Lecture T3: Grammar

Review of Formal Languages

Alphabet = finite set of symbols.
. E.g., binary alphabet = {0, 1}

String = finite sequence of symbols from the alphabet.
. E.g., 011100101001 is a string over binary alphabet.

Language = (potentially infinite) set of strings over an alphabet.

. E.g., strings having same number of 0’'s and 1's:
L ={01, 10, 1001, 011100101001, . . .}

Language recognition. (e.g., FSA)
. 1s 011100101001 a string in language L?
. All computational problems can be expressed in this way.

Language generation. (e.g., RE)
. Set of rules for producing strings.

Why Learn Grammar?

Concrete applications:

. Better understanding of what computers can do.

. Compiler implementation.

. Natural language recognition / translation (linguistics).
. Models of physical world.

Grammar

Generates strings in language by a process of replacing symbols.
. Similar to regular expressions.

Four elements.
. Terminal symbols:
characters in alphabet - denote by 0 or 1 for binary alphabet.
. Nonterminal symbols:
local variables for internal use - denote by <nane>.
. Start symbol: one special nonterminal.
(analogous to start state in FSA)
. Production rules:
replacement rules - denote by <A> ¢ 0O <D> b
e
e

A Familiar Example (abbreviated)

Terminals: horse, dog, cat, saw, heard, the
Nonterminals: <sentence>, <subject>, <verb>, <object>

Start symbol: <sent ence>

Production rules: <sentence> [0 <subject> <verb> <object >
<subject> 0O the horse
<subject> 0O the dog
<subject> 0O the cat
<obj ect > O the horse
<obj ect > 0 the dog
<obj ect > O the cat
<ver b> 0 saw
<ver b> O heard

Some strings: the horse saw the dog
the dog heard the cat
the cat saw the horse

Generating a String in Language

Start with the start symbol.

<sent ence>

Generating a string in language:

<sent ence>

Generating a String in Language

Start with the start symbol.

Use any applicable production rule.
<sentence> [<subject> <verb> <object>

Generating a string in language:

<sent ence> [0 <subject> <verb> <object>

Generating a String in Language

Start with the start symbol.

Use any applicable production rule.
<subject> O the horse

Generating a string in language:

<sent ence> [0 <subject> <verb> <object>
O the horse <verb> <object>

Generating a String in Language

Start with the start symbol.

Use any applicable production rule.
<object> 0O the dog

Generating a string in language:

<sent ence> 0 <subject> <verb> <object>
O the horse <verb> <object>

0 the horse <verb> the dog

Generating a String in Language

Start with the start symbol.

Use any applicable production rule.
<verb> O saw

Generating a string in language:

<sent ence> 0 <subject> <verb> <object>
the horse <verb> <object >
the horse <verb> the dog

O O o

the horse saw the dog

one string in language

The C Language Grammar (abbreviated)

Terminals:

. if do while for switch break continue typedef struct
return main int |long char float double void static ;(
) abcABCO12+* -/ _ #include += ++ ...

Nonterminals:

. <statement> <expression> <C source file>
<identifier> <digit> <nondigit> <identifier>
<sel ecti on-statenent> <l oop-statenent>

Start symbol: <C source file>

A string: #i ncl ude <stdi o. h>
int main(void) {
printf("Hello Worldl\n");
return O;

The C Language: Identifiers

Production rules:

<identifier> O <nondigit>
0 <identifier> <nondigit>
O <identifier> <digit>

<nondi gi t > Oal bl .. .| Y] Z]

<di gi t > 00| 1] 23| 45| 6] 7] 8]

Some identifiers:
X

f

tenp

tenpl

done

_CanSt art Wt hUnder scor eBut Not 7

9

The C Language: Expressions

Production rules:

<expression> [<identifier>

<const ant >

<cond- expr essi on>
<assi gn- expr essi on>

o

<cond- expr essi on> O <expression> > <expression>
0 <expression> != <expressi on>

<assi gn-expressi on> [<expression> = <expression>
0 <expression> += <expressi on>

Some expressions: This grammar also considers

The C Language: Statements

Production rules:

<sel ect - st at enent >
<l oop- st at enent >
<conpound- st at ement >
<expr ess- st at enent >

<st at enent >

<sel ect - st at enent > i f (<expression>)
i f (<expression>)<statenent>

el se <statenent >

oo ogog

<l oop- st at enent > whi | e (<expression>) <statenent>

do <statenent> while (<expression>)

oo

<express-statenment> [0 <expression> ;

A statement: whi | e(done != 1)
if (f(x) > 4.0)

done = 1;
el se
X += 2.0;

. X 4 =x avalid expression.

. X > 4

. done !'=1

. X =y =2z=0

. X += 2.0 15
Grammars

In principle, could write out the grammar for English language.

In practice, need to write out grammar for C.
Compiler check to see if your program is a valid "string" in the C
language.
. The C Standard formalizes what it means to be a valid ANSI C
program using grammar (see K+R, Appendix A13).

Compiler implementation: simulate FSA and PDA machines to
recognize valid C programs.

