Lecture 22. Hard Problems

• Important properties of algorithms

 * **Finite:** Guaranteed to terminate
 * **Deterministic:** Always produces the same output for the same input

• **Efficient** algorithms execute in times that are no more than *polynomial* in the size of their inputs, \(N \)

 \(N, N^2, N + N^4, \text{ etc.} \)

• **Inefficient** algorithms execute in times that are at least *exponential* in \(N \)

 \(2^N, 10^N, N!, \text{ etc.} \)

• Some apparently simple problems have no known efficient solutions

 Traveling Salesman Find the minimum-cost tour of \(N \) cities

 Scheduling Schedule \(N \) jobs of varying length on two machines to finish by a given deadline

 Sequencing Arrange \(N \) 4-letter fragments cut from a long string (with overlaps) into the original string (DNA sequencing)

 Satisfiability Assign true/false values to \(N \) logical variables so that a given logical formula is true
The Traveling Skibum Problem

- Visit N ski areas in the order that minimizes cost, e.g., distance
- To find an optimal tour, try all of them

```java
void visit(int k) {
    if (k == 1)
        checklength();
    else {
        int i;
        for (i = 0; i < k; i++) {
            swap(i, k - 1);
            visit(k - 1);
            swap(i, k - 1);
        }
    }
}
visit(n);
```

- Takes $N!$ steps; no computer can run this for $N = 100$, because $100! \approx 10^{157}$
- Use heuristics to get good, but not optimal solutions, to hard problems

 TSP: Choose the ‘nearest neighbor’ as the next ski area on the tour
- Hard problems can be your friends: Use encryption to send secret messages
Unsolvable Problems

• Oh oh… Are some problems **unsolvable**?

• Example: Post’s Correspondence Problem

 \(N \) types of cards, each with a top string and a bottom string

 Using as many of each card as needed, arrange them so that the top and bottom strings are identical (or say it’s impossible)

 \[
 \begin{align*}
 &B \ A \ B \ A \\
 &A \ B \ A \\
 &A \ B \\
 &B \ A \\
 &A \\
 \end{align*}
 \]

• There’s no solution for the cards

• The bad news: Post’s Correspondence Problem is unsolvable; you cannot write a program that determines if there is a solution for a given set of cards
The Halting Problem

- Write a C program that

 Reads another C program, \(P \)

 Reads \(P \)'s input

 Determines whether or not \(P \) loops forever; that is, whether or not \(P \) halts

 \[
 \text{while (x != 1)}
 \text{ if (x > 2) x -= 2; else x += 2;}
 \]

 \[
 7 \quad 5 \quad 3 \quad 1 \quad P \text{ halts}
 \]

 \[
 8 \quad 6 \quad 4 \quad 2 \quad 4 \quad 2 \quad 4 \quad \ldots \quad P \text{ loops on even inputs}
 \]

 \[
 \text{while (x != 1)}
 \text{ if (x%2 != 0) x = 3*x + 1; else x /= 2;}
 \]

 \[
 7 \quad 22 \quad 11 \quad 34 \quad 17 \quad 52 \quad 26 \quad 13 \quad 40
 \]

 \[
 20 \quad 10 \quad 5 \quad 16 \quad 8 \quad 4 \quad 2 \quad 1 \quad \text{does } P \text{ halt for all odd integers?}
 \]

 \[
 8 \quad 4 \quad 2 \quad 1 \quad P \text{ halts}
 \]
The Halting Problem, cont’d

• Theorem: The Halting Problem is unsolvable

• Proof by contradiction

Assume there is a program, HALTS(\(P, y\)), that takes two inputs, a program \(P\) and its input \(y\). If \(P(y)\) halts, HALTS(\(P, y\)) stops and prints ‘Yes’; if \(P(y)\) does not halt, HALTS(\(P, y\)) stops and prints ‘No’

Build another program, CONFUSE(\(x\)), that takes a legal C program \(x\) as input. If HALTS(\(x, x\)) prints ‘Yes’, CONFUSE(\(x\)) loops forever; if HALTS(\(x, x\)) prints ‘No’, CONFUSE(\(x\)) stops.

Now, call CONFUSE(CONFUSE):

If HALTS(CONFUSE,CONFUSE) prints ‘Yes’, CONFUSE(CONFUSE) loops

If HALTS(CONFUSE,CONFUSE) prints ‘No’, CONFUSE(CONFUSE) stops

But CONFUSE can’t do both! So, HALTS cannot exist

• Maybe C programs are too hard; what about TOY programs?

 If the Halting Problem can be solved for TOY programs, it can be solved for C

 Use a C compiler to translate C programs to TOY code

• Ditto for simple, abstract machines — for any machine that can simulate others
More Integers or Reals?

• Just how many unsolvable problems are there?

• A simpler question: Are there more integers or more even integers?

\[
\begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & \ldots \\
0 & 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 & \ldots \\
\end{array}
\]

There’s a 1-to-1 correspondence, none missing, so there are as many integers as even integers!

• Are there more integers or more reals? Try the same technique: Make a 1-to-1 correspondence between integers and reals, listing the reals in \textit{any} order

\[
\begin{array}{cccccccccccc}
0 & 0.1001001100001001010010101\ldots \\
1 & 0.00010010010010010010100101\ldots \\
2 & 0.1111111111111111111111111\ldots \\
3 & 0.0001000000010001000100010001\ldots \\
4 & 0.1000\ldots \\
5 & 0.11100011100011100011100011\ldots \\
\end{array}
\]

This \textit{diagonalization} shows there’s at least one real not on the list! \textit{0.010011\ldots} the \textit{complement} of the bits on the diagonal above

There are infinitely more reals than integers

• All possible programs correspond to the integers, all possible functions correspond to the reals: \textit{Most} functions are not computable!
Implications

• Practical
 Computing has its limitations; work within them
 Recognize and avoid unsolvable problems
 Recognize hard problems, don’t try for optimal solutions
 Use heuristics for hard problems
 Abstract structures reveal much about practical problems

• Philosophical (Buyer beware: Consult a ‘real’ philosopher for the truth)
 We ‘assume’ that step-by-step reasoning can solve any technical problem
 ‘Not quite’ says the Halting Problem
 Anything that is ‘like a computer’ suffers the same flaw
 Physical machines
 Human brain?
 Matter?