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Abstract 
Feedback-directed optimization (FDO) is a general term used to 
describe any technique that alters a program ~ execution based on 
tendencies observed in its present or past runs. This paper reviews 
the current state o f  affairs in FDO and discusses the challenges 
inhibiting further acceptance o f  these techniques. It also argues 
that current trends in hardware and software technology have 
resulted in an execution environment where immutable executables 
and traditional static optimizations are no longer sufficient. It 
explains how we can improve the effectiveness o f  our optimizers by 
increasing our understanding o f  program behavior, and it provides 
examples o f  temporal behavior that we can (or could in the future) 
exploit during optimization. 

1 Introduction 
We often optimize applications to eliminate unnecessary gener- 

ality and to streamline their execution on modem computing plat- 
forms. Feedback-directed optimization (FDO) is a general term 
used to describe any technique that alters a program based on infor- 
mation gathered at run time. This paper focuses on FDO techniques 
for improving performance. It presents a view of the field today and 
a vision for its future. It points out that current trends in application 
development, software engineering, hardware technology, and the 
Internet are increasing the need for FDO. And it argues that, to meet 
this need adequately, we should alter some commonly-held percep- 
tions about executables and the execution engine. 

Traditionally, FDO has been viewed as an off-line" technique: 
The programmer runs an application one or more times to gather 
statistics that summarize the program's prevalent behavior and 
describe its execution environment. These statistics are then used to 
create a new program binary. Off-line refers to the fact that the opti- 
mization takes place after (as opposed to during) program execu- 
tion. This type of FDO has a long history of use by programmers 
interested in ttming their code to increase performance. In addition, 
researchers in programming languages and compilation have pro- 
posed and built a wide range of systems that are able to perform 
FDO with little or no progrvmmer intervention. 

Though the application of FDO is most often associated with 
off-line techniques, perhaps the greatest commercial success of 
FDO has come from the area of computer architecture. In the 
design of modern microprocessors, computer architects dedicate a 
large amount of their silicon budget to both capturing and exploit- 
ing program tendencies at run time. Caches and out-of-order execu- 
tion are just two examples of hardware techniques that use feedback 
to affect a program's execution. Caches reduce the cost of some 
memory accesses at the expense of others based on observations of 
previous program activity. Out-of-order execution dynamically 
adjusts the order of the instructions in the instruction stream based 
on observations of instruction latency. Caches and out-of-order exe- 
cution arc on-line versions of FDO. As I will discuss, there is a 
growing interest in software-based on-line techniques for FDO. 

My claim that programmers, compilers, and hardware routinely 
perform many kinds of FDO shows that I have a very broad view of 
the definition of FDO. Specifically, I view any technique that alters 
the realization of a program based on tendencies observed in the 
present run or in past runs as a FDO technique. Furthermore, these 
techniques may be implemented in software, hardware, or some 
combination of the two. Tasks that we have traditionally viewed as 
compiler tasks, such as instruction scheduling and register alloca- 
tion, are now routinely done in hardware. Many of the recently- 
announced on-line techniques for FDO rely on a combination of 
hardware and software mechanisms. 

In addition to my broad view of what FDO is, I also have a 
broad view of when we should be able to apply FDO. My view is a 
result of the following answers to two simple questions: When is 
the first time that I would like my program to ran quickly? When 
will I no longer need my program to run quickly? The obvious 
answers are, respectively, immediately after it is compiled for the 
first time and once I have run it for the last time. If we define the 
lifetime o f  a program as the time between its first compilation and 
its last execution (inclusive), then I am saying that we should be 
able to perform FDO at any time during a program's lifetime. 

Thinking about opHmlzation as recurring when needed is conve- 
nient for several reasons: 

• First, this view directly addresses the well-known issue that 
we cannot build a fully optimizing compiler, one capable of 
transforming any program into an equivalent program with 
identical input/output behavior and a provably-~nlnimal execu- 
tion time [7]. If optimization can occur at any point in a pro- 
gram's lifetime, we can imagine scenarios in which it is 
possible to apply new optimization techniques to existing 
binaries even after they have been shipped. 

• Second, this view gives us the freedom to perform an optimi- 
zation when the data for that opt/mization is available (Adve et 
al. [1] refer to this idea of an optimization continuum) and to 
vary the persistence of the optimizations that we perform. 
Optimizations that are produce undesirable side effects, such 
as binary bloat and machine dependency, would be moved 
toward the shorter end of the persistency scale. Today, soft- 
ware vendors hesitate to perform traditional profile-driven and 
machine-specific optimizations because these optimizations 
will persist for the entire lifetime of a program. This persis- 
tence implies that the usage patterns and machine environment 
identified at compile time remain unchanged over the pro- 
gram's lifetime. For many commercial applications, this is a 
bad assumption. By no longer requiring the effect of an opti- 
mization to persist indefinitely, we can allow executables 
adapt to changes in their usage and environment. 

• Thffd, this view helps us to regain the original promise of soft- 
ware--that it is flexible and easy to change. Much of the rapid 
acceptance of run-time binding techniques has come from the 
software industry's realization that one can use these tech- 
niques to simplify the task of patching shipped binaries and 
integrating third-party software extensions. 



The rest of this paper is organized as follows: Section 2 
describes how recent advances in hardware and software technol- 
ogy are increasing the need for FDO (in general) and on-line opti- 
mization (in particular). Having established the importance of the 
area, Section 3 proceeds with a brief review of the current state of 
affairs in FDO, and it presents a categorization of existing 
approaches. From this review, we extract two definite trends: a 
movement toward units of optimization based on run-time program 
behavior; and a movement toward executables as mutable objects. 
Sections 4 and 5 discuss each of these trends in turn. Section 6 enu- 
merates several challenges to the vision presented in this paper, and 
it highlights on-going research projects that may address these chal- 
lenges. Finally, Section 7 concludes. 

2 The Increasing Need for FDO 

This section describes the promise of FDO and motivates the 
need for the broader approach to program optimization discussed 
above. Section 2.1 begins with a brief discussion of profile-guided 
compilation (PGC), its growing commercial acceptance, and its 
future potential. Though PGC is a powerfifl technique for FDO, it 
has many shortcomings. Section 2.2 describes the limitations of the 
traditional static model of optimization, and it lists several trends in 
hardware and software technology that make this traditional static 
model an ineffective and incomplete solution. Dynamic FDO sys- 
tems have been built that address one or more of these trends, and 
in Section 3, we look at a representative subset of those efforts. 

