CS 126 Lecture AS:
Computer Architecture

Outline

e Introduction

* Some basics

* Single-cycle TOY design
* Multicycle TOY design

* Conclusions

CS126 13-1

Randy Wang

What We Have

e et
Adder | AobER !
|

Multiplexer (decoder) _rgemira™ o orevi
B LU LR R R LN

Flip-flop

vy byl
Regqister [
g B REGISTER

Memory cell
| i

AL

Memory

MEMGRY

Counter i |

revg (vl

CS126 13-2 Randy Wang

What We Want to Do

repeat
fetch instruction;
update PC;
decode instruction;
execute instruction:
until halt signal

* Remember the TOY simulator written in C?

* Now it's time to use the components we have to implement
this loop inhardware!

CS126 13-3 Randy Wang

Outline

* Introduction
e Some basics

* Single-cycle TOY design
* Multicycle TOY design
* Conclusions

CS126 13-4

Randy Wang

Single Cycle vs. Multicycle Design

repeat
fetch instruction;
update PC;
decode instruction;
execute instruction:

until halt signal

cycle time rising edge fallin g edge
* Single cycle design: each iteration is completed withinjone
clock cycle, long cycles, simple
* Multi-cycle design: each iteration is broken down into

multiple clock cycles: short cycles, more complex
* More tradeoffs later

CS126 13-5 Randy Wang

Datapath and Control: Definition by Example

WriteEnabIel*ClI

i

|\
cong
i K WriteEnable3ACl|

Select

9]
'[9th

9]
DSGH

=i

WriteEnabIe4 CII

bo
>Z e

e

P e e e e e e e

: Control Circuit

YT

-

Selec

WriteEnablel
WriteEnable2
WriteEnable3

=

| =S

* Blue: datapathRed: control signals

e Control circuilt decides how to stlectand whether to

enable\WriteEnable3
* \When clock ticks

- One of Regl or Reg2 gets copied to Redg®nteEnable3s on
- Nothing gets copied to Reg3ufriteEnable3s off

CS126 13-6

Randy Wang

he Big Picture

Processor

Input

Memory

Datapath Output

* The five classic components of a computer

CS126 13-7 Randy Wang

Steps Towards Designing a Processor

* Analyze instruction set architecture (ISA) and understand
datapath requirements

* Select set of datapath components and establish clocking
methodology

* Assemble datapath to meet ISA requirements

* Analyze how to implement each instruction to determine
the setting of various control signals

* Assemble the control logic

CS126 13-8 Randy Wang

Review: Register File (From Last Lecture)

address 1/ logon

input7L>
Kk

write —p»

Clock —»»

reg o

reg ;

reg »

red n-1

7L> output
Kk

* Register file of k-bit words

* One address port, so can’'t read and write in the same

cycle

CS126

13-9

Randy Wang

clock

What We Have (cont.): TOY Register File

rl r2

g e e

rego
buso<+> reg 4

16
reg
write ——p
Clock —» reg ;

|7L>busl
16

.7L>bu52
16

® 8 general purpose registers

® 2 16-bit output busses, 1 16-bit input bus
®rl, r2 (3-bit numbers) specifies which registers go on busl, 2

® rO (3-bit) specifies which registers to receive input data when writ
enabled at clock pulse; when not write-enabled, the named regisit

value appears on bus 0

e
er’'s

CS126 13-10

Randy Wang

What We Have (cont.): TOY ALU

16

ALU

1=

3

16
ALUctrl

* \We have learned about an adder. Generalize it to an A

* Two 16-Dbit inputs, one 16-bit output

* A 3-bit control specifies which arithmetic or logic
operation to perform (+ - * * & >> <<)

\LU.

CS126 13-11

Randy Wang

Outline

* Introduction
* Some-basics
e Single-cycle TOY design

- Datapath design
- Control design

* Multicycle TOY design
e Conclusions

CS126 13-12

Randy Wang

QY Datapath Components

repeat
fetch instruction;
perform arithmetic operation;
access memory If necessary;,
write back to register if necessary;
until halt signal

* Refine the simulator code to be more specific
* Each of these four lines will be handled by a piece of
hardware
- Instruction fetch
- Arithmetic (execution)
- Memory
- Write back
* We will assemble them one at a time, and assemble all four
together at the end
e Caveat: I'm leaving out a few instructions as exercises

CS126 13-13 Randy Wang

QY Arithmetic (Execution) Data Path

RegWr ro rl r2
l 3TT3T ALUctrl
3
busl \'°
8x16-bit
Registers

busO

® Blue: datapathRed: control signals

® (Part of) Implementation of TOY instruction:
ro=rl+r2

°®r0, rl, r2 control signals come straight from instruction, more on
control later

