Differentiating Vector- and Matrix-Valued Functions

Szymon Rusinkiewicz
COS 302, Fall 2020

2 PRINCETON
UNIVERSITY

Generalizing Functions...

Functions of scalars, vectors, matrices ... returning scalars, vectors, matrices
Function of a scalar, returning a scalar: R - R
- Example: f(x) =ax+Db
Function of a scalar, returning a vector: R — R"
- Example: f(x) = xv
Function of a vector, returning a scalar: R* — R
- Example: f(x) =v'x
Function of a vector, returning a vector: R* — R"
- Example: f(x) = Mx
Function of a vector, returning a matrix: R" — R™"
- Example: F(x) = xxT

Many other possibilities: function of a matrix, etc.

Generalizing Functions...and Taking Their Derivatives

Function of a scalar, returning a scalar: R = R
- Example: f(x) =ax+b
Function of a scalar, returning a vector: R — R”"
- Example: f(x) = xv
Function of a vector, returning a scalar: R* — R
- Example: f(x) =v"x
Function of a vector, returning a vector: R* — R"
- Example: f(x) = Mx
Function of a vector, returning a matrix: R* — R™"
- Example: F(x) = xxT

Generalizing Functions...and Taking Their Derivatives

In general, if f is a function

. o (input shape) (output shape)
f:R - R

then its generalized derivative will be a function

Vf . R(input shape) _, R(output shape)x(input shape)

where the extra dimensions on output correspond to taking
partial derivatives with respect to all the input dimensions.

Tensors

So what if we end up with e.g. an n X n X n object?
Tensors are multidimensional generalizations of scalars, vectors, matrices.
For our purposes, represented as multidimensional arrays of numbers.
The number of indices in the shape can be called the order, degree,
(confusingly) dimension, or (even more confusingly) rank of the tensor.

- Example: Take a function of a vector, returning a matrix, and differentiate it.
The resulting n x n x n beastie is a degree-3 or 3'-order tensor.

Tensors in Python

NumPy arrays can represent tensors
— A = np.zeros((5, 6, 7))
Transpose can take a permutation of dimensions
— B = np.transpose(A, (2, @, 1))
Careful if using np.matmul or np.dot for tensor multiplication —
np.tensordot lets you explicitly specify axes to sum over
— C = np.tensordot(A, B, (2, 9))

— D = np.tensordot(A, B, ([2,1], [0,2]1))

Tensors and Differentiation

Vf . R(input shape) BN R(output shape)x(input shape)

If you take more advanced math, you’ll learn that the “dimensions” of
tensors behave in two different ways: covariant and contravariant.
We won’t go into that here, except to note that the dimensions arising from
differentiation always behave “transposed”.
- For example, the gradient of a scalar function of a vector is a row vector.
— Intimate connection to directional derivatives: multiplying a gradient by a
direction d (an object of the input shape) gives you derivative of the output in

that direction:
Dgf(x)orVaf(x)=Vf(x)d

where the last dimension(s) of Vf are dotted against d.

Preliminaries

Before we get into specific examples of these generalized derivatives,
let’s review which rules from single-variable calculus still work:

Derivative of a constant of any shape is 0

Derivative of the variable with respect to which we’re differentiating is 1,
or the identity of the appropriate shape

Derivative of a sum is the sum of derivatives
Derivative of a scalar multiple is the constant times the derivative
Chain rule works, but order might matter: %f(g(x)) = f’(g(x)) g’(x)

Product rule requires care about dimensions and transposes (stay tuned!)

Function of a Scalar, Returning a Vector

Simple...
3x + 42
flx) = sin x
af | 3
dx |cosx

Can also consider functions written as scalar/vector products:

f(x)=xv
L(xvy) U1
ﬂ = %(XUZ) = |02l =0

dx

Function of a Vector, Returning a Scalar

This is the ordinary gradient, which is a row vector of partial derivatives:

X1
fl1x :xf+x1x2+42x3

X3
_|of of of
vi=|#% & X

= [3xt+x; x; 42]

Directional Derivative

Vi=[3xt+x; x 42]

0.6
How does f change with an infinitesimal step in directiond =| 0 |?
0.8
0.6
Vaf = [3x2+x2 x1 42]| 0 [= 1.8x] + 0.6x2 + 33.6
0.8

This is a scalar— the same shape as the output of f.

Directional Derivative

What if we had done this in the previous case, where we had a
function of a scalar, returning a vector?

f(x)=xv
df
E—'D

Multiplying by a (scalar) infinitesimal step in x in “direction” 1, we get just v.