2.1 Profile-guided compilation 

As Brian Kemighan and Rob Pike state in the preface of their 
book entitled The Practice of Programming, simplicity, clarity, and 
generality form the three basic principles of good software [31]. 
PGC addresses the performance impact of generality, the third of 
these principles. By generality, Kernighan and Pike mean that a 
program should work well in a wide array of situations [31 ]. How- 
ever, a program written to fimction in many situations is typically 
slower than one written to handle one or a few specific situations. 
In PGC, the compiler attempts to mitigate the cost of a program's 
generality by using information, such as a sllmmary of how often 
each basic block in the compiled program executed in one or more 
previous program runs (i.e. block profiles), to focus its optimization 
efforts on the frequently executed portions of the program and to 
understand the run-time tendencies within these portions. 

Though PGC has been around for many years, it has only 
recently begun to be commercially accepted and widely used. 
Today, almost every popular production compiler, with the notable 
exception of the GNU C compiler, has a mode in which it performs 
PGC. PGC exists commercially not because it is easy to support or 
use (as discussed below), but because it achieves noticeable perfor- 
mance improvements. The rest of this section will focus on the 
effectiveness of PGC in the Compaq GEM compiler, as reported by 
Cohn and Lowney [14]; this work is representative of the results 
reported for other commercial compilers [8,42]. 

Cohn and Lowney report that the SPECint95 benchmarks run 
17% faster (on average) when compiled with FDO than when com- 
piled with GEM's most aggressive level of classical optimization 
[ 14]. This sizable speed-up is quite impressive given the maturity of 
the baseline against which it is compared. Even so, even more 
impressive results are possible given the trends in application 
development and the recent research results in PGC. 

Though the benchmarks in SPECint95 are real applications, sev- 
eral researchers have noted the qualitative differences between 
these applications and the graphical and interactive deskktop appli- 
cations used by a large segment of the population. Lee et al. [33] 

suggest that the dominant execution paths in these desktop pro- 
grams may be less predictable than the paths in SPEC benchmarks. 
They note that the desktop benchmarks have a larger number of fea- 
tures and that more of their execution is determined by interactions 
with a user. Wang, Pierce, and McFarling [51] state that small 
changes in the position of the mouse or windows on a screen can 
cause large changes in the execution paths of today's popular inter- 
active applications. Wang and Rubin [50] go farther and show how 
differences in the usage of these desktop applications impact pro- 
file-based program translation. In addition, Cohn and Lowney [14] 
mention briefly that in their experience the benefit from PGC often 
grows as the size and complexity of the application grows. 

The GEM compiler, like most other commercial compilers, uses 
point profiles to direct its optimization efforts. Block and edge pro- 
files are examples ofpoim profiles--profiles that provide an aggre- 
gate execution count for individual program points. In research, 
there has been a resurgence in the area of PGC because of the 
development of more detailed profiles. A path profile, which 
records execution counts for sequences of program blocks (i.e. pro- 
gram paths), is an example of one of these more detailed profiles 
[11,54]. Path profiles provide a greater level of insight into a pro- 
drain's run-time tendencies. Several researchers [22,25,26,53] have 
shown that the use of more detailed profiles during optimization 
can yield greater improvements in program performance. 

Overall, work in the field of PGC demonstrates that the potential 
benefits of program specialization will increase as 

• applications become more complex, include more features, 
and depend more on user input, and 

• compilers are configured to use more detailed kinds of profile 
information. 

The question is: Can we regularly achieve the full potential of 
this approach7 Unfortunately, I believe that the answer is no. Even 
if we ignore the demands involved in profiling an application, 
which are well documented elsewhere (e.g., see Conte et al. [17]), it 
is still quite difficult to achieve sizable and consistent benefits using 
only PGC. 

2.2 Ineffectiveness of traditional model 

PCGC uses a fairly static model of program specialization: In 
order to optimize the program for a new set of program tendencies, 
the program must be re-compiled. As such, PGC works well only 
when the actual run-time program tendencies match those used dur- 
ing specialization. We can make a similar statement about machine- 
specific optimization: R works well only when the characteristics of 
the actual execution engine match those assumed during optimiza- 
tion. The obvious answer to these problems is to perform FDO at a 
point closer in time to the program execution. In this way, the opti- 
mizer can use accurate and timely information concerning the exe- 
cution environment and program usage. This has led researchers to 
view optimization as a continuum [1] and to explore a wide range 
of more dynamic techniques for FDO. (I use the generic term 
dynamic optimization when referring to the range of techniques 
beyond PGC.) In a moment, I will reflect on this range, but first I 
focus on the reasons for the recent explosion 1 in the level of interest 
and activity in the area of dynamic optimization. 

Much of the recent interest in dynamic optimization stems from 
a widely-held belief that these techniques can address the perfor- 
mance needs of the recent trends in computer architecture, software 
engineering, and the Interact. Stated another way, it is the ineffec- 

I. There have been three successful workshops on binary translation, feed- 
back directed optimization, and dynamic optimization all during the first 
five months of the 1999-2000 academic year. 



tiveness of the traditional static model of optimization in handling 
these trends that has fueled the recent explosion in dynamic tech- 
niques. 

To better understand the impact of the recent trends on the tradi- 
tional static model, let us quickly review the history behind com- 
pile-time optimization. Assemblers and then compilers were 
originally developed to raise the level of programming abstraction. 
By removing the need for the programmer to deal with the intrica- 
cies of the target machine, the programmer was freed (in theory) to 
focus on algorithmic issues and to produce code that was easy to 
understand, debug, and maintain. Compile-time optimiTation was 
developed to eliminate the performance penalties of  this abstrac- 
tion. As Aho et al. [2] state, "if  a compiler can be relied upon to 
generate efficient code, then the user can concentrate on writing 
clear code." In fact, much of the early success of FORTRAN is 
attributed to the fact that the IBM FORTRAN compiler was able to 
produce optimized code that rivaled the performance of hand-coded 
assembly [9]. 