® Clock controls when write back occurs

® Reads behave as combinational loqgic: result valid after delay

CS126 13-14 Randy Wang

QY Instruction Fetch Unit

| //
Data 16
Instruction Instruction Register (IR) Y
Memory ppcode (15:12[) r0 (11:8) rl (7:4) r2 (3:0)
Addr _
I
*8 mm3
PC <
PCsel
2
Imm38
from ALU

* Key question: which instruction to fetch

- If jJump, then fetch the jump target (which is in instruction itself)
- Otherwise, fetch the next instruction

CS126 13-15 Randy Wang

Clk

and Add Together

Iming Demo: Putting Instruction Fetch

v

v

—» M—Cll-10-Q

[New Val
PC Old Value: * ew Value

rtp——1 [nstruction Memory Access Time

RO, R1,R2. Op : Old Value * [New Value |
| &1 Delay through Control Logic |
ALUetx | _Old Value | XC_ew Value |
L |
write ! Old Value 1 New Value
i I p1 Register File Access Time
busl, 2 . Old Value ° ew Value
! I ri—p1 ALU Delay
bus0 | Old Value
|

Register Write
Occurs Here

CS126

13-16

Randy Wang

OY Memory Datapath

for store instruction

(opcode A) | for Ioaad igstruction
Memory address can from ve P o (opcode 9)
c?me frcl)m og_e otfhtworegister —»| Data 5
places: Imm8 in the | 16. Datal M C
instruction, or result | '€ R4S 00\ @R S| Memen =
of ALU (for indexed Address
addressing) 8 16—t
AddrSel
from —»/ MUX

ALU R
output {16 m

\

write result back g
to register file

* For instructions that load from or write to memory

* Key gquestion: where does address come from?
- From instruction itself (exampled = mem[3D])
- From ALU (exampler0 = mem[r1+r2])

CS126 13-17 Randy Wang

OY Write Back Datapath

What can be written
back to register file?
1) result of ALU;

2) result of loading
memory; or

3) Imma3 from
instruction

from
ALU
outpu

t

\ 16

to

register

file bus 0<a—

\

'

from
loading
memory

| SignExt l

16|

Imm8

[

2

16

WBsel _MUX 7

Sign extension to

right

get negative numbe

-

* Key question: what to write back to register file? One of

three possibilities, examples:

-r0=rl1+r2
- 10 = mem[3D]
- 10 =3A

CS126

13-18

Randy Wang

PUt“ng It A” TOQEther (Complete Single Cycle TOY Datapath)
| /16
Instr Instruction Register (IR) *
Instruction ppcode (15:14) r0 (11:8) rl (7:4) r2 (3:0)
Memory _
Addr # # # Imm38
¢ Condi 2
& comp MemW_r>> Data g
PC < A 16 Dataly | Memory |S
RegWr 0 rl r2 ' Address
nPCsel 3143 913 ALUctrl 8 161
o # { t { T Addrsel
busl i —»/ M UX
i Imm8 <bE/S_O> 8x16-bi ' 8 & nms
er -bit mm
/ N 16 R):agistelrs 1 |
$ 14 D bus2 Sig%Ext f
\J WBsel N\ MUX /
2 416
-
* Example TOY instruction 1A:9A45 (r2 = mem|[r4+r5])
e Caveat: I'm leaving out a couple instructions as exercises

CS126 13-19 Randy Wang

Abstract View of Relationship Between
Single Cycle TOY Datapath and Control

Instruction
opcode (15:12) r0 (11:8) rl (7:4) r2 (3:0)

Control

Datapath

®* The flow of data in the datapath commanded by control signals
® Control signals issued by the control unit

® Control unit gets its input from the current instruction and conditic
codes from the datapath

® Control unit is nothing but a big combinational circuit

CS126 13-20 Randy Wang

Implementing Single Cycle TOY Control
opcode(bits) hljc?rri]ngieagg ggdressing)
| 7hitsof 'l' i't 'l' B uéo'na T
| input |
: decoder |
527:128 bits 'YX i
:of output It ® : RegWr
i i , WBS@'O

® Meaning of a decoder output that is 1. one particular instruction i
executingand certain conditions are met
® Meaning of each OR-gate: turn on this control signal if any one o

“these things” happen

U)

—h

CS126

13-21

Randy Wang

Outline

e Multicycle TOY design

e Conclusions

CS126 13-22

Randy Wang

Problems with Single-Cycle
Implementation

* Long cycle time
- Not all instructions are equal, some longer, some shorter
- Memory accesses can be a lot longer
- The slowest instruction determines cycle time
- The processor sits idle for faster instructions

* Waste of chip area, for example:
- Need an adder to compute PC+=4 in addition to the ALU

- Could in theory eliminate the adder and borrow ALU when
not needed

- But in a single cycle, we can’t tell when ALU is done

CS126 13-23 Randy Wang

It's

Multicycle Design

repeat
fetch instruction;
decode Iinstruction;
execute instruction;
access memory Iif necessary;,
write back to register if necessary;
until halt signal

