Lecture T3: Grammar

Review of Formal Languages

Alphabet = finite set of symbols.
. E.g., binary alphabet = {0, 1}

String = finite sequence of symbols from the alphabet.
. E.g., 011100101001 is a string over binary alphabet.

Language = (potentially infinite) set of strings over an alphabet.

. E.g., strings having same number of 0’'s and 1's:
L ={01, 10, 1001, 011100101001, . . .}

Language recognition. (e.g., FSA)
. 1s 011100101001 a string in language L?
. All computational problems can be expressed in this way.

Language generation. (e.g., RE)
. Set of rules for producing strings.

Why Learn Grammar?

Concrete applications:

. Better understanding of what computers can do.

. Compiler implementation.

. Natural language recognition / translation (linguistics).
. Models of physical world.

Grammar

Generates strings in language by a process of replacing symbols.
. Similar to regular expressions.

Four elements.
. Terminal symbols:
characters in alphabet - denote by 0 or 1 for binary alphabet.
. Nonterminal symbols:
local variables for internal use - denote by <nane>.
. Start symbol: one special nonterminal.
(analogous to start state in FSA)
. Production rules:
replacement rules - denote by <A> ¢ 0O <D> b <B>
e
e




A Familiar Example (abbreviated)

Terminals: horse, dog, cat, saw, heard, the
Nonterminals: <sentence>, <subject>, <verb>, <object>

Start symbol: <sent ence>

Production rules: <sentence> [0 <subject> <verb> <object >
<subject> 0O the horse
<subject> 0O the dog
<subject> 0O the cat
<obj ect > O the horse
<obj ect > 0 the dog
<obj ect > O the cat
<ver b> 0 saw
<ver b> O heard

Some strings: the horse saw the dog
the dog heard the cat
the cat saw the horse

Generating a String in Language

Start with the start symbol.

<sent ence>

Generating a string in language:

<sent ence>

Generating a String in Language

Start with the start symbol.

Use any applicable production rule.
<sentence> [ <subject> <verb> <object>

Generating a string in language:

<sent ence> [0 <subject> <verb> <object>

Generating a String in Language

Start with the start symbol.

Use any applicable production rule.
<subject> O the horse

Generating a string in language:

<sent ence> [0 <subject> <verb> <object>
O the horse <verb> <object>




Generating a String in Language

Start with the start symbol.

Use any applicable production rule.
<object> 0O the dog

Generating a string in language:

<sent ence> 0 <subject> <verb> <object>
O the horse <verb> <object>

0 the horse <verb> the dog

Generating a String in Language

Start with the start symbol.

Use any applicable production rule.
<verb> O saw

Generating a string in language:

<sent ence> 0 <subject> <verb> <object>
the horse <verb> <object >
the horse <verb> the dog

O O o

the horse saw the dog

one string in language

The C Language Grammar (abbreviated)

Terminals:

. if do while for switch break continue typedef struct
return main int |long char float double void static ;(
) abcABCO12+* -/ _ #include += ++ ...

Nonterminals:

. <statement> <expression> <C source file>
<identifier> <digit> <nondigit> <identifier>
<sel ecti on-statenent> <l oop-statenent>

Start symbol: <C source file>

A string: #i ncl ude <stdi o. h>
int main(void) {
printf("Hello Worldl\n");
return O;

The C Language: Identifiers

Production rules:

<identifier> O <nondigit>
0 <identifier> <nondigit>
O <identifier> <digit>

<nondi gi t > Oal bl .. .| Y] Z]

<di gi t > 00| 1] 23| 45| 6] 7] 8]

Some identifiers:
X

f

tenp

tenpl

done
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The C Language: Expressions

Production rules:

<expression> [ <identifier>

<const ant >

<cond- expr essi on>
<assi gn- expr essi on>

o

<cond- expr essi on> O <expression> > <expression>
0 <expression> != <expressi on>

<assi gn-expressi on> [ <expression> = <expression>
0 <expression> += <expressi on>

Some expressions: This grammar also considers

The C Language: Statements

Production rules:

<sel ect - st at enent >
<l oop- st at enent >
<conpound- st at ement >
<expr ess- st at enent >

<st at enent >

<sel ect - st at enent > i f (<expression>)
i f (<expression>)<statenent>

el se <statenent >

oo ogog

<l oop- st at enent > whi | e (<expression>) <statenent>

do <statenent> while (<expression>)

oo

<express-statenment> [0 <expression> ;

A statement: whi | e(done != 1)
if (f(x) > 4.0)

done = 1;
el se
X += 2.0;

. X 4 =x avalid expression.

. X > 4

. done !'=1

. X =y =2z=0

. X += 2.0 15
Grammars

In principle, could write out the grammar for English language.

In practice, need to write out grammar for C.
Compiler check to see if your program is a valid "string" in the C
language.
. The C Standard formalizes what it means to be a valid ANSI C
program using grammar (see K+R, Appendix A13).

Compiler implementation: simulate FSA and PDA machines to
recognize valid C programs.