Trends in computer architecture. As mentioned in the intro- 
duction, hardware techniques for FDO began to appear as soon as 
computer architects noticed the growing gap between processor and 
memory speeds. The problem was that the traditional static model 
of optlmiTation froze in the executable not only what was to be 
done at run time but also what was thought to be the best way to do 
it. As the pace of hardware evolution and the importance of support 
for legacy binaries have grown over time, the burden of re-optimiz- 
ing a binary for the current usage and machine environment has 
fallen on the hardware. Re-compilation to achieve re-optlmization 
is viewed as commercially impractical. As Smith and Sohi [44] 
state in their survey paper on the design of modem superscalar 
microprocessors, hardware should simply view executables as a 
specification of what has to be done and not how it should be done. 

Unfortunately, simply augmenting the traditional static model of 
optimization with run-time opHmiTation in hardware is not a pana- 
cea. In fact, it does not even adequately address all of the opHmi7a- 
tion issues introduced by computer architects. For example, 
architects extend existing ISAs with new instructions (e.g., prefetch 
or multimedia instructions) because they want the compiler to gen- 
erate and the executable to use these new instructions directly. 
There would be no need for these instructions to appear in the ISA 
if  the hardware could dynamically transform existing executables 
and achieve the same level of performance. Furthermore, next-gen- 
eration architectures like the IA-64 [18] have been designed with 
the expectation that the compiler will apply sophisticated profile- 
guided and interproceduml optlmiTations--many of which are still 
being developed. Without these optimizations, much of the poten- 
tial performance benefits of these new architectures will be lost. 

Trends in software engineering. One of the claims made by 
proponents of  object-oriented programming is that this paradigm 
leads to code that is easy to understand, reuse, and maintain. How- 
ever, object-oriented mechanisms like dynamic dispatch and pro- 
gramming styles like code factoring yield programs that are 
difficult to optimize using traditional static approaches. There exists 
a large body of  work addressing the performance penalty of object- 
oriented languages and programming styles; specific solutions and 
approaches can be found in the proceedings of  the ACM SIGPLAlq 
Conference on Object-Oriented Programming Systems, Languages, 
and Applications (OOPSLA) and the ACM SIGPLAN Conference 
on Programming Language Design and Implementation (PLD1). 
With respect to the point of this paper, we note a rising use of  
object-oriented techniques in the commercial world and a rising 
interest in on-line FDO techniques for overcoming the aforemen- 
tioned performance penalties. In addition, we note the fact that 
applications written in these languages have smaller programmer- 

specified code units than applications written in imperative lan- 
guages like C and FORTRAN. 

The commercial acceptance of run-time binding techniques also 
severely limits the effectiveness of traditional static optlmiTation. A 
growing number of software manufacturers choose to ship their 
applications as collections of dynamically linked libraries (DLLs). 
DLLs are easier to create and update than statically linked libraries 
[34]. They simplify for a software vendor the task of patching 
shipped binaries and integrating third-party extensions. However, 
static optimization across module boundaries becomes impossible 
if the only time that the entire executable exists is at run time. 

Trends in the Internet. The tremendous growth and interest in 
the Intemet has brought with it a call for the development of mobile 
code. The idea behind mobile code is that applications written using 
this paradigm can be distributed across computer networks and 
automatically run upon arrival at the network end point. Implicit in 
this idea is the expectation that these applications would be able to 
run across a wide range o f hardware platforms and computing envi- 
rouments. Traditional PGC assumes that the target hardware plat- 
form and computing environment are relatively stable. With 
projects like HotSpot [47] and Jalapeflo [12], computer companies 
have already come to the realization that, if they want mobile code 
written in Java to not only run but run efficiently, they must adapt 
traditional profile-guided optimization techniques to the run-time 
environment. 

3 FDO Today 
As I mentioned in the introduction, FDO is a well-accepted 

technique used by almost every hardware manufacturer to improve 
the performance of the applications ~mnlng on their processors. 
Though this is the most successful use of FDO, many other 
approaches exist. Table 1 presents a categorization of  these existing 
approaches based primarily on how dynamic each is (i.e., how 
quickly each reacts to changes in program tendencies or the execu- 
tion environment). In general, PGC is least dynamic of  all of the 
approaches, while run-time optimization in hardware is the most. 
For each category, I provide several examples. 

I will also use this categorization to make general comments 
about the transparency, scope, and run-time overhead of  each 
approach. Transparency refers to the amount of  programmer/user 
effort involved in performing FDO. I consider a system that is able 
to perform FDO automatically (i.e., without any prograrnmer assis- 
tance and without the knowledge of the user) to be fully transparent. 
Scope refers to the size of  the code segment analyzed during opti- 
mization; I refer to this segment as the unit of optimization. Typi- 
cally, the larger the scope is the more aggressive, and thus effective, 
the optimiTation. Section 4 discusses this issue in much greater 
detail. 

I discussed PGC in Section 2.1, and there I mentioned that PGC 
is often characterized by large optimization scopes and zero run- 
time overheads (all of the analysis and transformations for optimi- 
zatinn are done at compile time). However, as I noted in Section 
2.2, it is becoming increasingly difficult to maintain a large optimi- 
zation scope due to recent trends in software engineering. Further- 
more, this approach suffers compared to the others due to its lack of 
transparency and inability to react quickly (or at all) to changes in 
program behavior or the execution environment. Approaches for 
off-line optimization systems based on continuous profiling were 
developed to address these problems. 

Systems like Morph [55] had the goal of making profile collec- 
tion and executable re-optimization automatic. This goal was 
accomplished by rnnning a profile collection agent and a re-optimi- 
zation agent directly on the end user's machine. The profile collec- 
tion agent would continuously gather and maintain a database of 
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Category Examples 

Profile-guided compilation 

Off-line optimization 
using contin/aous profiling 

Run-time code generation 

On- ".~e ol~timization 
I n  SOlZWar~ 

On-line optimization 
in ha/dware 

GEM [ 14], IMPACT [29], .~ 
Machine SUIF [45] 

DCPI [5], FX!32 [28], ~ .  '~ 
Morph [55] ,.~f 

' c  [2o], D~C [23], 
Tempo [ 151 $ 

Crusoe [32], DAISY [19], Dynamo [10], 
I)ynamic Reseheduling [16], .~ 
Jaiapefio [12], HotSpot [47] ~ 

Trace caches [40], ~ 
dynamic trace optimi~,ations [21 ] 

Table 1: Categorization of  existing approaches for FDO. The lists of  example systems are not meant to be exhaustive. In particular, 
these lists focus mainly on the recent efforts. 

profiles. Since these profiles were gathered on the end user's 
machine, they obviously reflected the prevalent program usage. In 
the background, after the user had stopped running an application, 
the re-optimization agent would run, analyze the profile data 
recently collected, and re-optlmize the application if  it determined 
that re-optimization would be worthwhile. The ran-time overhead 
of this kind of approach is kept low by using low-overhead profil- 
ing systems (e.g., DCPI [5]) and because re-optimization occurs 
off-line. The scope of  this approach is actually better than PGC 
since optimization can occur on the linked executable. Notice that 
re-optimization may include translation from one instruction set to 
another. 

