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Review

• We want to find statistics (like the mean or

variance) of our probability distributions for

learning and prediction.

• For many common distributions, these are

functions of the parameters that we can look

up.

• For example, if X ∼ Bin(n, θ) then

E[X ] = nθ

Var [X ] = nθ(1− θ).
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Motivations

• In many interesting cases, we don’t know the

distribution or its parameters.

• Sometimes we only have access to samples

from a distribution π(x), or know it up to a

constant, π∗(x) = cπ(x)

• Using this information, we can estimate the

mean and variance, and other quantities of

interest, using the Monte Carlo method.
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Definition: Monte Carlo estimation

• Given samples from π(x), we want to compute

Eπ(x)[f (x)] for reasonable functions f . Recall

that

Eπ(x)[f (x)] =

∫
f (x)π(x)dx .

• Any such integral can be estimated from

samples:∫
f (x)π(x)dx ≈ 1

S

S∑
s=1

f (x (s)), where x (s) ∼ π(x).

• We call this quantity the Monte Carlo

estimator of the mean.
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Monte Carlo Approximation: Properties

Monte Carlo estimation has some nice properties:

• It’s unbiased: the mean of the estimator f̂ is

the expected value of interest–there’s no

additional bias in our estimate:

Eπ({x (s)})[f̂ ] =
1

S

S∑
s=1

Eπ(x)[f (x)] = Eπ(x)[f (x)]
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Monte Carlo Approximation: Properties

Monte Carlo estimation has some nice properties:

• It has a variance that decreases with more

samples:

Varπ({x (s)})[f̂ ] =
1

S2

S∑
s=1

Varπ(x)[f (x)]

=
1

S
Varπ(x)[f (x)].

We say that the variance of the estimator

shrinks as 1/S .
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Monte Carlo Approximation: Analysis

• The properties show us that as the number of

samples increases, our estimate f̂ approaches

the true value E[f (X )]. That’s good.

• Note that the error of the estimate only shrinks

as 1/
√
S . This is not great. If we want to

reduce our error by 1/m, we need to increase

our number of samples by m2.
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Monte Carlo Approximation: Analysis

• “Monte Carlo is an extremely bad

method; it should be used only when all

alternative methods are worse.” – Alan

Sokal, Monte Carlo Methods in Statistical

Mechanics, 1996.
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Aside: Monte Carlo for Arbitrary Integrals

We can use this method to evaluate an arbitrary

integral over a domain Ω. Notice that∫
Ω

f (x)dx =

∫
Ω

f (x)
q(x)

q(x)
dx

=

∫
Ω

f (x)

q(x)
q(x)dx

= Eq(x)

[
f (x)

q(x)

]
,

so long as we choose a probability distribution q so

that q(x) > 0 for every x ∈ Ω.
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Sampling basics

∫
f (x)π(x)dx ≈ 1

S

S∑
s=1

f (x (s)), where x (s) ∼ π(x)

• So, as long as we can sample from π(x), we

can estimate its statistics

• How can we get samples from a strange or

interesting π(x)?
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Review: Inverse Transform Sampling

Recall that if we can compute the CDF of a

function, we can also compute its density function:
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Analysis: Inverse Transform Sampling

• Inverse transform sampling can be a convenient

way to map from uniform random variates to a

more complex distribution, in simple cases

• Bad news: We still had to do an integral

Π(x). Integrals can be nasty–impossible to

compute in closed form, and hard to

approximate.
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Sampling: Big Picture

• We want to be able to use the Monte Carlo

method to figure out the mean and variance of

interesting distributions.

• Inverse transform sampling lets us do this, but

still requires us to be able integrate π(x), and

to always know its normalizing constant.

• Rejection sampling is a way to get around both

these constraints.
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Rejection Sampling Intuition

Notice if I draw samples uniformly from the volume

beneath a PDF, it must have the correct marginal

distribution:

19



Rejection Sampling Intuition

But how could we sample from this volume? Choose

a simple distribution q(x), sample from this, and

throw away the ones that are above π∗(x) = cπ(x):
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Rejection Sampling Intuition

How do we sample from this volume? Choose a
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Rejection Sampling: Algorithm

1. Choose q(x) and c so that

q(x) ≥ π∗(x) = cπ(x)

2. Sample x (s) ∼ q(x)

3. Sample u(s) ∼ Unif[0, q(x (s))]

4. If u(s) ≤ π∗(x (s)) keep x (s), else reject and go

to step (2)

If you accept, you get an unbiased sample from

π(x).
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