
Overcoming the Challenges to Feedback-Directed Optimization

Michael D. Smith
smith@eecs.harvard.edu

Division of Engineering and Applied Sciences
Harvard University

Abstract
Feedback-directed optimization (FDO) is a general term used to
describe any technique that alters a program ~ execution based on
tendencies observed in its present or past runs. This paper reviews
the current state o f affairs in FDO and discusses the challenges
inhibiting further acceptance o f these techniques. It also argues
that current trends in hardware and software technology have
resulted in an execution environment where immutable executables
and traditional static optimizations are no longer sufficient. It
explains how we can improve the effectiveness o f our optimizers by
increasing our understanding o f program behavior, and it provides
examples o f temporal behavior that we can (or could in the future)
exploit during optimization.

1 Introduction
We often optimize applications to eliminate unnecessary gener-

ality and to streamline their execution on modem computing plat-
forms. Feedback-directed optimization (FDO) is a general term
used to describe any technique that alters a program based on infor-
mation gathered at run time. This paper focuses on FDO techniques
for improving performance. It presents a view of the field today and
a vision for its future. It points out that current trends in application
development, software engineering, hardware technology, and the
Internet are increasing the need for FDO. And it argues that, to meet
this need adequately, we should alter some commonly-held percep-
tions about executables and the execution engine.

Traditionally, FDO has been viewed as an off-line" technique:
The programmer runs an application one or more times to gather
statistics that summarize the program's prevalent behavior and
describe its execution environment. These statistics are then used to
create a new program binary. Off-line refers to the fact that the opti-
mization takes place after (as opposed to during) program execu-
tion. This type of FDO has a long history of use by programmers
interested in ttming their code to increase performance. In addition,
researchers in programming languages and compilation have pro-
posed and built a wide range of systems that are able to perform
FDO with little or no progrvmmer intervention.

Though the application of FDO is most often associated with
off-line techniques, perhaps the greatest commercial success of
FDO has come from the area of computer architecture. In the
design of modern microprocessors, computer architects dedicate a
large amount of their silicon budget to both capturing and exploit-
ing program tendencies at run time. Caches and out-of-order execu-
tion are just two examples of hardware techniques that use feedback
to affect a program's execution. Caches reduce the cost of some
memory accesses at the expense of others based on observations of
previous program activity. Out-of-order execution dynamically
adjusts the order of the instructions in the instruction stream based
on observations of instruction latency. Caches and out-of-order exe-
cution arc on-line versions of FDO. As I will discuss, there is a
growing interest in software-based on-line techniques for FDO.

My claim that programmers, compilers, and hardware routinely
perform many kinds of FDO shows that I have a very broad view of
the definition of FDO. Specifically, I view any technique that alters
the realization of a program based on tendencies observed in the
present run or in past runs as a FDO technique. Furthermore, these
techniques may be implemented in software, hardware, or some
combination of the two. Tasks that we have traditionally viewed as
compiler tasks, such as instruction scheduling and register alloca-
tion, are now routinely done in hardware. Many of the recently-
announced on-line techniques for FDO rely on a combination of
hardware and software mechanisms.

In addition to my broad view of what FDO is, I also have a
broad view of when we should be able to apply FDO. My view is a
result of the following answers to two simple questions: When is
the first time that I would like my program to ran quickly? When
will I no longer need my program to run quickly? The obvious
answers are, respectively, immediately after it is compiled for the
first time and once I have run it for the last time. If we define the
lifetime o f a program as the time between its first compilation and
its last execution (inclusive), then I am saying that we should be
able to perform FDO at any time during a program's lifetime.

Thinking about opHmlzation as recurring when needed is conve-
nient for several reasons:

• First, this view directly addresses the well-known issue that
we cannot build a fully optimizing compiler, one capable of
transforming any program into an equivalent program with
identical input/output behavior and a provably-~nlnimal execu-
tion time [7]. If optimization can occur at any point in a pro-
gram's lifetime, we can imagine scenarios in which it is
possible to apply new optimization techniques to existing
binaries even after they have been shipped.

• Second, this view gives us the freedom to perform an optimi-
zation when the data for that opt/mization is available (Adve et
al. [1] refer to this idea of an optimization continuum) and to
vary the persistence of the optimizations that we perform.
Optimizations that are produce undesirable side effects, such
as binary bloat and machine dependency, would be moved
toward the shorter end of the persistency scale. Today, soft-
ware vendors hesitate to perform traditional profile-driven and
machine-specific optimizations because these optimizations
will persist for the entire lifetime of a program. This persis-
tence implies that the usage patterns and machine environment
identified at compile time remain unchanged over the pro-
gram's lifetime. For many commercial applications, this is a
bad assumption. By no longer requiring the effect of an opti-
mization to persist indefinitely, we can allow executables
adapt to changes in their usage and environment.

• Thffd, this view helps us to regain the original promise of soft-
ware--that it is flexible and easy to change. Much of the rapid
acceptance of run-time binding techniques has come from the
software industry's realization that one can use these tech-
niques to simplify the task of patching shipped binaries and
integrating third-party software extensions.

The rest of this paper is organized as follows: Section 2
describes how recent advances in hardware and software technol-
ogy are increasing the need for FDO (in general) and on-line opti-
mization (in particular). Having established the importance of the
area, Section 3 proceeds with a brief review of the current state of
affairs in FDO, and it presents a categorization of existing
approaches. From this review, we extract two definite trends: a
movement toward units of optimization based on run-time program
behavior; and a movement toward executables as mutable objects.
Sections 4 and 5 discuss each of these trends in turn. Section 6 enu-
merates several challenges to the vision presented in this paper, and
it highlights on-going research projects that may address these chal-
lenges. Finally, Section 7 concludes.

2 The Increasing Need for FDO

This section describes the promise of FDO and motivates the
need for the broader approach to program optimization discussed
above. Section 2.1 begins with a brief discussion of profile-guided
compilation (PGC), its growing commercial acceptance, and its
future potential. Though PGC is a powerfifl technique for FDO, it
has many shortcomings. Section 2.2 describes the limitations of the
traditional static model of optimization, and it lists several trends in
hardware and software technology that make this traditional static
model an ineffective and incomplete solution. Dynamic FDO sys-
tems have been built that address one or more of these trends, and
in Section 3, we look at a representative subset of those efforts.

2.1 Profile-guided compilation

As Brian Kemighan and Rob Pike state in the preface of their
book entitled The Practice of Programming, simplicity, clarity, and
generality form the three basic principles of good software [31].
PGC addresses the performance impact of generality, the third of
these principles. By generality, Kernighan and Pike mean that a
program should work well in a wide array of situations [31]. How-
ever, a program written to fimction in many situations is typically
slower than one written to handle one or a few specific situations.
In PGC, the compiler attempts to mitigate the cost of a program's
generality by using information, such as a sllmmary of how often
each basic block in the compiled program executed in one or more
previous program runs (i.e. block profiles), to focus its optimization
efforts on the frequently executed portions of the program and to
understand the run-time tendencies within these portions.

Though PGC has been around for many years, it has only
recently begun to be commercially accepted and widely used.
Today, almost every popular production compiler, with the notable
exception of the GNU C compiler, has a mode in which it performs
PGC. PGC exists commercially not because it is easy to support or
use (as discussed below), but because it achieves noticeable perfor-
mance improvements. The rest of this section will focus on the
effectiveness of PGC in the Compaq GEM compiler, as reported by
Cohn and Lowney [14]; this work is representative of the results
reported for other commercial compilers [8,42].