Instead of  completing the optimization process at compile time 
and then attempting to re-optimize the application after one or more 
program runs, techniques for m - t i m e  code generation stage the 
compilation process so that optimization can occur during the pro- 
gram run. In general, systems like DyC [23,24] perform the major- 
ity of the optimization process at compile time and leave only 
selected pieces for completion at run time. In particular, these sys- 
tems use concepts and techniques from the partial evaluation eom- 
mtmity to determine what program segments could benefit from 
optimization based on information available only at run time. The 
compiler then creates an executable capable of capturing that run- 
time information, performing the associated optimization, and com- 
pleting the code generation process. Because the bulk of  the work is 
done at compile time, these systems can exhibit low run-time over- 
heads. As structured today, the systems for run-time code genera- 
tion rely on the programmer to indicate what program segments to 
optimize dynamically. Them is however on-going work investigat- 
ing ways to improve the transparency of this kind of an approach 
(e.g., see Mock et al. [37]). 

I separate the on-line optimization systems in the last two cate- 
gories in Table 1 from those listed under dynamic code generation 
because all of the remaining approaches share the goal of being as 
transparent as possible. Still, these last two categories encompass a 
wide range of  approaches and techniques. I divide them into only 
two broad categories: those that use only software or a combination 
of  hardware and software techniques (on-line optimization in soft- 
ware), and those that use only hardware techniques (on-line optimi- 
zation in hardware). 

The hardware-only approaches are simply the next steps in the 
logical progression of  the computer industry's work on caching and 
out-of-order execution. Computer architects are working hard to 
increase the optimization scope from something akin to peephole 
optimizations to something closer to trace-based optimizations 
(e.g., see Friendly, Patel, and PaR [21]). In the future, the hardware 
will not just renumber registers, rearrange the instruction stream, 

and remove unconditional branches, but it will change and even 
eliminate large sequences of instructions. 

The approaches that include some element of  software support 
vary significantly in the scope of their on-line transformations, 
since some of these approaches also perform binary translation. 
However, in terms of their application of  sophisticated optimiza- 
tion, all of  the recent systems have been selective: optimization 
occurs only on those program segments that account for the major- 
ity of  the execution time. This emphasis is a direct consequence of  
the need to minimize the run-time overhead of  the optimizer. To get 
the most benefit from this time spent optimi~/ns, we want to iden- 
tify not only those program segments that are dynamically hnpor- 
tam, but also those that are most amenable to optimization. How to 
best accomplish this is on-going research and the topic of Section 4. 
Overall, I feel that we have just begun to explore the potential of the 
systems in this category. 

Ill summary, Table 1 illustrates that there exists a wide range of 
approaches that use F o e  to alter a program and improve its run- 
time performance. If  we step back from the details however, we can 
see two definite trends emerging from this set of  technologies. The 
first is a movement toward units of optimization based on a pro- 
gram's run-time behavior and not on a set of  programmer-specified 
boundaries. The reasons for this movement are further discussed in 
Section 4. The second is a movement away from executables as 
immutable objects. As we have discussed, the importance of  F O e  
has grown as hardware and software technology has advanced and 
as the lifetimes of applications have increased. Since FOes  depend 
upon more than just information gleamed from the static code base 
(i.e., they depend upon information that may change in the future or 
may not even be available at compile time), it is unreasonable to 
expect that the compiler can produce an executable that is appropri- 
ate and effective for the entire lifetime of  any long-lived applica- 
tion. In Section 5, we present further arguments for the concept of 
mutable executables. 

4 The Unit of Optimization 
Traditionally, static optimizers have used code boundaries 

defined by the programmer as the boundaries for their units of  opti- 
mization. For example, compilers often optimize each procedure in 
an application in isolation. As programmers concern themselves 
more with issues of understandability and maintainability and as 
more programmers adopt the object-oriented programming para- 
digm, these programmer-defined boundaries will make less and less 
sense as delimiters for units of optimization. The brute-force 
approach of  analyzing and transforming the application as a single, 
monolithic piece of  code fails because many of  our existing global 
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(a) Edge profile. 

IAIBIDIAIBIDIAIcIDIAIBIDIAIBIDIAICIDI 
Trace #1 : ((ABD)2(ACD)I) 2° 

IAIBIDI °°° IAIBIDIAIcIDI "°° IAICIDI 
Trace #2: (ABD)4°(ACD)2° 

(b) Two traces that produce the edge profile in (a). 

Figure 1. Example of  how point profiles limit our understanding of program behavior. From the edge profile, we cannot 
determine if  the program ran trace #I or #2. 

opthnizations do not scale well as the optimization scope grows. 
This approach also runs counter to the trend toward shipping appli- 
cations as a collection of  independent DLLs. A different approach 
is needed. 

4.1 Setting boundaries based on run-time behavior 

This section argues that the optimization of a program by inde- 
pendently optimizing pieces of  that program is not the problem. By 
continuing this approach, we can continue to use and benefit from 
the large pool of existing global optimization algorithms. Instead of 
changing how we determine the size of  the units of  optimization, 
this section argues for changing how we determine the contents of 
them. In particular, optimizers should select optimization units that 
reflect the current program behavior (as determined by analysis of 
feedback information) and are reasonably sized (given the compu- 
tational complexity of the optimization techniques). 

As noted by Cohu and Lowney [13], static optimizers appear to 
miss a large number of  optimization opportunities when one 
reviews the dynamic instruction stream. Computer architects have 
also noticed this fact and proposed techniques such as value predic- 
tion [35] and instruction reuse [46], which exploit the redundancies 
in the dynamic instruction stream. From the perspective of this 
paper, these observations argue that we group together in the units 
of  optimization those segments of the application that execute fre- 
quently together. 

