
COS 302, Fall 2020

LU and Cholesky Factorizations

Operation Count for Gauss-Jordan

• For one R.H.S., how many operations?

• For each of n rows:
– Do n times:

• For each of n+1 columns:

– One add, one multiply

• Total = n3+n2 multiplies, same # of adds

• Asymptotic behavior: when n is large, dominated by n3

Faster Algorithms

• Our goal is an algorithm that does this in 1/3 n3 operations,
and does not require all R.H.S. to be known at beginning

• Before we see that, let’s look at a few special cases that are even faster

Tridiagonal Systems

• Common special case:

• Only main diagonal + 1 above and 1 below



































4

3

2

1

4443

343332

232221

1211

00

0

0

00

b

b

b

b

aa

aaa

aaa

aa

Solving Tridiagonal Systems

• When solving using Gaussian elimination:
– Constant # of multiplies/adds in each row

– Each row only affects 2 others



































4

3

2

1

4443

343332

232221

1211

00

0

0

00

b

b

b

b

aa

aaa

aaa

aa

Running Time

• 2n loops, 4 multiply/adds per loop (assuming correct bookkeeping)

• This running time has a fundamentally different dependence on n:
linear instead of cubic
– Can say that tridiagonal algorithm is O(n) while Gauss-Jordan is O(n3)

• In general, a banded system of bandwidth w requires
O(wn) storage and O(w2n) computations.

Big-O Notation

• Informally, O(n3) means that the dominant term for large n is cubic

• More precisely, there exist a c and n0 such that
running time ≤ c n3

if
n > n0

• This type of asymptotic analysis is often used
to characterize different algorithms

Triangular Systems are nice!

• Another special case: lower-triangular



































4

3

2

1

44434241

333231

2221

11

0

00

000

b

b

b

b

aaaa

aaa

aa

a

Triangular Systems

• Solve by forward substitution



































4

3

2

1

44434241

333231

2221

11

0

00

000

b

b

b

b

aaaa

aaa

aa

a

11

1
1 a

bx =

Triangular Systems

• Solve by forward substitution



































4

3

2

1

44434241

333231

2221

11

0

00

000

b

b

b

b

aaaa

aaa

aa

a

22

1212
2 a

xabx −
=

Triangular Systems

• Solve by forward substitution



































4

3

2

1

44434241

333231

2221

11

0

00

000

b

b

b

b

aaaa

aaa

aa

a

33

2321313
3 a

xaxabx −−
=

Triangular Systems

• If A is upper triangular, solve by backsubstitution

























5

4

3

2

1

55

4544

353433

25242322

1514131211

0000

000

00

0

b

b

b

b

b

a

aa

aaa

aaaa

aaaaa

55

5
5 a

bx =

Triangular Systems

• If A is upper triangular, solve by backsubstitution

























5

4

3

2

1

55

4544

353433

25242322

1514131211

0000

000

00

0

b

b

b

b

b

a

aa

aaa

aaaa

aaaaa

44

5454
4 a

xabx −
=

Triangular Systems

• Both of these special cases can be solved in
O(n2) time

• This motivates a factorization approach to solving arbitrary systems:
– Find a way of writing A as LU, where L and U are both triangular

– Ax=b ⇒ LUx=b ⇒ Ld=b ⇒ Ux=d

– Time for factoring matrix dominates computation

Solving Ax = b with LU Decomposition of A

A x = b
L U

L d= b

d
Ux = d

x

Symmetric Matrices: Cholesky Decomposition

• For symmetric matrices, choose U=LT

(A = LLT)

