeat
fetch instruction;
update PC;
decode instruction;
execute instruction;

until halt signal

cycle tim e rising edge fallin g edge
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Datapath and Control: Definition by Example

• Blue: datapath, Red: control signals
• Control circuit decides how to set Select and whether to 

enable WriteEnable3
• When clock ticks
- One of Reg1 or Reg2 gets copied to Reg3 if WriteEnable3 is on
- Nothing gets copied to Reg3 if WriteEnable3 is off

M
U

X

R
eg1

WriteEnable1 Cl

R
eg2

WriteEnable2 Cl

R
eg3

WriteEnable3 Cl

Select

W
ri

te
E

na
b

le
1

W
ri

te
E

na
b

le
2

W
ri

te
E

na
b

le
3

S
el

ec
t

Control Circuit

CS126 13-7 Randy Wang

The Big Picture

• The five classic components of a computer



CS126 13-8 Randy Wang

Steps Towards Designing a Processor

• Analyze instruction set architecture (ISA) and understand 
datapath requirements

• Select set of datapath components and establish clocking 
methodology

• Assemble datapath to meet ISA requirements

• Analyze how to implement each instruction to determine 
the setting of various control signals

• Assemble the control logic
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Review: Register File  (From Last Lecture)

• Register file of k-bit words

• One address port, so can’t read and write in the same clock 
cycle

reg 0
reg 1
reg 2

reg n-1

input

write

Clock

output

address log2n

k

k
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What We Have (cont.): TOY Register File

• 8 general purpose registers
• 2 16-bit output busses, 1 16-bit input bus
• r1, r2 (3-bit numbers) specifies which registers go on bus1, 2
• r0 (3-bit) specifies which registers to receive input data when write 

enabled at clock pulse; when not write-enabled, the named register’s 
value appears on bus 0
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What We Have (cont.): TOY ALU

• We have learned about an adder. Generalize it to an ALU.
• Two 16-bit inputs, one 16-bit output
• A 3-bit control specifies which arithmetic or logic 

operation to perform (+ - *  ^  & >> <<)
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TOY Datapath Components

• Refine the simulator code to be more specific 
• Each of these four lines will be handled by a piece of 

hardware
- Instruction fetch
- Arithmetic (execution)
- Memory
- Write back

• We will assemble them one at a time, and assemble all four 
together at the end

• Caveat: I’m leaving out a few instructions as exercises

repeat
fetch instruction;
perform arithmetic operation;
access memory if necessary;
write back to register if necessary;

until halt signal
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TOY Arithmetic (Execution) Data Path

• Blue: datapath, Red: control signals
• (Part of) Implementation of TOY instruction: 

r0 = r1 + r2
• r0, r1, r2 control signals come straight from instruction, more on 

control later
• Clock controls when write back occurs
• Reads behave as combinational logic: result valid after delay
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TOY Instruction Fetch Unit

• Key question: which instruction to fetch
- If jump, then fetch the jump target (which is in instruction itself)
- Otherwise, fetch the next instruction

opcode (15:12) r0 (11:8) r1 (7:4) r2 (3:0)
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Timing Demo: Putting Instruction Fetch 
and Add Together
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TOY Memory Datapath

• For instructions that load from or write to memory

• Key question: where does address come from?
- From instruction itself (example: r0 = mem[3D] )

- From ALU (example: r0 = mem[r1+r2])
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TOY Write Back Datapath

• Key question: what to write back to register file? One of 
three possibilities, examples:
- r0 = r1 + r2

- r0 = mem[3D]

- r0 = 3A
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Putting It All Together (Complete Single Cycle TOY Datapath)

• Example TOY instruction 1A:9A45 (r2 = mem[r4+r5])
• Caveat: I’m leaving out a couple instructions as exercises

opcode (15:12) r0 (11:8) r1 (7:4) r2 (3:0)
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Abstract View of Relationship Between
Single Cycle TOY Datapath and Control

• The flow of data in the datapath commanded by control signals

• Control signals issued by the control unit

• Control unit gets its input from the current instruction and condition 
codes from the datapath