This idea is not entirely new. Hank, Hwn, and Rau [27] pro- 
posed this kind of an approach for traditional PGC systems, and the 
mechanism for instruction scheduling and register allocation in the 
Muitifiow compiler [36] is a limited example of this kind of an 
approach. All of the prior work however has used point profiles--- 
profiles such as edge or block counts that aggregate how often indi- 
vidual program points appeared in an exeention trace---to identify 
the segments of the application thaat execute frequently together. 
Though these profiles provide us with more information about a 
program's behavior than we can determine through static analysis 
alone [49], the level of  understanding that we can gain from point 
profiles is limited, especially if  the program's execution involves 
non-trivial control flow. Figure 1 provides an example where two 
different executions of the same code segment produce the same 
edge profile. 

Recent work in the area of  temporal profiles---profiles such as 
path counts that aggregate how often sequences of basic blocks 
appeared in the execution trace [ 11,54]--provide more insight into 
the program's temporal behavior. Using temporal profiles, it is pos- 
sible to build units of  optlmiTation that more accurately reflect the 
run-time behavior of  an application. For instance, Young and Smith 
[53] describe how to use path profiles to construct and schedule 

superblocks that match the most frequently occurring program 
traces. Using the edge profile in Figure 1, a traditional superblock 
uuroller would produce an unrolled loop body with the block 
sequence ABDABDABD (assuming an unrolling factor of three), 
since all it can determine is that block B occurs more frequently 
than block C. Using path profiles of the traces in Figure 1, Young 
and Smith's algorithm would produce the following: a single 
unrolled loop body with the block sequence ABDABDACD for the 
path profile of trace #1; and two unrolled loop bodies with the block 
sequences ABDABDABD and ACDACDACD for the path profile 
of trace #2. Clearly, we can achieve a higher completion rate by 
using the path-profile-based unrollings than the edge-profile-based 
one. Gloy and Smith [22] collect a different kind of temporal profile 
and show how to use it to achieve better procedure layouts. 

4.2 Understanding phased behavior 

Though the optimization community has gained greater insights 
into program behavior based on existing temporal profiling tech- 
niques, I believe that we have only begun to fred ways to identify 
interesting program behavior and use that information to direct pro- 
g r ~  optimization. This section describes one as yet largely 
untapped aspect of program behavior, called phased behavior, that 
software-based on-line optilnization systems can use to make their 
optimization efforts cost effective. In this section, I define what I 
mean by the term phased behavior, illustrate some examples of 
phased behavior, and argue why such behavior might be interesting 
to an on-line optimization system. Section 4.3 uses some of the 
insights in this section to describe how we can build on-line moni- 
toting systems that are able to identify the important run-time 
behaviors of an application in time to exploit them. 

I define phased behavior as the tendency for a piece of  code to 
exhibit a sequence of behaviors, each for an extended period of  
time. For the purposes of tlfis definition, the time period may corre- 
spond to a single program run, or it may span multiple runs. In an 
application that displays phased behavior, there exists at least one 
code region where optimizing for aggregate behavior is sub-opti- 
mal. We can obtain better performance i f  we apply one optimization 
strategy to that region for one phase of  the program's execution and 
another strategy during another phase. Phased behavior is problem- 
atic when the persistence of a FDO is longer than the phase. For 
example, phased behavior across program runs is problematic for 
the off-line optimization schemes that assume the aggregate behav- 
ior of a code segment is dominant. 

Branch-based phased behavior. I begin with examples of  phased 
behavior associated with the execution of  conditional branches. The 
run-time handling of conditional branches has a tremendous effect 



if (flat__object(isect.object)) { // b35 
if (n__dot__v < 0.0) { // b36 

// ... 

} 

Figure 2. Code snippet f rom shadeO in ray.c. 
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Figure 3. Execution trace o f  b36 on the input seenel. The 
horizontal axis plots time from left to right as measured in 

executions o f  this conditional branch. This branch executed 
a total o f  279,817 times. For  each branch execution, we 
mark in the vertical dimension whether the branch was 

taken (T) or not taken (N). 

on the performance of modem systems, and thus any new insights 
that we can gain in this area will likely have an important impact on 
the industry. I start with obvious examples of phased behavior in 
the execution of individual branches and then move to less obvious 
(but probably more common) examples. I conclude with some 
thoughts on the effect of these observations on program optimiza- 
tion. The interesting issue here is that all of the examples involve 
branches that are weakly biased; current optimization strategies 
concerned with conditional branches are tailored toward the identi- 
fication and exploitation of highly-biased branches. Except for code 
transformations like smile correlated branch prediction [54], 
weakly biased branches are largely ignored by modem optimization 
techniques. 

My f'n-st few examples focus on two conditional branches that 
occur in the s h a d e  procedure from r a y .  c ofrayshade,  the C ray- 
tracer developed by Peter Hoist Andersen [6]. Figure 2 lists the 
code associated with these two branches, which I label b35 and b36. 
This code looks much like the code associated with the other condi- 
tional branches in r a y .  e, and thus there is not any obvious syntac- 
tic clue alerting us to the following interesting program behavior. 

Figure 3 plots the execution trace of b36 when rayshade is run 
on the input scene1. In the aggregate, b36 is a weakly-biased 
branch, a branch taken 44.0% of the time. As Figure 3 illustrates 
however, b36 is taken exclusively in its first 123,090 executions, 
and it is never taken alter that. This is a clear example of phased 
behavior; b36 exhibits one behavior and then another, each for a 
long period of time. 

Figure 4 plots the execution trace of b35 during the same run. 
This figure displays an interleaving of taken and not-taken execu- 
tious (non-shaded segments) that does not appear in Figure 3. Even 
so, the execution of b35 contains a long period of time where it is 
always taken and two smaller periods where it is always not taken. 
Overall, nearly 50% (49.1%) of this branch's execution is spent in 
the large taken segment--fairly amazing for a branch that is taken 
only 66.9% of the time in the aggregate. 

