CS 126 Lecture AS:
Computer Architecture

Outline

¢ |ntroduction

* Some basics

* Single-cycle TOY design
* Multicycle TOY design

* Conclusions

111111111111111111

What We Have

Adder ‘ EnDiE B |

; |
Multiplexer (decoder) '—;'hErﬁ'hi-ﬁ | _:I;""LT\F“‘E]EL
] |
Flip=flop ﬂ_

]
i i 1
Regisfer

Memary cell
L

Mameory

Counter
i | ;;

CSs126 13-2 Randy Wang

What We Want to Do

repeat
fetch instruction;
update PC;
decode instruction;
execute instruction;
until halt signal

* Remember the TOY simulator written in C?

* Now it's time to use the components we have to implen

this loop inhardware!

nent

CSs126 13-3 Randy Wang

Outline

ntreduction

* Some basics

* Single-cycle TOY design
* Multicycle TOY design

* Conclusions

CS126 13-4

Randy Wang

Single Cycle vs. Multicycle Design

repeat
fetch instruction;
update PC;
decode instruction;
execute instruction;
until halt signal

<_I>
cycle time

rising edge

—

fallin g edge

* Single cycle design: each iteration is completed within

clock cycle, long cycles, simple

* Multi-cycle design: each iteration is broken down into
multiple clock cycles: short cycles, more complex

* More tradeoffs later

CS126 13-5

Randy Wang

one

Datapath and Control: Definition by Example

WriteEnabIel*Cll | Control Gircuit :
1 1
c? b o -y - — -
z = ’
Py 2 29D
@ 7‘» $ 888
(@] c c c
@ $48%
| 2 | A £55
« * WriteEnable34CI|
o |
A Select
WriteEnabIe24C||

* Blue: datapathRed: control signals

* Control circuit decides how to sétlectand whether to
enableWriteEnable3

*When clock ticks
- One of Regl or Reg2 gets copied to RegBrifteEnable3s on
- Nothing gets copied to Reg3\friteEnableds off

CS126 13-6 Randy Wang

The Big Picture

Processor

Input

Memory

Datapath Output

* The five classic components of a computer

CS126 13-7 Randy Wang

Steps Towards Designing a Processor

* Analyze instruction set architecture (ISA) and underste
datapath requirements

* Select set of datapath components and establish clock
methodology

* Assemble datapath to meet ISA requirements

* Analyze how to implement each instruction to determir
the setting of various control signals

* Assemble the control logic

CSs126 13-8 Randy Wang

Review: Register File (From Last Lecture)

address TIngn
input7‘> rego
k

regiq

write ——| reg, +> output
k

Clock —» redn.1

* Register file of k-bit words

* One address port, so can't read and write in the same
cycle

CSs126 13-9 Randy Wang

and

ing

clock

What We Have (cont.): TOY Register File

ro rl r2
regg
busO‘# reg ; +>busl

16 16
reg,
+>bu32
write ——p1 16
Clock —» reg-

® 8 general purpose registers

® 2 16-bit output busses, 1 16-bit input bus

°®rl, r2 (3-bit numbers) specifies which registers go on busl, 2

® 10 (3-bit) specifies which registers to receive input data when writ
enabled at clock pulse; when not write-enabled, the named regist
value appears on bus 0

CSs126 13-10 Randy Wang

What We Have (cont.): TOY ALU

Lo

16

Lo

16
ALUctrl

16

3

*We have learned about an adder. Generalize it to an A

* Two 16-bit inputs, one 16-bit output

* A 3-bit control specifies which arithmetic or logic
operation to perform (+ - * A & >> <<)

CSs126 13-11 Randy Wang

er's

\LU.

Outline

* Introduction
* Some-basics
* Single-cycle TOY design

- Datapath design
- Control design

* Multicycle TOY design
* Conclusions

CSs126 13-12 Randy Wang

TOY Datapath Components

repeat
fetch instruction:;
perform arithmetic operation;
access memory if necessary;
write back to register if necessary;
until halt signal

* Refine the simulator code to be more specific

* Each of these four lines will be handled by a piece of
hardware
- Instruction fetch
- Arithmetic (execution)
- Memory
- Write back

* We will assemble them one at a time, and assemble al
together at the end

e Caveat: I'm leaving out a few instructions as exercises

CSs126 13-13 Randy Wang

four

TOY Arithmetic (Execution) Data Path

0 rl r2

RegWr

8x16-bit
Registers

® Blue: datapathRed: control signals

¢ (Part of) Implementation of TOY instruction:
ro=rl+r2

0, r1, r2 control signals come straight from instruction, more on
control later

® Clock controls when write back occurs

® Reads behave as combinational logic: result valid after delay

CSs126 13-14 Randy Wang

TOY Instruction Fetch Unit

| //
16
Data
Instruction Instruction Register (IR)