Cohn and Lowney report that the SPECint95 benchmarks run
17% faster (on average) when compiled with FDO than when com-
piled with GEM's most aggressive level of classical optimization
[14]. This sizable speed-up is quite impressive given the maturity of
the baseline against which it is compared. Even so, even more
impressive results are possible given the trends in application
development and the recent research results in PGC.

Though the benchmarks in SPECint95 are real applications, sev-
eral researchers have noted the qualitative differences between
these applications and the graphical and interactive deskktop appli-
cations used by a large segment of the population. Lee et al. [33]

suggest that the dominant execution paths in these desktop pro-
grams may be less predictable than the paths in SPEC benchmarks.
They note that the desktop benchmarks have a larger number of fea-
tures and that more of their execution is determined by interactions
with a user. Wang, Pierce, and McFarling [51] state that small
changes in the position of the mouse or windows on a screen can
cause large changes in the execution paths of today's popular inter-
active applications. Wang and Rubin [50] go farther and show how
differences in the usage of these desktop applications impact pro-
file-based program translation. In addition, Cohn and Lowney [14]
mention briefly that in their experience the benefit from PGC often
grows as the size and complexity of the application grows.

The GEM compiler, like most other commercial compilers, uses
point profiles to direct its optimization efforts. Block and edge pro-
files are examples ofpoim profiles--profiles that provide an aggre-
gate execution count for individual program points. In research,
there has been a resurgence in the area of PGC because of the
development of more detailed profiles. A path profile, which
records execution counts for sequences of program blocks (i.e. pro-
gram paths), is an example of one of these more detailed profiles
[11,54]. Path profiles provide a greater level of insight into a pro-
drain's run-time tendencies. Several researchers [22,25,26,53] have
shown that the use of more detailed profiles during optimization
can yield greater improvements in program performance.

Overall, work in the field of PGC demonstrates that the potential
benefits of program specialization will increase as

• applications become more complex, include more features,
and depend more on user input, and

• compilers are configured to use more detailed kinds of profile
information.

The question is: Can we regularly achieve the full potential of
this approach7 Unfortunately, I believe that the answer is no. Even
if we ignore the demands involved in profiling an application,
which are well documented elsewhere (e.g., see Conte et al. [17]), it
is still quite difficult to achieve sizable and consistent benefits using
only PGC.

2.2 Ineffectiveness of traditional model

PCGC uses a fairly static model of program specialization: In
order to optimize the program for a new set of program tendencies,
the program must be re-compiled. As such, PGC works well only
when the actual run-time program tendencies match those used dur-
ing specialization. We can make a similar statement about machine-
specific optimization: R works well only when the characteristics of
the actual execution engine match those assumed during optimiza-
tion. The obvious answer to these problems is to perform FDO at a
point closer in time to the program execution. In this way, the opti-
mizer can use accurate and timely information concerning the exe-
cution environment and program usage. This has led researchers to
view optimization as a continuum [1] and to explore a wide range
of more dynamic techniques for FDO. (I use the generic term
dynamic optimization when referring to the range of techniques
beyond PGC.) In a moment, I will reflect on this range, but first I
focus on the reasons for the recent explosion 1 in the level of interest
and activity in the area of dynamic optimization.

Much of the recent interest in dynamic optimization stems from
a widely-held belief that these techniques can address the perfor-
mance needs of the recent trends in computer architecture, software
engineering, and the Interact. Stated another way, it is the ineffec-

I. There have been three successful workshops on binary translation, feed-
back directed optimization, and dynamic optimization all during the first
five months of the 1999-2000 academic year.

tiveness of the traditional static model of optimization in handling
these trends that has fueled the recent explosion in dynamic tech-
niques.

To better understand the impact of the recent trends on the tradi-
tional static model, let us quickly review the history behind com-
pile-time optimization. Assemblers and then compilers were
originally developed to raise the level of programming abstraction.
By removing the need for the programmer to deal with the intrica-
cies of the target machine, the programmer was freed (in theory) to
focus on algorithmic issues and to produce code that was easy to
understand, debug, and maintain. Compile-time optimiTation was
developed to eliminate the performance penalties of this abstrac-
tion. As Aho et al. [2] state, "if a compiler can be relied upon to
generate efficient code, then the user can concentrate on writing
clear code." In fact, much of the early success of FORTRAN is
attributed to the fact that the IBM FORTRAN compiler was able to
produce optimized code that rivaled the performance of hand-coded
assembly [9].

Trends in computer architecture. As mentioned in the intro-
duction, hardware techniques for FDO began to appear as soon as
computer architects noticed the growing gap between processor and
memory speeds. The problem was that the traditional static model
of optlmiTation froze in the executable not only what was to be
done at run time but also what was thought to be the best way to do
it. As the pace of hardware evolution and the importance of support
for legacy binaries have grown over time, the burden of re-optimiz-
ing a binary for the current usage and machine environment has
fallen on the hardware. Re-compilation to achieve re-optlmization
is viewed as commercially impractical. As Smith and Sohi [44]
state in their survey paper on the design of modem superscalar
microprocessors, hardware should simply view executables as a
specification of what has to be done and not how it should be done.

Unfortunately, simply augmenting the traditional static model of
optimization with run-time opHmiTation in hardware is not a pana-
cea. In fact, it does not even adequately address all of the opHmi7a-
tion issues introduced by computer architects. For example,
architects extend existing ISAs with new instructions (e.g., prefetch
or multimedia instructions) because they want the compiler to gen-
erate and the executable to use these new instructions directly.
There would be no need for these instructions to appear in the ISA
if the hardware could dynamically transform existing executables
and achieve the same level of performance. Furthermore, next-gen-
eration architectures like the IA-64 [18] have been designed with
the expectation that the compiler will apply sophisticated profile-
guided and interproceduml optlmiTations--many of which are still
being developed. Without these optimizations, much of the poten-
tial performance benefits of these new architectures will be lost.

Trends in software engineering. One of the claims made by
proponents of object-oriented programming is that this paradigm
leads to code that is easy to understand, reuse, and maintain. How-
ever, object-oriented mechanisms like dynamic dispatch and pro-
gramming styles like code factoring yield programs that are
difficult to optimize using traditional static approaches. There exists
a large body of work addressing the performance penalty of object-
oriented languages and programming styles; specific solutions and
approaches can be found in the proceedings of the ACM SIGPLAlq
Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA) and the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLD1).
With respect to the point of this paper, we note a rising use of
object-oriented techniques in the commercial world and a rising
interest in on-line FDO techniques for overcoming the aforemen-
tioned performance penalties. In addition, we note the fact that
applications written in these languages have smaller programmer-

specified code units than applications written in imperative lan-
guages like C and FORTRAN.

The commercial acceptance of run-time binding techniques also
severely limits the effectiveness of traditional static optlmiTation. A
growing number of software manufacturers choose to ship their
applications as collections of dynamically linked libraries (DLLs).
DLLs are easier to create and update than statically linked libraries
[34]. They simplify for a software vendor the task of patching
shipped binaries and integrating third-party extensions. However,
static optimization across module boundaries becomes impossible
if the only time that the entire executable exists is at run time.

Trends in the Internet. The tremendous growth and interest in
the Intemet has brought with it a call for the development of mobile
code. The idea behind mobile code is that applications written using
this paradigm can be distributed across computer networks and
automatically run upon arrival at the network end point. Implicit in
this idea is the expectation that these applications would be able to
run across a wide range o f hardware platforms and computing envi-
rouments. Traditional PGC assumes that the target hardware plat-
form and computing environment are relatively stable. With
projects like HotSpot [47] and Jalapeflo [12], computer companies
have already come to the realization that, if they want mobile code
written in Java to not only run but run efficiently, they must adapt
traditional profile-guided optimization techniques to the run-time
environment.

