Lecture 21. Regular Expressions

• A regular expression describes a set of strings by giving a ‘pattern’ for them

\(c \) Any nonspecial character matches itself \(A \)

. Any single character \(x \)

\(\backslash c \) Special character \(c \) \(\backslash . \)

[...,] Any character in ..., including ranges \([a-z0-9]\)

[^...] Any character not in ..., including ranges \([^0-9]\)

\(R_1R_2 \) Whatever matches \(R_1 \) followed by \(R_2 \) \([A-Z]_\)

\(R^* \) Zero or more occurrences of \(R \) \([a-z][a-z]^*\)

• Tokens in most programming languages can be described by regular expressions

\([1-9][0-9]^*\) Decimal constants in C

\(0[0-7]^*\) Octal constants in C

\([0-9][0-9]^*\backslash . [0-9]^*\) Floating constants in C

\([A-Za-z_] [A-Za-z_0-9]^*\) C identifiers

\"[^"\n"]^*\" String literals in C (quoted for the shell)
egrep

- Many UNIX tools support searching for patterns described by regular expressions
 - `egrep`, `grep`, `fgrep`
 - Search for lines matching regular expressions
 - `ed`, `vi`, `emacs`
 - Text editors
 - `sed`
 - Stream editor
 - `awk`
 - String-processing language

More ...

- **egrep** prints those lines that match the regular expression

```bash
% cd /u/cs126/examples
% egrep emalloc *.c
compile.c: Tree *t = emalloc(sizeof (Tree));
intlist.c: struct intnode *p = emalloc(sizeof (struct intnode));
intlist.c: struct intnode *p = emalloc(sizeof (struct intnode));
lookup.c:  ptr = emalloc(size*sizeof (char *));
lookup2.c: struct node *p = emalloc(sizeof (struct node));
sort2.c:   ptr = emalloc(size*sizeof (int));
sort3.c:   ptr = emalloc(n*sizeof (int));
sublistn.c: array = emalloc(size*sizeof (int));
sublistn2.c: array = emalloc(size*sizeof (int));
sublistn3.c: array = emalloc(size*sizeof (int));
```
egrep, cont’d

• /usr/dict/words contains \(~25,143\) words

 \%
 egrep hh /usr/dict/words
 beachhead
 highhanded
 withheld
 withhold

 How many words have 3 a’s one letter apart?

 \%
 egrep .a.a.a /usr/dict/words | wc -l
 50
 \%
 egrep .u.u.u /usr/dict/words
 cumulus

• **egrep supports extended regular expressions**

 ^ Beginning of line
 $ End of line
 \(R^+\) One or more occurrences of \(R\)
 \(R^?\) Zero on one occurrence of \(R\)
 \(R_1|R_2\) Whatever matches \(R_1\) or \(R_2\)
 (\(R\)) Grouping

\[0-9]^\+
\[0-9]^*\.|\?\[0-9]^+
\[A-Z]_^+
egrep, cont’d

- **egrep as a simple spelling checker:** Specify plausible alternatives you know

  ```
  % egrep "n(ie|ei)ther" /usr/dict/words
  neither
  ```

- **Find big files:** `du -ka` prints file sizes in 1Kbyte blocks

  ```
  % du -ka /etc | egrep '^[5-9][0-9][0-9]'  
  552 /etc/fs/nfs/mount
  553 /etc/fs/nfs
  837 /etc/fs
  850 /etc/lp/printers
  883 /etc/lp
  ```

- **Find all lines with signed numbers**

  ```
  % egrep '[-+]0-9+/\.?0-9]*' *.c
  bsearch.c: return -1;
  compile.c:                      strchr("+1-2*3", t->op)[1] - ’0’, dst,
  convert.c:Print integers in a given base 2-16 (default 10)
  convert.c: sscanf(argv[i+1], "%d", &base);
  ...
  strcmp.c: return -1;
  strcmp.c: return +1;
  ```

- **egrep has its limits:** It cannot match all lines that contain a number divisible by 5
Formal Languages

- A **language** is a (possibly infinite) set of strings over a finite alphabet.
- A regular expression describes a language: The set of all strings it ‘matches’.
- A **regular language** is any language that can be described by a regular expression.
- Essential aspects of regular expressions can be specified with only:
 - `0` or `1`: The alphabet.
 - `R_1 R_2`: `R_1` followed by `R_2`.
 - `R_1 + R_2`: `R_1` or `R_2` (same as `egrep`’s `|`).
 - `(R)`: Grouping.
 - `R*`: Kleene closure: 0 or more `Rs`.