Figure 5 shows that the phasing behavior in Figure 3 is not 
something that we could exploit using traditional profile-driven 
optimization. Figure 5 plots the exeeution trace of b36, but this t/me 
when rayshade is run on the input scene24. Comparing Figures 3 
and 5, we see that b36's execution is now more "random" than it 
was under scene1. The phased behavior of this branch is influenced 
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Figure 4. Execution trace o f  b35 on the input scenel.  We use 
shading to distinguish contiguous Segments o f  taken (or not- 

taken) executions f rom those segments that have an interleav- 
ing o f  taken and not-taken executions. For  example, between 
executions 183272 and 595513, inclusive, b35 is only taken. 
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Figure 5. Execution trace orb36  on the input scene24. 

by the input data set. However, the aggregate behavior of this 
branch has not changed noticeably; b36 is taken 39.8% of the time 
under scene24 and 44.0% of the time under scene1. 

As one might expect, the execution trace of a weakly-biased 
branch does not always contain long periods of time where the 
branch executes in only one direction. As illustrated in Figure 6 
however, some of these weakly-biased branches still exhibit phased 
behavior that is interesting to an opfimiTation system. In particular, 
Figure 6 looks at phased behavior in the bias of a conditional 
branch (labeled b99) in the SPECint92 benchmark compress. 

Figure 6 shows that the bias of b99 oscillates between periods of 
low and high bias over time. In the aggregate, this branch would be 
classified a s  a weakly-taken branch, based on its average taken per- 
centage of 78.0%. Clearly, this is the wrong classification for peri- 
ods, like the beginning of the program, where the branch is nearly 
always not taken. 

The actual shape of the curve in the graph plotting bias against 
time depends upon the characteristics of the input data set. To 
understand this, I first must explain a bit more about the functioning 
of the code in this section of compress. Branch b99 is part of the 
hashing code for the code table in compress. Specifically, b99 
checks to see if the probed slot in the code table is empty after we 
found that we did not have a hash hit. This explains the initial 
increase in the bias of this branch; the table is initially empty and 
slowly fills, changing the branch's bias. The later abrupt changes 
from a high to a low bias are due to the fact that compress imple- 
ments block compression with an adaptive reset, as described in the 
comments in the source code of compress. I f  the compression ratio 
begins to decrease after the code table reaches a predefmed fill 
threshold, the program will clear the code table, output a special 
CLEAR code, and begin a new encoding. Since this criterion 
depends upon the characteristics of the input, the shape of the plot- 
ted curve also depends upon the characteristics of the input. 

The vast majority of optimizations concerned with branching 
behavior focus their attention on the aggregate behavior of each 
branch. For the branches discussed above, this would result in lost 
optlmiTation opportunities. The clear phased behavior in Figure 3 
leads us to consider one optimiTation strategy for the first 123,090 
executions of b36 and a different strategy for the last 156,727. Fur- 
thermore, given the dependence ofb36's behavior on the input data 
set, we would probably want to implement this flexibility in an on- 



// starting at line 790 
if (hit in hash table) 

// ... 

else if (empty slot) // b99 
// ... 

else 
// probe hash table 
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Figure 6. Execution trace of b99 in compress.c. The top graph 
plots the bias of this branch at a granulari~ of SO00 execu- 

tions. This branch executed a total of  433,223 times. The bot- 
tom graph illustrates the pattern of taken and not-taken 

outcomes in the first 2500 executions. 

line optimizer. Considering b35, adaptation between an optimiza- 
tion strategy involving speculation (to take advantage of long exe- 
cution runs in one direction) and predication (for those execution 
runs with no obvious predominant direction) is a potentially fruitful 
avenue of attack for the branch execution pattern in Figure 4. 

Existence of sizable periods of high bias in the execution history 
of weakly-biased branches implies a change in the importance of 
individual program paths over time. This observation may affect 
how we build path-based optimizers. For example, if a branch 
within a program path transitions from mostly taken to mostly not- 
taken (or vice versa), it is likely that the common paths before and 
after this transition share code blocks. To get the most benefit, a 
path-based optimizer would duplicate the common blocks. Code 
duplication impacts performance by stressing the memory hierar- 
chy. If we can identify the phase transitions, we could dynamically 
generate and cache the appropriate path-based optimi~ation--- 
potentially improving performance by never having both versions 
in memory at the same time and by linking each in as if the other 
had never existed. 

Value-based phased behavior. Phasing occurs not only in a pro- 
gram's control flow, but also in its value stream. The following are 
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Load executions [i ,127499] 

Figure 7. Value trace of  load d2542 in vortex. The horizontal 
axis plots the executions of  this load from left to right. For 

each load execution, we record in the vertical dimension the 
value returned. This load returns only two unique values: the 
base addresses of  arrays named (for convenience) al and a2. 
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Load executions [1,73403] 
Figure 8. Value trace of  load d4531 in m88ksim. This load 

restores the return address register. Since the load returns only 
two unique values, a d d u n s i f f n e d  is called from only two 

call sites during this run. 

two clear examples of phased behavior in the values returned by 
load instructions. Techniques like value prediction [35] have 
increased the research community's interest in the values loaded by 
programs. Like conditional branches, the handling of memory loads 
has a large impact on the overall performance of applications. 

Figure 7 plots the value trace of a load (called d2542) from the 
procedure BMT commitParts in bmtl0 .c of the SPECint95 
benchmark vortex. This instruction loads the base address of the 
array V l i  s t s from the global pointer table. As Figure 7 shows, the 
program initially accesses one array in memory through this pointer 
variable and then switches to another array for the remainder of the 
run. Even though this load returns more than one value, a run-time 
optimizer could take advantage of the fact that the values are not 
interleaved in the value trace. 

As we saw earlier, interesting phased behavior may occur in 
traces where there is an interleaving of different results. Figure 8 
plots the value trace of a load (called d4531) at the end of procedure 
addunsigned in dpath.c of the SPECin~95 benchmark 
m88ksim. This load restores the return address register just before it 
is used in the procedure return. The value Irace shows that addun - 
signed is called from just two call sites (named csl and cs2 for 
convenience) during the program run. The interesting aspect of this 
trace is that, except for two small pieces at the beginning and end of 
the trace, addunsigned is called exclusively from csl. During 
this extensive time period, an on-line optimizer could elect to inline 
a d d u n s i g n e d  at csl and do so without increasing the instruction 
memory footprint. 