Ambiguity

Production rules:

<expr> O <expr> + <expr>
0 <expr> * <expr>
O a|] b| c

An ambiguous expression:
.a+b*c

Two different derivations (parse trees).
. (a+h) *c
.a+ (b*c)

Postorder traversals of parse trees:
ba+c*
acb=*+




Ambiguity

Need more refined grammar:

<expr> [0 <expr> + <T>
0 <T>

<T> 0 <T> * <pP>
0 <p>

<pP> O ( <expr>)
Oal| b c

No ambiguous expressions.
.at+tb*c
. (a+h) *c

Type Il Grammar (Regular)

Limit production rules to have exactly one nonterminal on LHS and at
most one nonterminal and terminal on RHS:

<A> [0 <B> a

<A> 0O <A> Db

<B> 0 ¢

<C 0O ¢

Example:

<A> [0 <B> 0 Start = <A>
<B> 0 <A>1

<A> [0 ¢

Strings generated:
g, 10,1010, 101010, 10101010, ...

Grammar GENERATES language = set of all strings derivable from
applying production rules.

Type Il Grammar (Context Free)

Limit production rules to have exactly one nonterminal on LHS, but
anything on RHS.

<A> 0 b<B> <C a <C

<A> [0 <A> b c a <A>

Example: <PAL> O O0<PAL> 0 Start = <PAL>
1<PAL> 1

0

1

€

OoOoOod

Strings generated:
g, 1,0,101, 001100, 111010010111, ...

Language generated:
#

Type Il Grammar (Context Free)

Example:
<S> O (<s) Start = <S>
O {<s>}
O [<S>]
O <S> <S>
o e

Strings generated:

e, (), OL01, ((HOHOON, -

Language generated:
e




Type | Grammar (Context Sensitive)

Add production rules of the type:

[Al <B>[q O [A a[q
where [ A] and [ C] represent some fixed sequence of nonterminals
and terminals.

<A> <B> <C O <A> b <C

<A> hi <B> <C <D> 0 <A> hip <C <D>

Type 0 Grammar (Recursive)

No limitation on production rules: at least one nonterminal on LHS.

Example:
P Start = <S> ﬂEl

<S> 0 <S> <S> <A><B> [0 <B><A>
<S> O <A> <B> <C <B><A> 0 <A><B>
<A> O a <AS<C O <C<A>
<B> 0O b <C<A> O <A<C
<C 0O c¢ <B><C> O <C<B>
<S> [0 ¢

Strings generated:
g, abc, aabbcc, cabcab, acacacacacachbbbbb,

Language generated:
e

Chomsky Hierarchy
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Essential one-to-one
correspondence between
machines and languages.

Noam Chomsky
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FSA and Type Il Grammar Equivalence

FSA’s and Type lll grammar are equally powerful.
. Given an FSA, can construct Type Ill grammar to generate same

language.
. Given Type lll language, can construct FSA that accepts same
language.
Proof idea:
FSA Type Il Grammar
Start state Start symbol
States Nonterminals
Transition arcs Production rules: <A> [0 <B> a
Accept state Production rules: <A> 0O a

Compilers and Grammar

Compiler: translates program from high-level language to native
machine language.

. C O TOY

Three basic phases.
Lexical analysis (tokenizing).
- convert input into "tokens" or terminal symbols

—# include <stdio.h>int main ( void ) { printf (
"Hello World!'\n" ) ; return O ; }

- implement with FSA
- Unix program | ex

Note: as specified, grammar for <identifier> is not Type lIl.
Easy exercise: make Type lll.

Compilers and Grammar

Compiler: translates program from high-level language to native
machine language.

. C O TOY

Three basic phases.
Lexical analysis (tokenizing).
. Syntax analysis (parsing).

- implemented using pushdown automata since C language is
(almost) completely described with context-free grammar

- Unix program yacc

Compilers and Grammar

Compiler: translates program from high-level language to native
machine language.

. C O TOY

Three basic phases.
Lexical analysis (tokenizing).
. Syntax analysis (parsing).
. Code generation.

- parse tree gives structure
of computation

- traverse tree in postorder

and create native code @ @

Parse tree for expression:
(a*(b+c))-(d+e)




Lindenmayer systems:

Apply production rules SIMULTANEOUSLY.
Falls in between Chomsky hierarchy levels.

Example:

. Production rules:
0

01[0]1[0]0
1] O 11]

100 1 [ 0 11 [ 0 ] 0
O 11 [1[0]1[0]0] 11 [1[0]1[0]0] 1[0]1[O]
0 111 [*] 111 [*]

*

{}

* denotes copy of previous string

Other Exotic Forms of Grammar

Start with 10. At stage i, apply rules to each symbol in string from
stage i-1.

What's Ahead?

Last 3 lectures developed formal method for studying computation.
Now, we get to use it!

3 of the most important ideas in computer science ahead.
. Lecture T4: what can be computed?

Lecture T5: designing high-performance algorithms?

Lecture T6: why we can’t solve problems like the TSP?

Other Exotic Forms of Grammar

Visualize in 2D:
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