Ambiguity

Production rules:

<expr> O <expr> + <expr>
0 <expr> * <expr>
O a|] b| c

An ambiguous expression:
.a+b*c

Two different derivations (parse trees).
. (a+h) *c
.a+ (b*c)

Postorder traversals of parse trees:
ba+c*
acb=*+

Ambiguity

Need more refined grammar:

<expr> [0 <expr> + <T>
0 <T>

<T> 0 <T> * <pP>
0 <p>

<pP> O (<expr>)
Oal| b c

No ambiguous expressions.
.at+tb*c
. (a+h) *c

Type Il Grammar (Regular)

Limit production rules to have exactly one nonterminal on LHS and at
most one nonterminal and terminal on RHS:

<A> [0 a

<A> 0O <A> Db

 0 ¢

<C 0O ¢

Example:

<A> [0 0 Start = <A>
 0 <A>1

<A> [0 ¢

Strings generated:
g, 10,1010, 101010, 10101010, ...

Grammar GENERATES language = set of all strings derivable from
applying production rules.

Type Il Grammar (Context Free)

Limit production rules to have exactly one nonterminal on LHS, but
anything on RHS.

<A> 0 b <C a <C

<A> [0 <A> b c a <A>

Example: <PAL> O O0<PAL> 0 Start = <PAL>
1<PAL> 1

0

1

€

OoOoOod

Strings generated:
g, 1,0,101, 001100, 111010010111, ...

Language generated:
#

Type Il Grammar (Context Free)

Example:
<S> O (<s) Start = <S>
O {<s>}
O [<S>]
O <S> <S>
o e

Strings generated:

e, (), OL01, ((HOHOON, -

Language generated:
e

Type | Grammar (Context Sensitive)

Add production rules of the type:

[Al [q O [A a[q
where [A] and [C] represent some fixed sequence of nonterminals
and terminals.

<A> <C O <A> b <C

<A> hi <C <D> 0 <A> hip <C <D>

Type 0 Grammar (Recursive)

No limitation on production rules: at least one nonterminal on LHS.

Example:
P Start = <S> ﬂEl

<S> 0 <S> <S> <A> [0 <A>
<S> O <A> <C <A> 0 <A>
<A> O a <AS<C O <C<A>
 0O b <C<A> O <A<C
<C 0O c¢ <C> O <C
<S> [0 ¢

Strings generated:
g, abc, aabbcc, cabcab, acacacacacachbbbbb,

Language generated:
e

Chomsky Hierarchy

m
3 Type Machine Grammar E
%] FSA regular g
= I NPDA context free s
§ [LBA context sensitive)
> . «
5 0 ™ recursive S
[¢) «
0 ®

(%]

Essential one-to-one
correspondence between
machines and languages.

Noam Chomsky

Chomsky Hierarchy

Regular

Context Free

Context sensitive

Recursively enumerable

All languages

FSA and Type Il Grammar Equivalence

FSA’s and Type lll grammar are equally powerful.
. Given an FSA, can construct Type Ill grammar to generate same

language.
. Given Type lll language, can construct FSA that accepts same
language.
Proof idea:
FSA Type Il Grammar
Start state Start symbol
States Nonterminals
Transition arcs Production rules: <A> [0 a
Accept state Production rules: <A> 0O a

Compilers and Grammar

Compiler: translates program from high-level language to native
machine language.

. C O TOY

Three basic phases.
Lexical analysis (tokenizing).
- convert input into "tokens" or terminal symbols

—# include <stdio.h>int main (void) { printf (
"Hello World!'\n") ; return O ; }

- implement with FSA
- Unix program | ex

Note: as specified, grammar for <identifier> is not Type lIl.
Easy exercise: make Type lll.

Compilers and Grammar

Compiler: translates program from high-level language to native
machine language.

. C O TOY

Three basic phases.
Lexical analysis (tokenizing).
. Syntax analysis (parsing).

- implemented using pushdown automata since C language is
(almost) completely described with context-free grammar

- Unix program yacc

Compilers and Grammar

Compiler: translates program from high-level language to native
machine language.

. C O TOY

Three basic phases.
Lexical analysis (tokenizing).
. Syntax analysis (parsing).
. Code generation.

- parse tree gives structure
of computation

- traverse tree in postorder

and create native code @ @

Parse tree for expression:
(a*(b+c))-(d+e)

Lindenmayer systems:

Apply production rules SIMULTANEOUSLY.
Falls in between Chomsky hierarchy levels.

Example:

. Production rules:
0

01[0]1[0]0
1] O 11]

100 1 [0 11 [0] 0
O 11 [1[0]1[0]0] 11 [1[0]1[0]0] 1[0]1[O]
0 111 [*] 111 [*]

*

{}

* denotes copy of previous string

Other Exotic Forms of Grammar

Start with 10. At stage i, apply rules to each symbol in string from
stage i-1.

What's Ahead?

Last 3 lectures developed formal method for studying computation.
Now, we get to use it!

3 of the most important ideas in computer science ahead.
. Lecture T4: what can be computed?

Lecture T5: designing high-performance algorithms?

Lecture T6: why we can’t solve problems like the TSP?

Other Exotic Forms of Grammar

Visualize in 2D:

“Productioe™ rules;
il one do e h segment of mo frank;

lnnl-m'l.'rm:h hramch wigh myself ol prov generabis

ElnHtrnnTt LR turns along trunk)
E stem

e: leaf”

P5
| 1 Branch off

Li=1LD™1™

—

1if®=]idg=]= iiifg=liiif*=}y=