Memory bpcode (15:12) r0 (11:8) | r17:9) r2 (3:0) |
Addr

Imm8

from ALU

* Key question: which instruction to fetch
- If jump, then fetch the jump target (which is in instruction itself)
- Otherwise, fetch the next instruction

CSs126 13-15 Randy Wang

Timing Demo: Putting Instruction Fetch
and Add Together

I Lz
|
W LA YA lne ! .o
1 will—————d Imstruction '-.||.-||'-.'-r:. Wecess Time :
RO R, RITp T O8] Value ¥ T Slen Ui -
I :1—II-I Delay thremgh Controd Logac [
ALty [OR Value 1 . (T]
1
| 1 },
Wil LUl valse 5 T Mew Value
; 1= . i ::I.'!.;_I-ll'l Fibe Access | e |r

bugl, T ol Y T M'
l i

' alp————el ALAT Dby
SHTE] O Wl T
I '

Hegisier Wriie
Ciccwrs Here

CSs126 13-16 Randy Wang

TOY Memory Datapath

for store instruction
(opcode A)

[ol ‘for load instruction
Memory address can from e b o (opcode 9)
c?me frcIJm oge otfhtw Dregister —»| Data 5
places: Imm8 in the 16.Datal M 5
instruction, or result | 1116 Dus 0070 8 | Memory =
of ALU (for indexed Address
addressing) | ¢ 16t
AddrSel

from -/ MUX

ALU A 8 mms

output 16

write result back

to register file

* For instructions that load from or write to memory

* Key guestion: where does address come from?
- From instruction itself (exampled = mem[3D])
- From ALU (exampler0 = mem[r1+r2])

CSs126 13-17 Randy Wang

TOY Write Back Datapath

What can be written
back to register file?
1) result of ALU;

2) result of loading
memory; or

3) Imm8 from
instruction

from
loading
memory
from
ALU

right

to
register
file bus O

Sign extension to
get negative number

* Key guestion: what to write back to register file? One of

three possibilities, examples:

-r0=rl1+r2
- 10 = mem[3D]
-r0=3A

CS126

13-18

Randy Wang

Puttlng It A” Together (Complete Single Cycle TOY Datapath)

. 716
Instr Instruction Register (IR)
Instruction | ppcode (15:12) 10 (11:8) rl (7:4) r2 (3:0) |
Memory —*— -
Addr Imm8
Cond 2
8 TG
16 Dataln Memory
RegWr 0 r1 r2 N a‘

]

ALUctr!
3
16

busl

bus0
/| 8x16-bit
16 Registers
bus?2 -
D> ——\>
L/

inoeled

¢
* Example TOY instruction 1A:9A45 (r2 = mem([r4+r5])

e Caveat: I'm leaving out a couple instructions as exercises

CS126

13-19

Randy Wang

Abstract View of Relationship Between
Single Cycle TOY Datapath and Control

Instruction
opcode (15:14) r0(11:8) | rl(74) | r2(30) |

Control

3 2

Datapath

® The flow of data in the datapath commanded by control signals
® Control signals issued by the control unit

® Control unit gets its input from the current instruction and conditia
codes from the datapath

¢ Control unit is nothing but a big combinational circuit

CSs126 13-20 Randy Wang

Implementing Single Cycle TOY Control

opcode(4bits) high bit of rO
for indexed addressing)
g s
| input |
1 1
: decoder :
1 1
127=128 bits oo o -
'of output !
| @ ! RegWr
| .
1 . 1
! \ ! WBsel g
: se e |

® Meaning of a decoder output that is 1: one particular instruction is
executingand certain conditions are met

® Meaning of each OR-gate: turn on this control signal if any one o
“these things” happen

CSs126 13-21 Randy Wang

f

n

Outline

* Introduction

- Some-basics

* Single-eyele FOY-datapath-design
* Single-eyele FOY-control-design

* Multicycle TOY design

* Conclusions

CSs126 13-22 Randy Wang

Problems with Single-Cycle
Implementation

* Long cycle time
- Not all instructions are equal, some longer, some shorter
- Memory accesses can be a lot longer
- The slowest instruction determines cycle time
- The processor sits idle for faster instructions

* Waste of chip area, for example:
- Need an adder to compute PC+=4 in addition to the ALU

- Could in theory eliminate the adder and borrow ALU when
not needed

- But in a single cycle, we can't tell when ALU is done

CSs126 13-23 Randy Wang

t's

Multicycle Design

repeat
fetch instruction;
decode instruction;
execute instruction;
access memory if necessary;,
write back to register if necessary;
until halt signal

* Multicycle design
- Look at our TOY simulator again
- Carefully break down each instruction into these roughly equal
stages
- Use one (short) clock cycle to execute each stage
* Advantages
- Shorter instructions can just skip unnecessary cycles, more efficient
in time
- Can borrow ALU to increment PC earlier: more efficient in chip area

CSs126 13-24 Randy Wang

Multicycle TOY Datapath

.

