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LU and Cholesky Factorizations



Operation Count for Gauss-Jordan

• For one R.H.S., how many operations?

• For each of n rows:
– Do n times:

• For each of n+1 columns:

– One add, one multiply

• Total = n3+n2 multiplies, same # of adds

• Asymptotic behavior: when n is large, dominated by n3



Faster Algorithms

• Our goal is an algorithm that does this in 1/3 n3 operations,
and does not require all R.H.S. to be known at beginning

• Before we see that, let’s look at a few special cases that are even faster



Tridiagonal Systems

• Common special case:

• Only main diagonal + 1 above and 1 below
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Solving Tridiagonal Systems

• When solving using Gaussian elimination:
– Constant # of multiplies/adds in each row

– Each row only affects 2 others
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Running Time

• 2n loops, 4 multiply/adds per loop (assuming correct bookkeeping)

• This running time has a fundamentally different dependence on n: 
linear instead of cubic
– Can say that tridiagonal algorithm is O(n) while Gauss-Jordan is O(n3)

• In general, a banded system of bandwidth w requires
O(wn) storage and O(w2n) computations.



Big-O Notation

• Informally, O(n3) means that the dominant term for large n is cubic

• More precisely, there exist a c and n0 such that
running time ≤ c n3

if
n > n0

• This type of asymptotic analysis is often used
to characterize different algorithms



Triangular Systems are nice!

• Another special case: lower-triangular
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Triangular Systems

• Solve by forward substitution
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Triangular Systems

• Solve by forward substitution
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Triangular Systems

• Solve by forward substitution
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Triangular Systems

• If A is upper triangular, solve by backsubstitution
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Triangular Systems

• If A is upper triangular, solve by backsubstitution
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Triangular Systems

• Both of these special cases can be solved in
O(n2) time

• This motivates a factorization approach to solving arbitrary systems:
– Find a way of writing A as LU, where L and U are both triangular

– Ax=b    ⇒ LUx=b    ⇒ Ld=b    ⇒ Ux=d

– Time for factoring matrix dominates computation



Solving Ax = b with LU Decomposition of A

A x = b
L U

L d= b

d
Ux = d

x



Symmetric Matrices: Cholesky Decomposition

• For symmetric matrices, choose U=LT

(A = LLT)

• Perform decomposition

• Ax=b    ⇒ LLTx=b    ⇒ Ld=b    ⇒ LTx=d
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Cholesky Decomposition
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Cholesky Decomposition
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Cholesky Decomposition

• This fails if it requires taking square root of a negative number

• Need another condition on A: positive definite

i.e., For any v,  vT A v > 0

(Equivalently, all positive eigenvalues)



Cholesky Decomposition

• Running time turns out to be 1/6n3 multiplications + 1/6n3 additions
– Still cubic, but lower constant

– Half as much computation & storage as LU

• Result: this is preferred method for solving
symmetric positive definite systems



LU Decomposition

• For more general matrices, factor A into LU, where
L is lower triangular and U is upper triangular

• Last 2 steps in O(n2) time, so total time dominated by decomposition

Ax=b
LUx=b
Ly=b
Ux=y



A = LU

• More unknowns than equations!

• Let all lii=1 (Doolittle’s method)
– Or, could have chosen to let all uii=1  (Crout’s method)
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Doolittle Factorization for LU Decomposition
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Doolittle Factorization

• For i = 1..n
– For j = 1..i

– For j = i+1..n
































⇒

















33

2322

131211

3231

21

333231

232221

131211

00
0

1
01
001

u
uu
uuu

ll
l

aaa
aaa
aaa

∑
−

=

−=
1

1

j

k
kijkjiji ulau

ii

i

k
kijkji

ji u

ula
l

∑
−

=

−
=

1

1



Doolittle Factorization

• Interesting note: # of outputs = # of inputs,
algorithm only refers to elements of A, not b

• Can do this in-place!
– Algorithm replaces A with matrix

of l and u values, 1s are implied

– Resulting matrix must be interpreted in a special way: not a regular matrix

– Can rewrite forward/backsubstitution routines to use this “packed” l-u matrix
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LU Decomposition

• Running time is about 1/3n3 multiplies, same number of adds
– Independent of RHS, each of which requires O(n2) back/forward substitution

– This is the preferred general method for solving linear equations

• Pivoting very important
– Partial pivoting is sufficient, and widely implemented

– LU with pivoting can succeed even if matrix is singular (!)
(but back/forward substitution fails…)



Matrix Inversion using LU

• LU depend only on A, not on b

• Re-use L & U for multiple values of b
– i.e., repeat back-substitution

• How to compute A-1?
AA-1 = I (n×n identity matrix), e.g.

→ Use LU decomposition with
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