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Operation Count for Gauss-Jordan

For one R.H.S., how many operations?

For each of n rows:

— Do n times:

* For each of n+1 columns:

— One add, one multiply

Total = n3+n? multiplies, same # of adds

Asymptotic behavior: when n is large, dominated by n’



Faster Algorithms

Our goal is an algorithm that does this in 1/;n3 operations,
and does not require all R.H.S. to be known at beginning

Before we see that, let’s look at a few special cases that are even faster



Tridiagonal Systems

Common special case:

a, a, O 0 b,
a, a, a, 0 b,
0 a, a, a, b,
0 0 a, a, b,

Only main diagonal + 1 above and 1 below



Solving Tridiagonal Systems

When solving using Gaussian elimination:
— Constant # of multiplies/adds in each row

— Each row only affects 2 others

a, a 0 O by
a21 a‘22 a23 0 b2
0 a32 a33 a'34 b3
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Running Time

2n loops, 4 multiply/adds per loop (assuming correct bookkeeping)

This running time has a fundamentally different dependence on n:
linear instead of cubic

— Can say that tridiagonal algorithm is O(n) while Gauss-Jordan is O(n?)

In general, a banded system of bandwidth w requires
O(wn) storage and O(w?n) computations.



Big-O Notation

Informally, O(n3) means that the dominant term for large n is cubic

More precisely, there exist a ¢ and n, such that
if

This type of asymptotic analysis is often used
to characterize different algorithms



Triangular Systems are nice!

Another special case: lower-triangular

a, 0 0 O b,
a, a, 0 0 b,
8y 8, Ay O b,
a, @8, a, a, b,



Triangular Systems

Solve by forward substitution
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Triangular Systems

Solve by forward substitution
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Triangular Systems

Solve by forward substitution
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Triangular Systems

If A is upper triangular, solve by backsubstitution

a, a, a; a, ag |b
0O a, a, a, a. |b
0 0 a, a8, ag |Db
o 0 0 a, a; |Db
0 0 0 0 a; |b
Xs = b,



Triangular Systems

If A is upper triangular, solve by backsubstitution

a; 8, a, a, as |b
0 @&, ay; ay ax b,
0 0 a5 &, ag b,
0 0 0 &, ag b,

0 0 0 0 ag |b
X, = b4 B a45)(5




Triangular Systems

Both of these special cases can be solved in

O(n?) time

This motivates a factorization approach to solving arbitrary systems:
— Find a way of writing A as LU, where L and U are both triangular

- Ax=b = x=b = Ld=b = Ux=d

— Time for factoring matrix dominates computation



Solving Ax =b with LU Decomposition of A




Symmetric Matrices: Cholesky Decomposition

For symmetric matrices, choose U=L'
(A = LL")

Perform decomposition

all a12 a13 Ill O O Ill |21
a12 a'22 a23 — |21 |22 O O |22

a13 a'23 a33 | |31 |32 |33 _ O O

Ax=b = Ll'x=b = Ld=b = Lix=d




Cholesky Decomposition

all a12 a13 Ill O O Ill |21 |31
a12 a'22 a23 = I21 |22 O O |22 |32

_a13 dys a33_ _|31 |32 |33__ 0 0 |33_
d, = |11 =4/

a,

11 =8 = |21 — |_

11

A3

11 31 =3 = |31 — |_

11
2 2 2
|21 + |22 =a,, = |22 — \/azz — |21
Ayg |21|31

I21|31 + I22'32 =a,; = |32 —




Cholesky Decomposition

A, Qp A
a12 a'22 a23
_a13 a23 a33




Cholesky Decomposition

This fails if it requires taking square root of a negative number

Need another condition on A: positive definite
i.e., Foranyv, vVAv >0

(Equivalently, all positive eigenvalues)



Cholesky Decomposition

Running time turns out to be '/.n3 multiplications + '/.n3 additions
— Still cubic, but lower constant

— Half as much computation & storage as LU

Result: this is preferred method for solving
symmetric positive definite systems



LU Decomposition

For more general matrices, factor A into LU, where
L is lower triangular and U is upper triangular
Ax=Db
LUx=Db
Ly=Db
Ux=y
Last 2 steps in O(n?) time, so total time dominated by decomposition



More unknowns than equations!

— Or, could have chosen to let all u;=1

(Crout’s method)




Doolittle Factorization for LU Decomposition

all a12 a13 1 O O ull u12 u13
aZl a22 a23 = I21 1 O O u22 u23
| Ay djy g3 _|31 |32 1__0 0 Uy
U, =dp
da
L, =a, = [21:A
Uy,
d
131”11:(131 — ]31:i
U,

U, =dy,

L, tuy, =a,, = Uy =a,—Lu,

Ly, +hu, =a, = [,=



Doolittle Factorization

a21 a22 a23 — |21

_a31 ds, a-33_ _|31
Fori=T1..n
— Forj = 1.l
— Forj=1+T.n

O_ _ull u12
1 0 u,
l,, 10 O




Doolittle Factorization

Interesting note: # of outputs = # of inputs,
algorithm only refers to elements of A, not b

Can do this in-place!

— Algorithm replaces A with matrix

of | and u values, 1s are implied by b Ug
— Resulting matrix must be interpreted in a special way: not a regular matrix

— Can rewrite forward/backsubstitution routines to use this “packed” |-u matrix



LU Decomposition

Running time is about '/;n®> multiplies, same number of adds

— Independent of RHS, each of which requires O(n?) back/forward substitution
— This is the preferred general method for solving linear equations

Pivoting very important

— Partial pivoting is sufficient, and widely implemented

— LU with pivoting can succeed even if matrix is singular (!)
(but back/forward substitution fails...)



Matrix Inversion using LU

LU depend only on A, noton b

Re-use L & U for multiple values of b

— i.e., repeat back-substitution

How to compute A2 1 00
AAT = | (nXn identity matrix), e.g. 0 10
0 0 1]
— Use LU decomposition with
1 0 0
b, = b, =1 b, =
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