This is a (column) vector — the same shape as the output of f.

Function of a Vector, Returning a Scalar

Let’s try a dot product!

f(x):v-x:ZUix,-

Vf:[oﬁ?_){1 g_)é]
Y RS
:UT

But v - x = v'x = x v, so we have the following:

Viw'x)=v' and V(x'v)=ov'

Function of a Vector, Returning a Scalar

Next interesting case:
fo)=x-x=xx=|lx|* =)«
i

Vf:[ﬂ af]

Bxl 8x2
= [2)('1 ZXZ o]
=2x"'

Note the analogy to %xz = 2x, but we need the transpose to get
the output shape right.

Function of a Vector, Returning a Scalar

Even more interesting:
_ _ _ 2
fx) = llxll = VxTx = | X x;

Applying the chain rule:

1

Vf = %(xTx)_5 V(x"x)

2xT

- 2VxTx
T

X

[l

Directional Derivative

xT

[l

As x changes by an infinitesimal step in direction d,

Vilx]f =

x
Vallx|| = Tl d

Intuitive: if d is in the direction of x, change in ||x|| is 1 times the step size, etc.

Function of a Vector, Returning a Vector

Let’s move on to a Jacobian:

f(x)=Mx
Vf = §_£ 3_3{2]

The only terms in Mx involving x; come from the ith column of M, so:

My, My,
ﬁ — | My ﬁ = | Ma,

. , etc.
0x1 . 0x>

Function of a Vector, Returning a Vector

Stitching everything together,
M1\ (M2
V(Mx) = |[Ma1| [Mz
=M

Special case: V(x) = V(Ix) =1
This reinforces our intuition that differentiating any constant thing times x
gives just that constant, whether it’s a scalar, vector, matrix, etc.

Function of a Vector, Returning a Matrix

X101 X102

F(x) = xv' = |X2U1 X202

Just apply the rules, and watch the tensor appear!

[6F oF

—Ul (% 0 0
= 0 0 U1 Uy

Function of a Vector, Returning a Matrix

T

VF(x) = v

1
0
0
At this point, it might be tempting to factor out the »'. But

This object is an n X n X n tensor, and if you factor it into an n X 1 X n tensor and
a 1 X n vector, you have to remember which dimensions should be multiplied!

Generalizing Product Rule

As we just saw, tensor multiplication can get confusing.
This complicates cleanly stating a generalized product rule.

But, let’s derive a rule for vector-vector (dot) products:

Viv-w)=V (Z viwi)

i
where v and w are both potentially functions of x.

Writing out the partial derivatives,

V(v,w):[a(mw» WZow)]

6x1 6362

Generalizing Product Rule

Because v; and w; are just scalars, the product rule works normally:

0 (2 viw;) _ Z (v ow; 4 % i)

0x; Z. ia_xl (9x1w
Applying the distributive rule, we get
Viw-w)=v-(Vw)+ (Vo) - w
Or, in matrix notation,

Vio'w) =o' Vw + w'Vo

Bilinear Form

Let’s apply our newly-derived knowledge!

f(x) = x"Mx
Vf =x"V(Mx)+ (Mx)"Vx
=xM+xM'I
=x'M+M")

Note the similarity to %(axz) = 2ax.

The Grand Finale: Least Squares

We’ve mentioned before that our methods for solving overdetermined
linear systems of the form Ax = b minimize a least-squares residual:

arg min ||Ax — b||?

Let’s apply the methods we’ve learned to find the x that minimizes this,
by taking the derivative (gradient) and setting it equal to 0.

The Grand Finale: Least Squares

Applying the chain rule:

V||Ax - b||* = 2||Ax - b|| V||Ax - b|

And again (order matters!):

(Ax —b)’

= 2[|Ax - b|| TAx —bl|

V(Ax — b)

And computing a final Jacobian:

=2(Ax-b)'A

The Grand Finale: Least Squares

To check, let’s derive this a different way:

|Ax — b||* = (Ax — b)"(Ax — b)
=x"ATAx —x"ATh—b"Ax +b'b
V||Ax - b||* =xT(ATA+ (A"A)") —=b"A-b"A+0
=2x"ATA-2b"A
=2(x"AT-bNHA
=2(Ax-b)'A

The Grand Finale: Least Squares

Setting the gradient equal to a row vector of zeros:
2(Ax —b)TA=0"
Transposing and dividing by 2:
AT(Ax-b) =0
And finally, rearranging:

ATAx = A"b