Related Work. Though this section has presented examples of 
phased behavior, we do not as yet understand how common this 
behavior is or how much benefit we could gain from exploiting it. 
Even if we cannot use an improved understanding of phased behav- 
ior to make applications run faster, there are other ways in which 
we can use this information. For example, Sherwood and Calder 
[43] are investigating this kind of program behavior to help reduce 
the amount of time it takes to perform architectural simulations. By 
understanding the location and duration of a program's phases, 
computer architects could state with confidence that a simulation of 



only small pieces of a program's execution would match the results 
obtained from a simulation of the entire program execution. Albo- 
nesi [3] has proposed an adaptive processor architecture based on 
observations of variations in a program's instruction level parallel- 
ism (ILP). (3ouppi [30] was the first to examine the distribution of 
ILP in programs.) Albonesi describes a processor that automatically 
reduces the complexity of its pipeline when ILP falls so that the 
clock frequency (and thus performance) can improve. Finally, we 
may be able to use our understanding of program phases to design 
better techniques for dynamically managing processor temperature 
and power [39]. 

4.3 Monitoring to find the important run-time units 

To this point, we have discussed the need to build optimization 
units whose boundaries reflect a program's current behavior, and 
the potential benefits of collecting many different and extensive 
kinds of temporal information. To take advantage of this informa- 
tion in an optimizer, there are two more questions that we need to 
discuss: how we can monitor a program's execution to collect the 
desired data about the program's behavior; and how to use this 
information to identify the actual unit of optimization. This section 
concentrates on the issue of program monitoring. Young [52] pro- 
vides an answer to the second question for optimizers based on path 
profiles; more general answers to this question will have to wait 
until we have gained more experience with temporal profiles and 
their use in selecting optimization units. 

In this section, I focus on the category of systems that perform 
optimization on-line and in software. Many of the existing systems 
in this category already contain on-hne monitoring systems that 
allow them to focus their optimization efforts and better amortize 
their optimization costs. For example, the IBM DAISY system [ 19] 
and the IBM Jalapofio dynamic optimizer [12] both employ a two- 
tiered approach to optimization: each code region is "lightly" opti- 
mized at f'LeSt and then later aggressively optimized when it has 
been shown to be frequently executed. The liP Dynamo system 
[10] implements a similar policy: it distinguishes between infre- 
quently and frequently executed code for the purposes of determin- 
ing which code to emulate and which code to optimize and place in 
its code cache. 

Though these existing monitoring systems work quite well for 
their intended uses, they are also quite simple. They each use some- 
thing akin to the execution counts in point profiles as a threshold for 
determining how to classify a program point (i.e., as frequently or 
infrequently executed). Dynamo [10], for example, sets an execu- 
tion threshold on blocks that are the target of backward branches, 
and it optimizes the first trace of blocks extending from such a 
block when the threshold is exceeded. Perhaps this is all that we 
will ever be able to afford in a monitor for an on-line optimizer; 
however if our monitoring system is to collect information about 
program behavior that will help select the dynamically-important 
units of optimi7ation, we need something more. 

To see how we can afford more, consider the following observa- 
tions about a system that monitors for phased behavior. Due to the 
inherent characteristics of phased behavior, we are going to have to 
monitor a program's behavior during its entire execution. This may 
sound like an expensive proposition, but realize that we do not have 
to monitor all of the details all of the time. Programs are predict- 
able. Once we have identified and optimized a program for some 
common behavior, we do not have to keep recognizing that behav- 
ior. We simply want to know when the common behavior changes. 
Furthermore, an on-line optimizer cannot afford to optimize every 
segment of a program's execution. It must be selective and focus on 
the common behaviors, behaviors where we can amortize the over- 
head of run-time optimization. In other words, the monitoring sys- 

tcm should ignore the program's exceptional (uncommon) 
behaviors. 

The mechanism in Dynamo [10] for flushing its code cache in 
reaction to changes in an application's working set is an example of 
a mechanism employing many of the above observations. At Har- 
vard, we are building a sol, ware-based on-line optimizer, called 
Deco, with a multi-level approach to program monitoring that 
exhibits all of the characteristics mentioned above. We first use a 
low-overhead sampling system, such as those found in DCPI [5] or 
Morph [55], to identify the frequently executed program regions. 
We then instrument these dynamically important regions to record 
details of the program behavior in that those regions. We refer to the 
instrumentation as ephemeral because it exists only temporarily-- 
only long enough to identify the unit of optimization and its tenden- 
cies accurately. 

5 Mutable  Executables 

In this paper, I have expounded the virtues of being able to 
change the specification of a program's execution while running it. 
To change the specification requires the ability to write into the 
instruction stream, and the organization of modem, high-perfor- 
mance microprocessors does not make this easy to do. The cost of 
flushing a set of instructions from the insmlction cache, for exam- 
ple, is relatively high on most machines. Furthermore, there exists a 
common perception that we should not need to write into the 
instruction stream of a running executable. Most modem operating 
systems initialize the text segments of an application as read-only. 
In effect, we are saying that there is something special about the 
executable. Software, once compiled and shipped, is no longer 
"soft" or mutable. 

Figure 9 compares the process of creating an executable with 
that of creating a microprocessor. Hardware architects figured out 
long ago that the rapid changes in hardware technology made it 
inappropriate to consider any implementation of an instruction set 
architecture (ISA) as something "special" and immutable. Today, 
computer architects are wary of including technology-dependent 
"solutions" to performance problems (e.g., delayed branches) in 
their ISA; these solutions inevitably become "bad" ideas due to 
technology advances. As such, the hardware community is in a bet- 
ter state of mind for thinking about on-line optimizers than the soft- 
ware community. 

Even though executables are generally thought of as immutable, 
the software community has taken a few small steps toward the idea 
of executables as mumble objects with its acceptance of DLLs and 
dynamically-loadable classes. Furthermore, existing systems that 
employ ran-time code generation also write executables while they 
run. Yet, the most aggressive on-line optimizers (the lower two cat- 
egories of Table 1 on page 4) often take extraordinary steps to make 
sure that they do not touch the original executable or cause any vis- 
ible side effects that deviate from the sequence of side effects that 
would have occurred during execution of the original executable. 
Again, this is an odd view given that the same executable would 
incur a different sequence of, say, TLB misses on two different 
implementations of the same ISA. 