 (10)* (0+011+101+110)* (01*01*01*)*

- What languages over \{ 0 1 \} are regular? All but one below are regular:
 - Bit strings whose number of 0’s is a multiple of 5
 - that begin with 0 and end with 1
 - with more 1’s than 0’s
 - with no consecutive 1’s
 - for a binary number that is a multiple of 2
 - for a binary number that is multiple of 5

- It is possible to cast **any** computation as a language problem.
Finite State Automata

• A **finite state automata**, an FSA, is another representation for regular languages

• A FSA is a simple machine with N states (0 to $N-1$)

 Start in state 0
 Read a bit
 Move to a new state depending on the bit and the current state
 Stop after reading last bit
 Accept if FSA is in one of its **final states**, _Reject_ otherwise

• An FSA ‘recognizes’ its input: ‘Decides’ if the input is in the FSA’s regular language

10(10)*

Transition table

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Odd number of 0s

10101010?

0001110?

• There is a one-to-one correspondence between FSAs and regular expressions

• It is possible to construct FSAs _automatically_ from regular expressions
'Bounce' Filter

• Flip isolated 0s and 1s in a bitstream

Input: 0 1 0 0 0 1 1 0 1 1
Output: 0 0 0 0 0 1 1 1 1

• State interpretations
 1. At least two consecutive 0s
 2. Sequence of 0s followed by a single 1
 3. At least two consecutive 1s
 4. Sequence of 1s followed by a single 0

• Do ‘output’ by monitoring the state transitions
Simulating FSAs

```c
int main(int argc, char *argv[]) {
    int i = 0, zero[100], one[100], final[100];
    for (i = 0; i < 100; i++)
        if (scanf("%d%d%d", &zero[i], &one[i], &final[i]) != 3)
            break;
    for (i = 1; i < argc; i++) {
        int state = 0;
        char *input = argv[i];
        for (; *input != '\0'; input++)
            if (*input == '0')
                state = zero[state];
            else
                state = one[state];
        if (final[state])
            printf("%s: accepted\n", argv[i]);
        else
            printf("%s: rejected; ended in state %d\n", argv[i], state);
    }
    return 0;
}
```

```
% cat fsainput
3 1 0
2 3 0
3 1 1
3 3 0

% lcc fsa.c
% a.out 10101010 10 101011 <fsainput
10101010: accepted
10: accepted
101011: rejected; ended in state 3
```
FSAs Can’t ‘Count’

• Theorem: No finite state machine can decide whether or not its input has the same number of 0s and 1s

• Proof

 Suppose an \(N \)-state machine can determine if its input has equal number of 0s 1s
 Give it \(N+1 \) 0s followed by \(N+1 \) 1s
 Some state \textit{must} be visited a least twice
 So, the machine would accept the same string \textit{without} the intervening 0s
 And that string doesn’t have the same number of 0s and 1s. Contradiction

\[0 \, 0 \, 0 \, 0 \, 0 \, 0 \, 0 \, 0 \, 1 \, 1 \, 1 \, 1 \, 1 \, 1 \, 1 \, 1 \]

• Need more powerful machines than FSAs

 How much more powerful? Language hierarchy

 \begin{align*}
 \text{Regular} & \quad \text{Finite-state automata} \\
 \text{Context-free} & \quad \text{Pushdown automata (can count 2 things)} \\
 \text{Context-sensitive} & \quad \text{Linear-bounded automata} \\
 \text{Type 0} & \quad \text{Turing machines}
 \end{align*}

Take COS 487, Theory of Automata and Computation