• Perform decomposition

• Ax=b ⇒ LLTx=b ⇒ Ld=b ⇒ LTx=d

































⇒
















33

3222

312111

333231

2221

11

332313

232212

131211

00

00

00

l

ll

lll

lll

ll

l

aaa

aaa

aaa

Cholesky Decomposition

22

312123
322332223121

2
21222222

2
22

2
21

11

13
31133111

11

12
21122111

111111
2

11

l
llalallll

lalall

l
alall

l
alall

alal

−
=⇒=+

−=⇒=+

=⇒=

=⇒=

=⇒=

































⇒
















33

3222

312111

333231

2221

11

332313

232212

131211

00

00

00

l

ll

lll

lll

ll

l

aaa

aaa

aaa

Cholesky Decomposition

ii

i

k
jkikij

ji

i

k
ikiiii

l

lla
l

lal

∑

∑
−

=

−

=

−
=

−=

1

1

1

1

2

































⇒
















33

3222

312111

333231

2221

11

332313

232212

131211

00

00

00

l

ll

lll

lll

ll

l

aaa

aaa

aaa

Cholesky Decomposition

• This fails if it requires taking square root of a negative number

• Need another condition on A: positive definite

i.e., For any v, vT A v > 0

(Equivalently, all positive eigenvalues)

Cholesky Decomposition

• Running time turns out to be 1/6n3 multiplications + 1/6n3 additions
– Still cubic, but lower constant

– Half as much computation & storage as LU

• Result: this is preferred method for solving
symmetric positive definite systems

LU Decomposition

• For more general matrices, factor A into LU, where
L is lower triangular and U is upper triangular

• Last 2 steps in O(n2) time, so total time dominated by decomposition

Ax=b
LUx=b
Ly=b
Ux=y

A = LU

• More unknowns than equations!

• Let all lii=1 (Doolittle’s method)
– Or, could have chosen to let all uii=1 (Crout’s method)

































⇒
















33

2322

131211

333231

2221

11

333231

232221

131211

00

00

00

u

uu

uuu

lll

ll

l

aaa

aaa

aaa

Doolittle Factorization for LU Decomposition
































⇒

















33

2322

131211

3231

21

333231

232221

131211

00
0

1
01
001

u
uu
uuu

ll
l

aaa
aaa
aaa

Doolittle Factorization

• For i = 1..n
– For j = 1..i

– For j = i+1..n
































⇒

















33

2322

131211

3231

21

333231

232221

131211

00
0

1
01
001

u
uu
uuu

ll
l

aaa
aaa
aaa

∑
−

=

−=
1

1

j

k
kijkjiji ulau

ii

i

k
kijkji

ji u

ula
l

∑
−

=

−
=

1

1

Doolittle Factorization

• Interesting note: # of outputs = # of inputs,
algorithm only refers to elements of A, not b

• Can do this in-place!
– Algorithm replaces A with matrix

of l and u values, 1s are implied

– Resulting matrix must be interpreted in a special way: not a regular matrix

– Can rewrite forward/backsubstitution routines to use this “packed” l-u matrix

















333231

232221

131211

ull

uul

uuu

LU Decomposition

• Running time is about 1/3n3 multiplies, same number of adds
– Independent of RHS, each of which requires O(n2) back/forward substitution

– This is the preferred general method for solving linear equations

• Pivoting very important
– Partial pivoting is sufficient, and widely implemented

– LU with pivoting can succeed even if matrix is singular (!)
(but back/forward substitution fails…)

Matrix Inversion using LU

• LU depend only on A, not on b

• Re-use L & U for multiple values of b
– i.e., repeat back-substitution

• How to compute A-1?
AA-1 = I (n×n identity matrix), e.g.

→ Use LU decomposition with
















100
010
001
















=
















=
















=

1
0
0

,
0
1
0

,
0
0
1

321 bbb

	LU and Cholesky Factorizations
	Operation Count for Gauss-Jordan
	Faster Algorithms
	Tridiagonal Systems
	Solving Tridiagonal Systems
	Running Time
	Big-O Notation
	Triangular Systems are nice!
	Triangular Systems
	Triangular Systems
	Triangular Systems
	Triangular Systems
	Triangular Systems
	Triangular Systems
	Solving Ax = b with LU Decomposition of A
	Symmetric Matrices: Cholesky Decomposition
	Cholesky Decomposition
	Cholesky Decomposition
	Cholesky Decomposition
	Cholesky Decomposition
	LU Decomposition
	A = LU
	Doolittle Factorization for LU Decomposition
	Doolittle Factorization
	Doolittle Factorization
	LU Decomposition
	Matrix Inversion using LU