• Control unit is nothing but a big combinational circuit

opcode (15:12) r0 (11:8) r1 (7:4) r2 (3:0)

Control
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Implementing Single Cycle TOY Control

• Meaning of a decoder output that is 1: one particular instruction is 
executing and certain conditions are met

• Meaning of each OR-gate: turn on this control signal if any one of 
“these things” happen

decoder

opcode(4bits) high bit of r0
(for indexed addressing)
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Problems with Single-Cycle 
Implementation

• Long cycle time
- Not all instructions are equal, some longer, some shorter
- Memory accesses can be a lot longer
- The slowest instruction determines cycle time
- The processor sits idle for faster instructions

• Waste of chip area, for example: 
- Need an adder to compute PC+=4 in addition to the ALU
- Could in theory eliminate the adder and borrow ALU when it’s 
not needed

- But in a single cycle, we can’t tell when ALU is done
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Multicycle Design

• Multicycle design
- Look at our TOY simulator again
- Carefully break down each instruction into these roughly equal 

stages
- Use one (short) clock cycle to execute each stage

• Advantages
- Shorter instructions can just skip unnecessary cycles, more efficient 

in time
- Can borrow ALU to increment PC earlier: more efficient in chip area

repeat
fetch instruction;
decode instruction;
execute instruction;
access memory if necessary;
write back to register if necessary;

until halt signal
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Multicycle TOY Datapath

• Divide datapath up into 5 pieces (red boxes, analogous to the simulator 
code on previous slide: fetch, decode, execute, memory, write-back)

• Introduce temporary registers (blue boxes) to hold intermediate 
answers

• During each clock cycle, previous intermediate values are “clocked” 
into next stage, where the next intermeddiate value is calculated
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“Clocking” Values from One Stage to Next

• (We have seen this slide before)

• The trick is to figure out how and when to set the control 
signals!
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How to Modify Control

• Control depends on both instruction and time

• Use a counter to keep track of time (which stage the 
instruction is in)

• Will use counter to help determine control
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What’s New In This Picture?

• Counter output becomes part of control input

Instruction Counter

Control

Datapath

Cl
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• Conclusions
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Steps Towards Designing a Processor

• Analyze instruction set architecture (ISA) and understand 
datapath requirements

• Select set of datapath components and establish clocking 
methodology

• Assemble datapath to meet ISA requirements

• Analyze how to implement each instruction to determine 
the setting of various control signals

• Assemble the control logic
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Where’s the Science?
Understanding Tradeoffs

• We saw a deceptively trivial tradeoff today: clocking 
methodology
- Single cycle architecture vs. multicycle architecture
- Multicycle sounds obviously superior, right?
- Extra temporary registers and extra control logic of latter
   + Introduce time overhead
   + Introduce chip area overhead
   + Introduce extra complexity, cost, time-to-market, ......
- The question to a computer architect is whether this tradeoff is 
worth it

• More complex tradeoffs at each step of the prev. slide

• Nice to hide all this under the hood of an ISA
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What We Have Learned Today

• Concepts:
- Datapath vs. control
- Single-cycle vs. multicycle designs

• More components: TOY register file and ALU

• Single-cycle design
- How signals propagate in different parts of the datapath in 
general

- How to implement control signals in general. Where do inputs 
come from?

• Multicycle design
- Main general modifications made to datapath and control

• I Don’t expect people to memorize all the details
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Computer Architecture

• Coordination of many levels of abstraction

• Under a rapidly changing set of forces

• Design, measurement, and evaluation
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Forces Influencing Computer Architecture
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Dramatic Technology Change

• Technology
- Processor logic capacity: +30% / yr; clock rate: +20% / yr; 
overall performance: ~+60% / yr!

- Memory and disk capacity: ~+60% / yr

• Numbers, though impressive, are boring. What’s really 
exciting is revolutionary leaps in applications!

• Quantitative improvement and revolutionary leaps 
interleave as technology advances
- ~1985: Single-chip (32-bit) processors and single-board 
computers emerged, led to revolutions in all aspects of 
computer science!

- Conjecture: ~2002: Emergence of powerful single-chip 
systems, what will be its implication?!