3 FDO Today
As I mentioned in the introduction, FDO is a well-accepted

technique used by almost every hardware manufacturer to improve
the performance of the applications ~mnlng on their processors.
Though this is the most successful use of FDO, many other
approaches exist. Table 1 presents a categorization of these existing
approaches based primarily on how dynamic each is (i.e., how
quickly each reacts to changes in program tendencies or the execu-
tion environment). In general, PGC is least dynamic of all of the
approaches, while run-time optimization in hardware is the most.
For each category, I provide several examples.

I will also use this categorization to make general comments
about the transparency, scope, and run-time overhead of each
approach. Transparency refers to the amount of programmer/user
effort involved in performing FDO. I consider a system that is able
to perform FDO automatically (i.e., without any prograrnmer assis-
tance and without the knowledge of the user) to be fully transparent.
Scope refers to the size of the code segment analyzed during opti-
mization; I refer to this segment as the unit of optimization. Typi-
cally, the larger the scope is the more aggressive, and thus effective,
the optimiTation. Section 4 discusses this issue in much greater
detail.

I discussed PGC in Section 2.1, and there I mentioned that PGC
is often characterized by large optimization scopes and zero run-
time overheads (all of the analysis and transformations for optimi-
zatinn are done at compile time). However, as I noted in Section
2.2, it is becoming increasingly difficult to maintain a large optimi-
zation scope due to recent trends in software engineering. Further-
more, this approach suffers compared to the others due to its lack of
transparency and inability to react quickly (or at all) to changes in
program behavior or the execution environment. Approaches for
off-line optimization systems based on continuous profiling were
developed to address these problems.

Systems like Morph [55] had the goal of making profile collec-
tion and executable re-optimization automatic. This goal was
accomplished by rnnning a profile collection agent and a re-optimi-
zation agent directly on the end user's machine. The profile collec-
tion agent would continuously gather and maintain a database of

3

Category Examples

Profile-guided compilation

Off-line optimization
using contin/aous profiling

Run-time code generation

On- ".~e ol~timization
I n SOlZWar~

On-line optimization
in ha/dware

GEM [14], IMPACT [29], .~
Machine SUIF [45]

DCPI [5], FX!32 [28], ~ . '~
Morph [55] ,.~f

' c [2o], D~C [23],
Tempo [151 $

Crusoe [32], DAISY [19], Dynamo [10],
I)ynamic Reseheduling [16], .~
Jaiapefio [12], HotSpot [47] ~

Trace caches [40], ~
dynamic trace optimi~,ations [21]

Table 1: Categorization of existing approaches for FDO. The lists of example systems are not meant to be exhaustive. In particular,
these lists focus mainly on the recent efforts.

profiles. Since these profiles were gathered on the end user's
machine, they obviously reflected the prevalent program usage. In
the background, after the user had stopped running an application,
the re-optimization agent would run, analyze the profile data
recently collected, and re-optlmize the application if it determined
that re-optimization would be worthwhile. The ran-time overhead
of this kind of approach is kept low by using low-overhead profil-
ing systems (e.g., DCPI [5]) and because re-optimization occurs
off-line. The scope of this approach is actually better than PGC
since optimization can occur on the linked executable. Notice that
re-optimization may include translation from one instruction set to
another.

Instead of completing the optimization process at compile time
and then attempting to re-optimize the application after one or more
program runs, techniques for m - t i m e code generation stage the
compilation process so that optimization can occur during the pro-
gram run. In general, systems like DyC [23,24] perform the major-
ity of the optimization process at compile time and leave only
selected pieces for completion at run time. In particular, these sys-
tems use concepts and techniques from the partial evaluation eom-
mtmity to determine what program segments could benefit from
optimization based on information available only at run time. The
compiler then creates an executable capable of capturing that run-
time information, performing the associated optimization, and com-
pleting the code generation process. Because the bulk of the work is
done at compile time, these systems can exhibit low run-time over-
heads. As structured today, the systems for run-time code genera-
tion rely on the programmer to indicate what program segments to
optimize dynamically. Them is however on-going work investigat-
ing ways to improve the transparency of this kind of an approach
(e.g., see Mock et al. [37]).

I separate the on-line optimization systems in the last two cate-
gories in Table 1 from those listed under dynamic code generation
because all of the remaining approaches share the goal of being as
transparent as possible. Still, these last two categories encompass a
wide range of approaches and techniques. I divide them into only
two broad categories: those that use only software or a combination
of hardware and software techniques (on-line optimization in soft-
ware), and those that use only hardware techniques (on-line optimi-
zation in hardware).

The hardware-only approaches are simply the next steps in the
logical progression of the computer industry's work on caching and
out-of-order execution. Computer architects are working hard to
increase the optimization scope from something akin to peephole
optimizations to something closer to trace-based optimizations
(e.g., see Friendly, Patel, and PaR [21]). In the future, the hardware
will not just renumber registers, rearrange the instruction stream,

and remove unconditional branches, but it will change and even
eliminate large sequences of instructions.

The approaches that include some element of software support
vary significantly in the scope of their on-line transformations,
since some of these approaches also perform binary translation.
However, in terms of their application of sophisticated optimiza-
tion, all of the recent systems have been selective: optimization
occurs only on those program segments that account for the major-
ity of the execution time. This emphasis is a direct consequence of
the need to minimize the run-time overhead of the optimizer. To get
the most benefit from this time spent optimi~/ns, we want to iden-
tify not only those program segments that are dynamically hnpor-
tam, but also those that are most amenable to optimization. How to
best accomplish this is on-going research and the topic of Section 4.
Overall, I feel that we have just begun to explore the potential of the
systems in this category.

Ill summary, Table 1 illustrates that there exists a wide range of
approaches that use F o e to alter a program and improve its run-
time performance. If we step back from the details however, we can
see two definite trends emerging from this set of technologies. The
first is a movement toward units of optimization based on a pro-
gram's run-time behavior and not on a set of programmer-specified
boundaries. The reasons for this movement are further discussed in
Section 4. The second is a movement away from executables as
immutable objects. As we have discussed, the importance of F O e
has grown as hardware and software technology has advanced and
as the lifetimes of applications have increased. Since FOes depend
upon more than just information gleamed from the static code base
(i.e., they depend upon information that may change in the future or
may not even be available at compile time), it is unreasonable to
expect that the compiler can produce an executable that is appropri-
ate and effective for the entire lifetime of any long-lived applica-
tion. In Section 5, we present further arguments for the concept of
mutable executables.

4 The Unit of Optimization
Traditionally, static optimizers have used code boundaries

defined by the programmer as the boundaries for their units of opti-
mization. For example, compilers often optimize each procedure in
an application in isolation. As programmers concern themselves
more with issues of understandability and maintainability and as
more programmers adopt the object-oriented programming para-
digm, these programmer-defined boundaries will make less and less
sense as delimiters for units of optimization. The brute-force
approach of analyzing and transforming the application as a single,
monolithic piece of code fails because many of our existing global

1

20

(a) Edge profile.

IAIBIDIAIBIDIAIcIDIAIBIDIAIBIDIAICIDI
Trace #1 : ((ABD)2(ACD)I) 2°

IAIBIDI °°° IAIBIDIAIcIDI "°° IAICIDI
Trace #2: (ABD)4°(ACD)2°

(b) Two traces that produce the edge profile in (a).