* Multicycle design
- Look at our TOY simulator again

- Carefully break down each instruction into these roughly equal

stages

- Use one (short) clock cycle to execute each stage

* Advantages

- Shorter instructions can just skip unnecessary cycles, more effi

In time

- Can borrow ALU to increment PC earlier: more efficient in chip

cient

area

CS126 13-24

Randy Wang

I\/Iultlcycle OY Datapath

=

slolsibay

Alowa N

uolldoniisuj
=
nsoy |
NN
eleq

Alowa N

XNIN

L

T vvy

a1y

L

to control

Y

3 -
Ext E ®

Yvy

N O XNIA
y

deCOde 5 execute memory

* Divide datapath up into 5 plecermd boxesanalogous to the S|mulat<
code on previous slide: fetch, decode, execute, memory, write-ba

® Introduce temporary registetslie boxekto hold intermediate
answers

® During each clock cycle, previous intermediate values are “clocke
Into next stage, where the next intermeddiate value is calculated

DI
ck)

\UJ

d”

CS126 13-25 Randy Wang

“Clocking” Values from One Stage to Next

. F=m="—mm=mmmsmm===m=™n"1
WnteEnabIel*Cll I Control Circuit I
\Y4 I |
|
| 2 b\
& A .
- = o 5 299
C # 8 # % -‘3 -‘3 -‘3
= & 390
Py A £ EE
8 WriteEnabIe’s*CII ==3
7T A
A Select
WriteEnabIe#ClI

stage n | stage n+1

* (We have seen this slide before)

* The trick is to figure out how and when to set the contr

signals!

CS126 13-26 Randy Wang

ol

How to Modify Control

L 10 10 10 Io 10 I1 I1 I1
Cntr ||

>
Fetch Decode Exec Mem WB Fetch Decode Exec Time

e Control depends on both instruction and time

* Use a counter to keep track of time (which stage the
Instruction is in)

* Will use counter to help determine control

CS126 13-27 Randy Wang

What's New In

his Picture?

Instruction

—> Counter

e Counter output becomes part of control input

CS126

13-28

Randy Wang

Outline

e Conclusions

CS126 13-29

Randy Wang

Steps Towards Designing a Processor

* Analyze instruction set architecture (ISA) and understand
datapath requirements

* Select set of datapath components and establish clocking
methodology

* Assemble datapath to meet ISA requirements

* Analyze how to implement each instruction to determine
the setting of various control signals

* Assemble the control logic

CS126 13-30 Randy Wang

Where’s the Science?
Understanding Tradeoffs

* We saw a deceptively trivial tradeoff today: clocking
methodology

- Single cycle architecture vs. multicycle architecture

- Multicycle sounds obviously superior, right?

- Extra temporary registers and extra control logic of latter
+ Introduce time overhead
+ Introduce chip area overhead
+ Introduce extra complexity, cost, time-to-market,

- The question to a computer architect is whether this trade

worth it
* More complex tradeoffs at each step of the prev. slide

* Nice to hide all this under the hood of an ISA

off is

CS126 13-31 Randy Wang

What We Have Learned Today

* Concepts:
- Datapath vs. control
- Single-cycle vs. multicycle designs

* More components: TOY register file and ALU

* Single-cycle design

- How signals propagate in different parts of the datapath i
general

- How to implement control signals in general. Where do inj
come from?

* Multicycle design
- Main general modifications made to datapath and control

e | Don’'t expect people to memorize all the detalls

CS126 13-32 Randy Wang

—

uts

Computer Architecture

Application ‘

Operating
System

| Cnmpiler| | Firmware|

Instr. Set Proc. | I/O system
Datapath & Control

. Instruction Set
- Architecture

Digital Design
Circuit Design

Layout

* Coordination of many levels of abstraction
* Under a rapidly changing set of forces
* Design, measurement, and evaluation

CS126 13-33 Randy Wang

Forces Influencing Computer Architecture

Technology Programming
\ Languages
Applications /
B = Computer

Architecture

Operating / \
Systems

History

CS126 13-34 Randy Wang

Dramatic Technology Change

* Technology

- Processorlogic capacity: +30% / yr; clock rate: +20% / yr;
overall performance: ~+60% / yr!

- Memory and disk capacity: ~+60% / yr

* Numbers, though impressive, are boring. What's really
exciting is revolutionary leaps in applications!

* Quantitative improvement and revolutionary leaps
Interleave as technology advances
- ~1985:Single-chip (32-bit) processorsandsingle-board

computersemerged, led to revolutions in all aspects of
computer science!

- Conjecture: ~2002: Emergence of powesdulgle-chip
systems what will be its implication?!

CS126 13-35 Randy Wang

.y

