
CS 126 Lecture P2:
Introduction to Unix

CS126 3-1 Randy Wang

Outline

• Background

• Files

• Processes

• Interactions

• Conclusion

CS126 3-2 Randy Wang

Operating Systems

• What does an OS do?
- Make lives easy: hides low level details of bare machine
- Make lives fair: arbitrate competing resource demands

• What we learn here: the interfaces by OS to upper layer
- User interface
- Programmer’s interface
- Command line vs. graphical user interface (more later)

Operating System

Hardware

Applications

CS126 3-4 Randy Wang

A Brief History

• Multics (65-70)
- Ambitious OS project at MIT
- Pioneered most of the innovations in modern OS
- A little ahead of its time

• Unix
- Thompson and Ritchie (69): simplicity and elegance
- AT&T (70-80s):
continued development and “shepherding” it out of AT&T

- Berkeley (“BSD”) (78-93): maturation (e.g. TCP/IP)
- Various flavors of commercial Unix (80-90s):
convergence and fragmentation

- Linux (91-): new life

CS126 3-5 Randy Wang

Outline

• Background

• Files
- A simple and powerful abstraction for storage (disks)
- Extended for things beyond disks

• Processes

• Interactions

• Conclusion

A Hierarchical
Name Space:
Same as folders
and files on Windows
or MacOS(like folders)

CS126 3-8 Randy Wang

Outline

• Background

• Files

• Processes
- An abstraction for the processor (CPU)
- “Everything” (almost every command) is a process

• Interactions

• Conclusion

• A Unix “command” is
the same as a Windows
“program”

• Instead of clicking its
icon under Windows,
we simply type its
name to invoke it on a
command line.

CS126 3-11 Randy Wang

Outline

• Background

• Files

• Processes

• Interactions
- (between files and processes)

• Conclusion

CS126 3-12 Randy Wang

I/O Redirection and Pipes

• 1: “Standard I/O”, 2: default attachment, 3: redirect output

• 4: redirect both input and output, 5: pipes

scanf(...)

printf(...)
stdout

stdin

file

1

2

3

4

5

4

3 on prev. slide

on prev. slide

> outputfile 5 on prev. slide

CS126 3-14 Randy Wang

C Shell (/bin/csh)

• The program that’s running inside your terminal window

• Much more than just manipulating files and launching
commands

• It’s an “interpreter”, with its own powerful programming
language!

• Try your first “csh script”?

#!/bin/csh -f

printf "Hello world! Give me a number:\n"

set n = $<

printf "Thanks! I've always been fond of %d\n" $n

Don’t worry about the details here.

CS126 3-16 Randy Wang

Outline

• Background

• Files

• Processes

• Interactions

• Conclusion

CS126 3-17 Randy Wang

Choose Your Weapons Wisely

• C or Csh? “System programming” or “scripting”?

• Abstractions:
- System programming
 - Compiled, rich types
 - Good for creating components which demand high

performance or involve complex algorithms
- Scripting
 - Interpreted, manipulates strings, less efficient
 - Good for gluing together existing components
 - Rapid development for gluing and GUI