Figure 1. Example of how point profiles limit our understanding of program behavior. From the edge profile, we cannot
determine if the program ran trace #I or #2.

opthnizations do not scale well as the optimization scope grows.
This approach also runs counter to the trend toward shipping appli-
cations as a collection of independent DLLs. A different approach
is needed.

4.1 Setting boundaries based on run-time behavior

This section argues that the optimization of a program by inde-
pendently optimizing pieces of that program is not the problem. By
continuing this approach, we can continue to use and benefit from
the large pool of existing global optimization algorithms. Instead of
changing how we determine the size of the units of optimization,
this section argues for changing how we determine the contents of
them. In particular, optimizers should select optimization units that
reflect the current program behavior (as determined by analysis of
feedback information) and are reasonably sized (given the compu-
tational complexity of the optimization techniques).

As noted by Cohu and Lowney [13], static optimizers appear to
miss a large number of optimization opportunities when one
reviews the dynamic instruction stream. Computer architects have
also noticed this fact and proposed techniques such as value predic-
tion [35] and instruction reuse [46], which exploit the redundancies
in the dynamic instruction stream. From the perspective of this
paper, these observations argue that we group together in the units
of optimization those segments of the application that execute fre-
quently together.

This idea is not entirely new. Hank, Hwn, and Rau [27] pro-
posed this kind of an approach for traditional PGC systems, and the
mechanism for instruction scheduling and register allocation in the
Muitifiow compiler [36] is a limited example of this kind of an
approach. All of the prior work however has used point profiles---
profiles such as edge or block counts that aggregate how often indi-
vidual program points appeared in an exeention trace---to identify
the segments of the application thaat execute frequently together.
Though these profiles provide us with more information about a
program's behavior than we can determine through static analysis
alone [49], the level of understanding that we can gain from point
profiles is limited, especially if the program's execution involves
non-trivial control flow. Figure 1 provides an example where two
different executions of the same code segment produce the same
edge profile.

Recent work in the area of temporal profiles---profiles such as
path counts that aggregate how often sequences of basic blocks
appeared in the execution trace [11,54]--provide more insight into
the program's temporal behavior. Using temporal profiles, it is pos-
sible to build units of optlmiTation that more accurately reflect the
run-time behavior of an application. For instance, Young and Smith
[53] describe how to use path profiles to construct and schedule

superblocks that match the most frequently occurring program
traces. Using the edge profile in Figure 1, a traditional superblock
uuroller would produce an unrolled loop body with the block
sequence ABDABDABD (assuming an unrolling factor of three),
since all it can determine is that block B occurs more frequently
than block C. Using path profiles of the traces in Figure 1, Young
and Smith's algorithm would produce the following: a single
unrolled loop body with the block sequence ABDABDACD for the
path profile of trace #1; and two unrolled loop bodies with the block
sequences ABDABDABD and ACDACDACD for the path profile
of trace #2. Clearly, we can achieve a higher completion rate by
using the path-profile-based unrollings than the edge-profile-based
one. Gloy and Smith [22] collect a different kind of temporal profile
and show how to use it to achieve better procedure layouts.

4.2 Understanding phased behavior

Though the optimization community has gained greater insights
into program behavior based on existing temporal profiling tech-
niques, I believe that we have only begun to fred ways to identify
interesting program behavior and use that information to direct pro-
g r ~ optimization. This section describes one as yet largely
untapped aspect of program behavior, called phased behavior, that
software-based on-line optilnization systems can use to make their
optimization efforts cost effective. In this section, I define what I
mean by the term phased behavior, illustrate some examples of
phased behavior, and argue why such behavior might be interesting
to an on-line optimization system. Section 4.3 uses some of the
insights in this section to describe how we can build on-line moni-
toting systems that are able to identify the important run-time
behaviors of an application in time to exploit them.

I define phased behavior as the tendency for a piece of code to
exhibit a sequence of behaviors, each for an extended period of
time. For the purposes of tlfis definition, the time period may corre-
spond to a single program run, or it may span multiple runs. In an
application that displays phased behavior, there exists at least one
code region where optimizing for aggregate behavior is sub-opti-
mal. We can obtain better performance i f we apply one optimization
strategy to that region for one phase of the program's execution and
another strategy during another phase. Phased behavior is problem-
atic when the persistence of a FDO is longer than the phase. For
example, phased behavior across program runs is problematic for
the off-line optimization schemes that assume the aggregate behav-
ior of a code segment is dominant.

Branch-based phased behavior. I begin with examples of phased
behavior associated with the execution of conditional branches. The
run-time handling of conditional branches has a tremendous effect

if (flat__object(isect.object)) { // b35
if (n__dot__v < 0.0) { // b36

// ...

}

Figure 2. Code snippet f rom shadeO in ray.c.

iii i i~i~ii.i.:;iii~.~i.iii.i.~i.~i~.~.~.~i.~.~.~i.ii~i.i~.i~.i.:.i~i.i.i~i.i.ii~.i.!.~i:i.ii.ii..ii.~.i.~i.i.~.~i~
!~i !! ~i !i ~ ~!! i i !! i~ ~i i~ i i ! i i i i ! i ! i i i ! i i i i! i i i i B ra r~ch : e x e i ~ u t i o r i s ! { l ; 2 7 9 8 1 1 7] ii !i

Figure 3. Execution trace o f b36 on the input seenel. The
horizontal axis plots time from left to right as measured in

executions o f this conditional branch. This branch executed
a total o f 279,817 times. For each branch execution, we
mark in the vertical dimension whether the branch was

taken (T) or not taken (N).

on the performance of modem systems, and thus any new insights
that we can gain in this area will likely have an important impact on
the industry. I start with obvious examples of phased behavior in
the execution of individual branches and then move to less obvious
(but probably more common) examples. I conclude with some
thoughts on the effect of these observations on program optimiza-
tion. The interesting issue here is that all of the examples involve
branches that are weakly biased; current optimization strategies
concerned with conditional branches are tailored toward the identi-
fication and exploitation of highly-biased branches. Except for code
transformations like smile correlated branch prediction [54],
weakly biased branches are largely ignored by modem optimization
techniques.

My f'n-st few examples focus on two conditional branches that
occur in the s h a d e procedure from r a y . c ofrayshade, the C ray-
tracer developed by Peter Hoist Andersen [6]. Figure 2 lists the
code associated with these two branches, which I label b35 and b36.
This code looks much like the code associated with the other condi-
tional branches in r a y . e, and thus there is not any obvious syntac-
tic clue alerting us to the following interesting program behavior.

Figure 3 plots the execution trace of b36 when rayshade is run
on the input scene1. In the aggregate, b36 is a weakly-biased
branch, a branch taken 44.0% of the time. As Figure 3 illustrates
however, b36 is taken exclusively in its first 123,090 executions,
and it is never taken alter that. This is a clear example of phased
behavior; b36 exhibits one behavior and then another, each for a
long period of time.

Figure 4 plots the execution trace of b35 during the same run.
This figure displays an interleaving of taken and not-taken execu-
tious (non-shaded segments) that does not appear in Figure 3. Even
so, the execution of b35 contains a long period of time where it is
always taken and two smaller periods where it is always not taken.
Overall, nearly 50% (49.1%) of this branch's execution is spent in
the large taken segment--fairly amazing for a branch that is taken
only 66.9% of the time in the aggregate.