My point is that we as a community are not consistent in our 
views and expectations of the execution environment. If you 
believe my earlier arguments about the increasing need for FIX), 
we should invest in discussions and experiments that help to iden- 
tify the level of mutability that we could profitably support in our 
executables. In addition, we should consider what hardware and 
operating system primitives would aid in the development and sup- 
port of mumble executables. Perhaps, in the future, mutable execut- 
ables will be as accepted as virtual memory is today. 



p r o b l e m  programmer ..= a l g o r i t h m  compiler 
• " -  in H L L  ~ executable 

c l a s s  o f  architect designer 
=--- I S A  "--- i m p l e m e n t a t i o n  p r o b l e m s  v v 

Figure 9. A comparison of  the process of compiling an executable with the process o f  designing a microprocessor. In the 
upper flow, the executable is considered (mostly) immutable. In the lower flow, the 1SA is considered (mostly) immutable. 

6 Challenges 
There are many challenges to overcome if we are to make the 

vision described in the prior sections into reality. This section pre- 
sents my list of the most important of these. You should not view 
this as an exhaustive list; its purpose is as a starting point for further 
discussion. I truly believe that we can overcome each of these chal- 
lenges. As proof of my belief, I provide references to some of the 
promising current research efforts that may provide full or partial 
solutions. I also include a set of lofty objectives that I would like to 
see the community attain while overcoming each barrier. 

Mindset. The biggest challenge to the vision in this paper is our 
existing mindset. I have found it difficuR for people to think about 
executables as mutable objects. Some of this aversion comes from 
the concern of programmers that the process of optimization can 
silently turn a correct program into a buggy one. Kernighan and 
Pike [31, page 176] state that "the more aggressively the compiler 
optimizes, the more likely it is to introduce bugs into the compiled 
program." This seems to be a common perception, though I could 
not find any published studies supporting this view. 

We may achieve some leverage on this problem by adapting 
some of the work on safety and correctness in the area of mobile 
code. For example, Rinard [38] proposes that we build compilers 
that validate the correctness of each transformation when it is 
applied. He believes that this is a more fruitful approach than one in 
which we prove that the compiler works correctly on all possible 
legal programs. 

Debugging. Even if we can guarantee that the optimizer performs 
transformations correctly, many software vendors refuse to compile 
with high levels of optimization because optimized code is difficult 
to debug. As optimizations have become more sophisticated, it has 
become increasingly difficult to have the debugger mask the effects 
of the optimization process from the programmer. If automatic and 
on-line optimization systems are to be successful, we need to build 
tools that help the programmer debug optimized executables. Tice 
[48] proposes one such tool. Her system helps programmers to 
understand the effects of optimization on their applications without 
having to know how or exactly what optimizations were performed. 

If the current trends continue, hardware manufacturers will soon 
consider the implementation of on-line code transformations that 
software vendors hesitate to invoke at compile time. Since it is 
already difficult for programmers to debug their own optimized 
code, it is unreasonable for the industry to assume that a user could 
diagnose the cause of a fault in an on-line optimized executable and 
create a bug report. A bug report should be generated by someone 
intimate with the details of the program execution at the time of the 
fault. On-line optimization systems provide us with such an 
agent--the monitor. Perhaps we could adapt existing monitoring 
techniques to gather information helpful in diagnosing a program's 
run-time faults and useful in transforming that program so that it 
avoids those faults in furore runs. 

Infrastructure. Compilers are very large pieces of software that 
take many person-years of work to develop. One of the goals of the 
Harvard Deco project is to fred ways to share code and technology 
between our traditional compile-time optimizers and our experi- 
mental on-line optimizers. Though we may wish to adapt our cur- 
rent optimizations so that they execute more efficlently in a run- 
time environment, simply moving them between the compile-time 
and run-time environments should not be a reason to have to re- 
code. In Machine SUIF [45], we have developed a programming 
interface for specifying optimization analyses and transformations 
that will allow us to test our on-line optimizations in a traditional 
compile-time environment and do so without having to re-code 
them. 

Multl-dlscipHnaryapproach. To make significant changes to 
today's execution environment requires that the members of many 
research communities cooperate. I have seen the beginnings of such 
cooperative efforts in the development of DCPI [5] and Morph [55], 
two profiling systems based on statistical sampling. These two 
projects drew together researchers from the operating system and 
compiler communities. In my discussions with computer architects 
from large microprocessor vendors, I have heard them express their 
willingness to implement new performance monitors in hardware, 
but they first need some justification that what is requested will be 
useful. 

Commercial realities. A large body of research exists in support of 
the performance potential of FDO. Only recently, however, has the 
research community begun to investigate the hurdles that must be 
crossed in order for an approach like PG-C to be used daily within 
the development group of a large commercial software vendor. To 
achieve such acceptance, we must look scientifically at the prob- 
lems of profile collection and maintenance. The recent works of 
Albert [4], Wang et al. [51], and Savari and Young [41] are note- 
worthy examples of this kind of research. Finally, there are other 
commercial realities like testing that must be carefully considered. 

7 Conclusions 
In this paper, I proposed a broad view of what FDO is and when 

it should be used. By considering any technique that alters a pro- 
gram based on information gathered at mn time to be FDO, it is 
easy to see that this approach is already successful and ubiqui- 
tous---nearly every hardware manufacturer implements some set of 
FDO techniques in its microprocessors. I also presented a classifi- 
cation that encompasses much of the prior work in FDO. Even with 
this rich body of prior work, I believe that we are just beginning to 
tap the potential of and explore the design space in FDO. 

Furthermore, I discussed several important trends in application 
development, software engineering, hardware technology, and the 
Interact that are increasing the need for and interest in FDO. To 
meet these needs adequately, I argued for a movement away from 
two static models: units of program optimization based on program- 
met-defined code boundaries, and immutable executables. Instead, 



we should build optimization units with boundaries defined by the 
program's run-time behavior. This frees the programmer to set code 
boundaries that make the program easy to understand and maintain, 
and it enables the optimizer to uncover optimization opportunities 
unavailable when it considers all program paths to be equally 
important. We should also consider our executables to be mutable 
objects. By making it easy to change executables after they have 
been shipped and the instruction stream while programs run, we can 
build optimizers that are able to adapt applications so that they 
always run well, no matter how things change. 
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