
CS 126 Lecture P7:
Trees

CS126 8-1 Randy Wang

First Midterm

• When: 7pm, 10/20 (Wednesday)

• Where: MC46 (here)

• What: lectures up to (and including) today’s

• Format: close book, minimum coding

• Preparation: do the readings and exercises

CS126 8-2 Randy Wang

Why Learn Trees?

Culmination of the programming portion of this class!

• Comparison against arrays and linked lists

• Trees -- a versatile and useful data structure

• A naturally recursive data structure

• Applications of stacks and queues

• Reinforce our pointer manipulation knowledge

CS126 8-3 Randy Wang

Outline

• Searching and insertion without trees

• Searching and insertion with trees

• Traversing trees

• Conclusion

CS126 8-5 Randy Wang

Encapsulating the Item Type Stored

• A single item itself is an ADT

• So we don’t see the internals of the item type when we
implement searching and insertion

• So our code will work for any item type

CS126 8-6 Randy Wang

Array Representation: Binary Search
Item items[13];

Index
Keys

1st step2nd step
3rd step
4th step

CS126 8-7 Randy Wang

Array Representation: Binary Search

CS126 8-8 Randy Wang

Cost of Binary Search

N=2x, x=log2N

CS126 8-9 Randy Wang

Insertion into Sorted Array

CS126 8-10 Randy Wang

Linked List Representation

CS126 8-11 Randy Wang

Inserting into Linked List

CS126 8-12 Randy Wang

Exercises and Summary

• Assuming a sorted linked list, try writing code for
- both searching and insertion
- using both loop and recursion

• Summary so far:

CS126 8-13 Randy Wang

Outline

• Searching and insertion without trees

• Searching and insertion with trees

• Traversing trees

• Conclusion

CS126 8-14 Randy Wang

Declaring a Tree Type

l
r

item

l
r

item

l
r

item

CS126 8-15 Randy Wang

Binary Tree

CS126 8-16 Randy Wang

Binary Search Tree Property

• Maintain ordering property for all subtrees

• Must maintain ordering property at all times (just like we
keep an array or linked list sorted at all times)

root (middle value)

left subtree
(smaller values)

right subtree
(bigger values)

CS126 8-17 Randy Wang

Searching in Binary Search Tree

CS126 8-18 Randy Wang

Search Demo

CS126 8-19 Randy Wang

Search Cost

• Nodes examined on the search path roughly correspond to
nodes examined during binary searching an array

• So the cost is same as binary searching an array (lg N)

• That is if the tree is balanced

CS126 8-20 Randy Wang

Insertion into Binary Search Trees

CS126 8-21 Randy Wang

Insertion Demo

CS126 8-22 Randy Wang

More Notes on
Binary Search Tree Insertion

• Each recursive call returns the root pointing to the subtree
with the new value already inserted

• Do this for base case and inductive case

su b tree co n ta in ing
th e n ew va lue

attach the “new ”
su btree to th e
cu r ren t roo t

CS126 8-23 Randy Wang

Another Insertion Demo

CS126 8-24 Randy Wang

Insertion Cost
6

13

14

25

Degenerated Tree

• “Normally”, insertion is like search, so similar cost. But...

CS126 8-25 Randy Wang

Outline

• Searching and insertion without trees

• Searching and insertion with trees

• Traversing trees
- Goal: “visit” (process) each node in the tree

• Conclusion

CS126 8-26 Randy Wang

Preorder Traversal
visit(link h) {

printf(“%d %s “,
h->item.ID,

h->item.name);

}

traverse(link h) {

if (h != NULL) {

visit(h);

traverse(h->l);

traverse(h->r);

}

}

• Visit before recursive
calls

• Generalizes to any tree:
depth-first-traversal

14

6 33

25 4313

14, 6, 13, 33, 25, 43

CS126 8-28 Randy Wang

Preorder Traversal with a Stack

CS126 8-29 Randy Wang

Preorder Traversal Demo

CS126 8-30 Randy Wang

Level Order Traversal

CS126 8-31 Randy Wang

Level Order Traversal Example

CS126 8-32 Randy Wang

Outline

• Searching and insertion without trees

• Searching and insertion with trees

• Traversing trees

• Conclusion

CS126 8-34 Randy Wang

What We Have Learned

• How to search and insert into:
- sorted arrays
- linked lists
- binary search trees

• How long these operations take for the different data
structures

• The meaning of different traversal orders and how the code
for them works