Figure 5 shows that the phasing behavior in Figure 3 is not
something that we could exploit using traditional profile-driven
optimization. Figure 5 plots the exeeution trace of b36, but this t/me
when rayshade is run on the input scene24. Comparing Figures 3
and 5, we see that b36's execution is now more "random" than it
was under scene1. The phased behavior of this branch is influenced

ii i iii ii ii i! iii ii !i i!i !! iii ii i i ii ii iii !~i i! ii iii ii ii ii ii iii ii ii ~i !ii i~i i~ ii ii ~ i ~ ii :i iii ii ~

.. • BParCti:executiOns:[t;839959]!~ !~ ::

Figure 4. Execution trace o f b35 on the input scenel. We use
shading to distinguish contiguous Segments o f taken (or not-

taken) executions f rom those segments that have an interleav-
ing o f taken and not-taken executions. For example, between
executions 183272 and 595513, inclusive, b35 is only taken.

N ~ ~ ~
" : ' : . ' ~ : : ~ . ~ i / ' " ' : : : : : : : : : : : ~ : : : : : : : : : : : : . ~ ~ . ~ . ~ . ~ . ~ . ~ '

Figure 5. Execution trace orb36 on the input scene24.

by the input data set. However, the aggregate behavior of this
branch has not changed noticeably; b36 is taken 39.8% of the time
under scene24 and 44.0% of the time under scene1.

As one might expect, the execution trace of a weakly-biased
branch does not always contain long periods of time where the
branch executes in only one direction. As illustrated in Figure 6
however, some of these weakly-biased branches still exhibit phased
behavior that is interesting to an opfimiTation system. In particular,
Figure 6 looks at phased behavior in the bias of a conditional
branch (labeled b99) in the SPECint92 benchmark compress.

Figure 6 shows that the bias of b99 oscillates between periods of
low and high bias over time. In the aggregate, this branch would be
classified a s a weakly-taken branch, based on its average taken per-
centage of 78.0%. Clearly, this is the wrong classification for peri-
ods, like the beginning of the program, where the branch is nearly
always not taken.

The actual shape of the curve in the graph plotting bias against
time depends upon the characteristics of the input data set. To
understand this, I first must explain a bit more about the functioning
of the code in this section of compress. Branch b99 is part of the
hashing code for the code table in compress. Specifically, b99
checks to see if the probed slot in the code table is empty after we
found that we did not have a hash hit. This explains the initial
increase in the bias of this branch; the table is initially empty and
slowly fills, changing the branch's bias. The later abrupt changes
from a high to a low bias are due to the fact that compress imple-
ments block compression with an adaptive reset, as described in the
comments in the source code of compress. I f the compression ratio
begins to decrease after the code table reaches a predefmed fill
threshold, the program will clear the code table, output a special
CLEAR code, and begin a new encoding. Since this criterion
depends upon the characteristics of the input, the shape of the plot-
ted curve also depends upon the characteristics of the input.

The vast majority of optimizations concerned with branching
behavior focus their attention on the aggregate behavior of each
branch. For the branches discussed above, this would result in lost
optlmiTation opportunities. The clear phased behavior in Figure 3
leads us to consider one optimiTation strategy for the first 123,090
executions of b36 and a different strategy for the last 156,727. Fur-
thermore, given the dependence ofb36's behavior on the input data
set, we would probably want to implement this flexibility in an on-

// starting at line 790
if (hit in hash table)

// ...

else if (empty slot) // b99
// ...

else
// probe hash table

100

75

so

25

/
/

/
/

J
/
!

• ,==,=avg. b ias

• = , - , = ,sampled b ias

/

0 Time /

Figure 6. Execution trace of b99 in compress.c. The top graph
plots the bias of this branch at a granulari~ of SO00 execu-

tions. This branch executed a total of 433,223 times. The bot-
tom graph illustrates the pattern of taken and not-taken

outcomes in the first 2500 executions.

line optimizer. Considering b35, adaptation between an optimiza-
tion strategy involving speculation (to take advantage of long exe-
cution runs in one direction) and predication (for those execution
runs with no obvious predominant direction) is a potentially fruitful
avenue of attack for the branch execution pattern in Figure 4.

Existence of sizable periods of high bias in the execution history
of weakly-biased branches implies a change in the importance of
individual program paths over time. This observation may affect
how we build path-based optimizers. For example, if a branch
within a program path transitions from mostly taken to mostly not-
taken (or vice versa), it is likely that the common paths before and
after this transition share code blocks. To get the most benefit, a
path-based optimizer would duplicate the common blocks. Code
duplication impacts performance by stressing the memory hierar-
chy. If we can identify the phase transitions, we could dynamically
generate and cache the appropriate path-based optimi~ation---
potentially improving performance by never having both versions
in memory at the same time and by linking each in as if the other
had never existed.

Value-based phased behavior. Phasing occurs not only in a pro-
gram's control flow, but also in its value stream. The following are

.t.i-i i i-i~-i~411 i-! .i-i@ . ii i-i.!-i i -i-i i::i41 i i i i :: !i-i-i i i i i
~ i i i !? ~ i i i i i i ii i ~ i i ~ i i i i! i i ? i : i i ? i : i

Load executions [i ,127499]

Figure 7. Value trace of load d2542 in vortex. The horizontal
axis plots the executions of this load from left to right. For

each load execution, we record in the vertical dimension the
value returned. This load returns only two unique values: the
base addresses of arrays named (for convenience) al and a2.

i :: i ti: :!::!: i: i:il i i:i: i:i: i:i:i: i:i:i: i i i:: i:i::i i::i: ̧ i::ii:: i i::i: if: i::i
= 2 l i i i i + i i i i i i i i i i i i i i i i i lii i

Load executions [1,73403]
Figure 8. Value trace of load d4531 in m88ksim. This load

restores the return address register. Since the load returns only
two unique values, a d d u n s i f f n e d is called from only two

call sites during this run.

two clear examples of phased behavior in the values returned by
load instructions. Techniques like value prediction [35] have
increased the research community's interest in the values loaded by
programs. Like conditional branches, the handling of memory loads
has a large impact on the overall performance of applications.

Figure 7 plots the value trace of a load (called d2542) from the
procedure BMT commitParts in bmtl0 .c of the SPECint95
benchmark vortex. This instruction loads the base address of the
array V l i s t s from the global pointer table. As Figure 7 shows, the
program initially accesses one array in memory through this pointer
variable and then switches to another array for the remainder of the
run. Even though this load returns more than one value, a run-time
optimizer could take advantage of the fact that the values are not
interleaved in the value trace.

As we saw earlier, interesting phased behavior may occur in
traces where there is an interleaving of different results. Figure 8
plots the value trace of a load (called d4531) at the end of procedure
addunsigned in dpath.c of the SPECin~95 benchmark
m88ksim. This load restores the return address register just before it
is used in the procedure return. The value Irace shows that addun -
signed is called from just two call sites (named csl and cs2 for
convenience) during the program run. The interesting aspect of this
trace is that, except for two small pieces at the beginning and end of
the trace, addunsigned is called exclusively from csl. During
this extensive time period, an on-line optimizer could elect to inline
a d d u n s i g n e d at csl and do so without increasing the instruction
memory footprint.

Related Work. Though this section has presented examples of
phased behavior, we do not as yet understand how common this
behavior is or how much benefit we could gain from exploiting it.
Even if we cannot use an improved understanding of phased behav-
ior to make applications run faster, there are other ways in which
we can use this information. For example, Sherwood and Calder
[43] are investigating this kind of program behavior to help reduce
the amount of time it takes to perform architectural simulations. By
understanding the location and duration of a program's phases,
computer architects could state with confidence that a simulation of

only small pieces of a program's execution would match the results
obtained from a simulation of the entire program execution. Albo-
nesi [3] has proposed an adaptive processor architecture based on
observations of variations in a program's instruction level parallel-
ism (ILP). (3ouppi [30] was the first to examine the distribution of
ILP in programs.) Albonesi describes a processor that automatically
reduces the complexity of its pipeline when ILP falls so that the
clock frequency (and thus performance) can improve. Finally, we
may be able to use our understanding of program phases to design
better techniques for dynamically managing processor temperature
and power [39].