.

=z i (I3 s

2 I™oa Z0 ;

33 == I - : gl oo L
Q= = H X 3 o
° : n H HING = 0
> Hina i i .l < Iy
i T e e i

H H ol to control A

: : Sk :

: =1: a; :

:LlExt §= — _ :

: H H -c — H

1] L] L] ‘x :

g .

.

L]

.

.

.

fetch decode executeé memory i WB

® Divide datapath up into 5 piecesd boxesanalogous to the simulator
code on previous slide: fetch, decode, execute, memory, write-back)

® Introduce temporary registersle boxe¥to hold intermediate
answers

® During each clock cycle, previous intermediate values are “clocked”
into next stage, where the next intermeddiate value is calculated

CSs126 13-25 Randy Wang

“Clocking” Values from One Stage to Next

WriteEnablel*Cll Pmmm ===
\v4 : Control Circuit :
| 1
- & CYVEY
- O -« N m
(]
2 > 3 253
S 53
X L 22
* [0} _ = =T T
(o] WnteEnabIeS*Cl' ===
N
Select
WriteEnable240I|

stage n § stage n+1l

* (We have seen this slide before)

ol

* The trick is to figure out how and when to set the contr
signals!

How to Modify Control

e 10 0 [0 1o 1o
nir

Fetch Decode Exec Mem WB Feich Decode Exec Time

* Control depends on both instruction and time

* Use a counter to keep track of time (which stage the
instruction is in)

* Will use counter to help determine control

Cs126 13-27 Randy Wang

What's New In This Picture?

] Instruction \ CI—|> Counter |

Datapath

* Counter output becomes part of control input

CSs126 13-28 Randy Wang

Outline

* Conclusions

CSs126 13-29 Randy Wang

Steps Towards Designing a Processor

* Analyze instruction set architecture (ISA) and understand

datapath requirements

* Select set of datapath components and establish clocking

methodology
* Assemble datapath to meet ISA requirements

* Analyze how to implement each instruction to determine

the setting of various control signals
* Assemble the control logic

CS126 13-30 Randy Wang

Where’s the Science?
Understanding Tradeoffs

*We saw a deceptively trivial tradeoff today: clocking
methodology

- Single cycle architecture vs. multicycle architecture

- Multicycle sounds obviously superior, right?

- Extra temporary registers and extra control logic of latter
+ Introduce time overhead
+ Introduce chip area overhead
+ Introduce extra complexity, cost, time-to-market,

- The question to a computer architect is whether this trade

worth it
* More complex tradeoffs at each step of the prev. slide

* Nice to hide all this under the hood of an ISA

off is

CS126 13-31 Randy Wang

What We Have Learned Today

* Concepts:
- Datapath vs. control
- Single-cycle vs. multicycle designs

* More components: TOY register file and ALU

* Single-cycle design
- How signals propagate in different parts of the datapath ir
general

- How to implement control signals in general. Where do in
come from?

* Multicycle design
- Main general modifications made to datapath and control

*| Don't expect people to memorize all the details

CSs126 13-32 Randy Wang

L

pUts

Computer Architecture

Application ‘

Operating
System

Compiler| | Firmware
|—p[I—‘ Instruction Set

Architecture

Instr. Set Proc. | IfO system
Datapath & Control

| Digital Design |

* Coordination of many levels of abstraction
* Under a rapidly changing set of forces
* Design, measurement, and evaluation

CSs126 13-33 Randy Wang

Forces Influencing Computer Architecture

Technology Programming

\ Languages
Applications /
T Computer
Architecture
Operating

Systems
History

CSs126 13-34 Randy Wang

Dramatic Technology Change

* Technology

- Processorlogic capacity: +30% / yr; clock rate: +20% / yr;
overall performance: ~+60% / yr!

- Memory and disk capacity: ~+60% / yr

* Numbers, though impressive, are boring. What's really
exciting is revolutionary leaps in applications!

* Quantitative improvement and revolutionary leaps
interleave as technology advances
- ~1985:Single-chip (32-bit) processorsandsingle-board

computersemerged, led to revolutions in all aspects of
computer science!

- Conjecture: ~2002: Emergence of powedulgle-chip
systems what will be its implication?!

CSs126 13-35 Randy Wang