4.3 Monitoring to find the important run-time units

To this point, we have discussed the need to build optimization
units whose boundaries reflect a program's current behavior, and
the potential benefits of collecting many different and extensive
kinds of temporal information. To take advantage of this informa-
tion in an optimizer, there are two more questions that we need to
discuss: how we can monitor a program's execution to collect the
desired data about the program's behavior; and how to use this
information to identify the actual unit of optimization. This section
concentrates on the issue of program monitoring. Young [52] pro-
vides an answer to the second question for optimizers based on path
profiles; more general answers to this question will have to wait
until we have gained more experience with temporal profiles and
their use in selecting optimization units.

In this section, I focus on the category of systems that perform
optimization on-line and in software. Many of the existing systems
in this category already contain on-hne monitoring systems that
allow them to focus their optimization efforts and better amortize
their optimization costs. For example, the IBM DAISY system [19]
and the IBM Jalapofio dynamic optimizer [12] both employ a two-
tiered approach to optimization: each code region is "lightly" opti-
mized at f'LeSt and then later aggressively optimized when it has
been shown to be frequently executed. The liP Dynamo system
[10] implements a similar policy: it distinguishes between infre-
quently and frequently executed code for the purposes of determin-
ing which code to emulate and which code to optimize and place in
its code cache.

Though these existing monitoring systems work quite well for
their intended uses, they are also quite simple. They each use some-
thing akin to the execution counts in point profiles as a threshold for
determining how to classify a program point (i.e., as frequently or
infrequently executed). Dynamo [10], for example, sets an execu-
tion threshold on blocks that are the target of backward branches,
and it optimizes the first trace of blocks extending from such a
block when the threshold is exceeded. Perhaps this is all that we
will ever be able to afford in a monitor for an on-line optimizer;
however if our monitoring system is to collect information about
program behavior that will help select the dynamically-important
units of optimi7ation, we need something more.

To see how we can afford more, consider the following observa-
tions about a system that monitors for phased behavior. Due to the
inherent characteristics of phased behavior, we are going to have to
monitor a program's behavior during its entire execution. This may
sound like an expensive proposition, but realize that we do not have
to monitor all of the details all of the time. Programs are predict-
able. Once we have identified and optimized a program for some
common behavior, we do not have to keep recognizing that behav-
ior. We simply want to know when the common behavior changes.
Furthermore, an on-line optimizer cannot afford to optimize every
segment of a program's execution. It must be selective and focus on
the common behaviors, behaviors where we can amortize the over-
head of run-time optimization. In other words, the monitoring sys-

tcm should ignore the program's exceptional (uncommon)
behaviors.

The mechanism in Dynamo [10] for flushing its code cache in
reaction to changes in an application's working set is an example of
a mechanism employing many of the above observations. At Har-
vard, we are building a sol, ware-based on-line optimizer, called
Deco, with a multi-level approach to program monitoring that
exhibits all of the characteristics mentioned above. We first use a
low-overhead sampling system, such as those found in DCPI [5] or
Morph [55], to identify the frequently executed program regions.
We then instrument these dynamically important regions to record
details of the program behavior in that those regions. We refer to the
instrumentation as ephemeral because it exists only temporarily--
only long enough to identify the unit of optimization and its tenden-
cies accurately.

5 Mutable Executables

In this paper, I have expounded the virtues of being able to
change the specification of a program's execution while running it.
To change the specification requires the ability to write into the
instruction stream, and the organization of modem, high-perfor-
mance microprocessors does not make this easy to do. The cost of
flushing a set of instructions from the insmlction cache, for exam-
ple, is relatively high on most machines. Furthermore, there exists a
common perception that we should not need to write into the
instruction stream of a running executable. Most modem operating
systems initialize the text segments of an application as read-only.
In effect, we are saying that there is something special about the
executable. Software, once compiled and shipped, is no longer
"soft" or mutable.

Figure 9 compares the process of creating an executable with
that of creating a microprocessor. Hardware architects figured out
long ago that the rapid changes in hardware technology made it
inappropriate to consider any implementation of an instruction set
architecture (ISA) as something "special" and immutable. Today,
computer architects are wary of including technology-dependent
"solutions" to performance problems (e.g., delayed branches) in
their ISA; these solutions inevitably become "bad" ideas due to
technology advances. As such, the hardware community is in a bet-
ter state of mind for thinking about on-line optimizers than the soft-
ware community.

Even though executables are generally thought of as immutable,
the software community has taken a few small steps toward the idea
of executables as mumble objects with its acceptance of DLLs and
dynamically-loadable classes. Furthermore, existing systems that
employ ran-time code generation also write executables while they
run. Yet, the most aggressive on-line optimizers (the lower two cat-
egories of Table 1 on page 4) often take extraordinary steps to make
sure that they do not touch the original executable or cause any vis-
ible side effects that deviate from the sequence of side effects that
would have occurred during execution of the original executable.
Again, this is an odd view given that the same executable would
incur a different sequence of, say, TLB misses on two different
implementations of the same ISA.

My point is that we as a community are not consistent in our
views and expectations of the execution environment. If you
believe my earlier arguments about the increasing need for FIX),
we should invest in discussions and experiments that help to iden-
tify the level of mutability that we could profitably support in our
executables. In addition, we should consider what hardware and
operating system primitives would aid in the development and sup-
port of mumble executables. Perhaps, in the future, mutable execut-
ables will be as accepted as virtual memory is today.

p r o b l e m programmer ..= a l g o r i t h m compiler
• " - in H L L ~ executable

c l a s s o f architect designer
=--- I S A "--- i m p l e m e n t a t i o n p r o b l e m s v v

Figure 9. A comparison of the process of compiling an executable with the process o f designing a microprocessor. In the
upper flow, the executable is considered (mostly) immutable. In the lower flow, the 1SA is considered (mostly) immutable.

6 Challenges
There are many challenges to overcome if we are to make the

vision described in the prior sections into reality. This section pre-
sents my list of the most important of these. You should not view
this as an exhaustive list; its purpose is as a starting point for further
discussion. I truly believe that we can overcome each of these chal-
lenges. As proof of my belief, I provide references to some of the
promising current research efforts that may provide full or partial
solutions. I also include a set of lofty objectives that I would like to
see the community attain while overcoming each barrier.

Mindset. The biggest challenge to the vision in this paper is our
existing mindset. I have found it difficuR for people to think about
executables as mutable objects. Some of this aversion comes from
the concern of programmers that the process of optimization can
silently turn a correct program into a buggy one. Kernighan and
Pike [31, page 176] state that "the more aggressively the compiler
optimizes, the more likely it is to introduce bugs into the compiled
program." This seems to be a common perception, though I could
not find any published studies supporting this view.

We may achieve some leverage on this problem by adapting
some of the work on safety and correctness in the area of mobile
code. For example, Rinard [38] proposes that we build compilers
that validate the correctness of each transformation when it is
applied. He believes that this is a more fruitful approach than one in
which we prove that the compiler works correctly on all possible
legal programs.

Debugging. Even if we can guarantee that the optimizer performs
transformations correctly, many software vendors refuse to compile
with high levels of optimization because optimized code is difficult
to debug. As optimizations have become more sophisticated, it has
become increasingly difficult to have the debugger mask the effects
of the optimization process from the programmer. If automatic and
on-line optimization systems are to be successful, we need to build
tools that help the programmer debug optimized executables. Tice
[48] proposes one such tool. Her system helps programmers to
understand the effects of optimization on their applications without
having to know how or exactly what optimizations were performed.

If the current trends continue, hardware manufacturers will soon
consider the implementation of on-line code transformations that
software vendors hesitate to invoke at compile time. Since it is
already difficult for programmers to debug their own optimized
code, it is unreasonable for the industry to assume that a user could
diagnose the cause of a fault in an on-line optimized executable and
create a bug report. A bug report should be generated by someone
intimate with the details of the program execution at the time of the
fault. On-line optimization systems provide us with such an
agent--the monitor. Perhaps we could adapt existing monitoring
techniques to gather information helpful in diagnosing a program's
run-time faults and useful in transforming that program so that it
avoids those faults in furore runs.

Infrastructure. Compilers are very large pieces of software that
take many person-years of work to develop. One of the goals of the
Harvard Deco project is to fred ways to share code and technology
between our traditional compile-time optimizers and our experi-
mental on-line optimizers. Though we may wish to adapt our cur-
rent optimizations so that they execute more efficlently in a run-
time environment, simply moving them between the compile-time
and run-time environments should not be a reason to have to re-
code. In Machine SUIF [45], we have developed a programming
interface for specifying optimization analyses and transformations
that will allow us to test our on-line optimizations in a traditional
compile-time environment and do so without having to re-code
them.

Multl-dlscipHnaryapproach. To make significant changes to
today's execution environment requires that the members of many
research communities cooperate. I have seen the beginnings of such
cooperative efforts in the development of DCPI [5] and Morph [55],
two profiling systems based on statistical sampling. These two
projects drew together researchers from the operating system and
compiler communities. In my discussions with computer architects
from large microprocessor vendors, I have heard them express their
willingness to implement new performance monitors in hardware,
but they first need some justification that what is requested will be
useful.

Commercial realities. A large body of research exists in support of
the performance potential of FDO. Only recently, however, has the
research community begun to investigate the hurdles that must be
crossed in order for an approach like PG-C to be used daily within
the development group of a large commercial software vendor. To
achieve such acceptance, we must look scientifically at the prob-
lems of profile collection and maintenance. The recent works of
Albert [4], Wang et al. [51], and Savari and Young [41] are note-
worthy examples of this kind of research. Finally, there are other
commercial realities like testing that must be carefully considered.

7 Conclusions
In this paper, I proposed a broad view of what FDO is and when

it should be used. By considering any technique that alters a pro-
gram based on information gathered at mn time to be FDO, it is
easy to see that this approach is already successful and ubiqui-
tous---nearly every hardware manufacturer implements some set of
FDO techniques in its microprocessors. I also presented a classifi-
cation that encompasses much of the prior work in FDO. Even with
this rich body of prior work, I believe that we are just beginning to
tap the potential of and explore the design space in FDO.

Furthermore, I discussed several important trends in application
development, software engineering, hardware technology, and the
Interact that are increasing the need for and interest in FDO. To
meet these needs adequately, I argued for a movement away from
two static models: units of program optimization based on program-
met-defined code boundaries, and immutable executables. Instead,

we should build optimization units with boundaries defined by the
program's run-time behavior. This frees the programmer to set code
boundaries that make the program easy to understand and maintain,
and it enables the optimizer to uncover optimization opportunities
unavailable when it considers all program paths to be equally
important. We should also consider our executables to be mutable
objects. By making it easy to change executables after they have
been shipped and the instruction stream while programs run, we can
build optimizers that are able to adapt applications so that they
always run well, no matter how things change.

8 Acknowledgments
The ideas presented in this paper benefited greatly from discus-

sions with Vas Baia, Glenn Holloway, and the members of my
research group at Harvard.

Michael D. Smith is funded in part by a NSF Young Investigator
award (grant no. CCR-9457779), NSF grant no. CDA-94-01024,
DARPA grant no. NDA904-97-C-0225, and research grants from
AMD, Compaq, Digital Equipment, HP, IBM, Intel, and Microsoft.

9 References
[1] S. Adve, et al. "Changing Interaction of Compiler and Archi-

tecture," Computer, 30(I 2):51-58, December 1997.

[2] A. Aho, R. Sethi, and J. Uliman. Compilers." Principles, Tech-
niques, and Tools, Addison Wesley, Reading, MA, 1988, p.
589.

[3] D. Albonesi. "Dyflamic IPC/Clock Rate Optimization," Proc.
25th Annual International Symposium on Computer Architec-
ture, pp. 282-292, June 1998.

[4] G. Alpert. "A Transparent Method for Correlating Profiles
with Source Programs," Proc. Second Workshop on Feedback-
Directed Optimization, held in conjunction with MICRO-33,
pp. 33-39, November 1999

[5] J. Anderson, et al., "Continuous Profiling: Where Have All the
Cycles Gone?," Proc. 16th ACM Symposium on Operating
Systems Principles (SOSP), October 1997.

[6] P. Andersen. "Partial Evaluation Applied to Ray Tracing,'"
unpublished technical report, January 1995.

[7] A. AppeL Modern Compiler Implementation in C, Cambridge
University Press, Cambridge, UK, 1998.

[8] A. Ayers, S. de Jong, L Peyton, and R. Schooler. "Scalable
Cross-Module Optimization," Proc. ACId S1GPLAN'98 Con-
ference on Programming Language Design and Implementa-
tion, pp. 301-312, June 1998.

[9] J. Backus. "The History of Fortran I, lI, and HI," IEEEAnnu-
als of the History of Computing, 20(4), Oct.-Dec. 1990.

[10] V. Bala, E. Duesterwald, and S. Banerjia. "Dynamo: A Trans-
parent Runtime Optimization System," to appear in the ACM
SIGPLAN 2000 Conference on Programming Language
Design and Implementation, June 2000.

[11] T. Ball and J. Larus, "Efficient Path Profiling," Proc. 29th
Annual International Symposium on Microarchitecture, pp.
46-57, 1996.

[12] M. Burke, et al. "The Jalapefio Dynamic Optimizing Compiler
for Java," Proc. ACM Java Grande Conference, June 1999.

[13] R. Cohn and G Lowney. "Hot Cold Optimization of Large
Windows/NT Applications," Proc. 29th Annual International
Symposium on Microarchitectare, pp. 80-89, December 1996.

[14] R. Cohn and G Lowuey. "Feedback Directed Optimization in
Compaq's Compilation Tools for Alpha," Proc. Second Work-
shop on Feedback-Directed Optimization, held in conjunction
with MICRO-33, pp. 3-12, November 1999.

[15] C. Consel, et aL "Tempo: Specializing systems applications
and beyond," A CM Computing Surveys, Symposium on Partial
Evaluation, 30(3), 1998.

[16] T. Conte and S. Sathaye, "Dynamic rescheduling: A technique
for object code compatibility in VLIW architectures," Proc.
28th Annual International Symposium on Microarchitectare,
November 1995.

[17] T. M. Conte, K. N. Menezes and M. A. Hirsch, "Accurate and
practical profile-driven compilation using the profile buffer,"
Proc. 29th Annual International Symposium on Microarchitec-
ture, pp. 36-45, December 1996.

[18] C. Dulong, et al. "An Overview of the Intel IA-64 Compiler,"
Intel Technology Journal, November 22, 1999 (Q4).

[19] K. Ebciogiu and E. Altman. "Dynamic Compilation for 100%
Architectural Compatibility," Proc. 24th Annual International
Symposium on ComputerArchitectare, pp. 26-37, June 1997.

[20] D. Engier, W. Hsieh, and M. Kaashoek. "'C: A Language for
High-I~vel, Efficient, and Machine-Independent Dynamic
Code Generation," Proc. 23rd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pp. 131-
144, January 1996.

[21] D. Friendly, S. Patel, and Y. Patt. "'Putting the Fill Unit to
Work: Dynamic Optimizations for Trace Cache Microproces-
sors," Proc. 31st Annual International Symposium on
Microarchitectare, pp. 173-181, November 1998.

[22] N. Gloy and M. Smith. "Procedure Placement using Temporal-
Ordering Information," ACM Transactions on Programming
Languages and Systems, 21 (5):977-1027, September 1999.

[23] B. Grant, et aL "Annotation-Directed Run-Time Specialization
in C," Proc. A CM SIGPLAN Symposium on Partial Evaluation
and Semantics-Based Program Manipulation, pp. 163-178,
June 1997.

[24] B. Grant, et al. "An Evaluation of Staged Run-Time Optimiza-
tiGriS in DyC," Proc. ACM SIGPLAN I 999 Conference on Pro-
gramming Language Design and Implementation, pp. 293-
304, May 1999.

[25] R. Gupta, D. Berson, and J. Fang. "Path Profile Guided Partial
Dead Code Elimination Using Predication," Proc. of Parallel
Architectures and Compilation Techniques, pp. 102-115,
November 1995.

[26] R. Oupta, D. Berson, and J. Fang. "Path Profile Guided Partial
Redundancy Elimination Using Speculation," Proc. of IEEE
International Conference on Computer Languages, pp. 230-
239, May, 1995.

[27] R. Hank, W. Hwu, and B. Ran. "Region-Based Compilation:
An Introduction and Motivation:' Proc. 28th Annual Interna-
tional Symposium on Microarchitecture, pp. 158--168, Novem-
ber 1995.

10

[28] R. Hookway and M. Herdeg, "DIGITAL FX!32: Combining
Emulation and Binary Translation," Digital Technical Journal,
9(1):3-12, 1997.

[29] W. Hwu et al., "The Superbloek: An Effective Technique for
VLIW and Superscalar Compilation," The Journal of Super-
computing 7(1/2):229-248, Kluwer Academic Publishers, May
1993. Also see http://www.crhc.uiuc.edu/Impact.

[30] N. Jouppi. "The Non-Uniform Distribution of Instruction-
Level and Machine Parallelism and Its Effect on Perfor-
mance," 1EEE Transactions on Computers, 38(12):1645--
1658, December 1989.

[31] B. Kemighan and R. Pike. The Practice of Programming,
Addison Wesley, Reading, MA, 1999.

[32] A. Klaiber. "The Technology Behind the Crusoe Processors,"
White paper (http://www.transmeta.com/crusoe/download/
pdf/crusoetechwp.pdf), Transmeta Corporation, January 2000.

[33] D. Lee, P. Crowley, J.L. Baer, T. Anderson, and B. Bershad.
"Execution Characteristics of Desktop Applications on Win-
dows biT," Proc. 25th Annual International Symposium on
Computer Architecture, pp. 27-38, June 1998.

[34] J. Levine. Linkers and Loaders, Morgan Kaufmann Publish-
ers, San Francisco, CA, 2000.

[35] M. Lipasti and L Shen. "Exceeding the Datafiow Limit Via
Value Prediction," Proc. 29th International Symposium on
Microarchitecture, pp. 226-237, December 1996.

[36] P. Lowney, et al. "The Multiflow Trace Scheduling Compiler,"
The Journal of Supercomputing, 7:51-142, January 1993.

[37] M. Mock, M. Berryman, C. Chambers, and S. Eggers. "Calpa:
A Tool for Automating Dynamic Compilation," Proc. Second
Workshop on Feedback-Directed Optimization, held in con-
junction with MICRO-33, pp. 100-109, November 1999.

[38] M. Rinard. "Credible Compilation," Mrr Laboratory for Com-
puter Science technical report MIT-LCS-TR-776, Cambridge,
MA, March 1999.

[39] E. Rohou and M. Smith. "Dynamically Managing Processor
Temperature and Power," Proc. Second Workshop on Feed-
back-Directed Optimization, held in conjunction with the 32nd
Annual IEEE/ACM International Symposium on Microarchi-
tecture, pp. 73-82, November 1999.

[40] E. Rotenberg, et al. "Trace Processors," Proc. 30th Annual
International Symposium on Microarchitecture, pp. 138-148,
December 1997.

[41] S. Savari and C. Young. "Comparing and Combining Pro-
files," Proc. Second Workshop on Feedback-Directed Optimi-
zation, held in conjunction with the 32nd Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 50--62,
November 1999.

[42] W. Schmidt, et al. "Profile-Directed Restructuring of Operat-
ing System Code," IBM Systems Journal, 37(2):270-297,
1998.

[43] T. Sherwood and B. Calder. "Time Varying Behavior of Pro-
grams," UC San Diego Technical Report CS99-630, August
1999.

[44] J. Smith and Gt Sohi. "The Micmarchitecture of Superscalar
Processors," Proceedings of 1EEE, 83(12):1609--1624,
December 1995.

[45] M. Smith. "Extending SUIF for Machine-dependent Optimiza-
tions," Proc. First SUIF Compiler Workshop, Stanford, CA,
pp. 14--25, January 1996. Also see http://www.eees.har-
vard.edu/machsnif.

[46] A. Sodani and Q Sohi. "Dynamic Instruction Reuse," Proc.
24th International Symposium on Computer Architecture, pp.
194--205, July 1997.

[47] Sun Microsystems. "The Java Hotspot Performance Engine
Architecture," White paper (http://java.sun.com/products/
hotspot/whitepaper.html), Sun Microsystems, April 1999.

[48] C. Tice. "Non-Transparent Debugging of Optimized Code,"
Ph.D. Dissertation, Computer Science Division Tech Report
Number UCB/CSD-99-1077, University of California at Ber-
keley, October 1999.

[49] D. Wall. "Predicting Program Behavior Using Real or Esti-
mated Profiles," Proc. SIGPLAN 1991 Conference on Pro-
gramming Language Design and Implementation, pp. 59--70,
June 1991.

[50] Z. Wang and N. Rubin. "Evaluating the Importance of User-
Specific Profiling," Proc. 2nd USENIX Windows NT Sympo-
sium, August 1998.

[51] Z. Wang, K. Pierce, and S. McFarling. "BMAT - - A Binary
Matching Tool," Proc. Second Workshop on Feedback-
Directed Optimization, held in conjunction with MICRO-33,
pp. 40-49, November 1999.

[52] C. Young, "Path-based Compilation," Ph.D. Dissertation,
Division of Engineering and Applied Sciences, Harvard Uni-
versity, Cambridge, MA, January 1998.

[53] C. Young and M. Smith, "Better Global Scheduling Using
Path Profiles," Proc. 31st Annual International Symposium on
Microarchitecture, pp. 115-123, December 1998.

[54] C. Young and M. Smith. "Static Correlated Branch Predic-
tion," ACM Transactions on Programming Languages and
Systems, 21(5): 1028-1075, September 1999.

[55] X. Zhang et al., "System Support for Automatic Profiling and
Optimization," Proc. 16th A CM Symposium on Operating Sys-
tems Principles, 1997.

11

