
Di�erentiating Vector- and Matrix-Valued Functions

Szymon Rusinkiewicz
COS 302, Fall 2020

Generalizing Functions. . .

Functions of scalars, vectors, matrices . . . returning scalars, vectors, matrices
• Function of a scalar, returning a scalar: R→ R

– Example: f (x) = ax + b

• Function of a scalar, returning a vector: R→ Rn

– Example: f (x) = xv

• Function of a vector, returning a scalar: Rn → R
– Example: f (x) = vᵀx

• Function of a vector, returning a vector: Rn → Rn

– Example: f (x) = Mx

• Function of a vector, returning a matrix: Rn → Rn×n

– Example: F (x) = xx
ᵀ

• Many other possibilities: function of a matrix, etc.

Generalizing Functions. . . and Taking Their Derivatives

• Function of a scalar, returning a scalar: R→ R
– Example: f (x) = ax + b → Ordinary derivative df

dx : R→ R
• Function of a scalar, returning a vector: R→ Rn

– Example: f (x) = xv → Vector-valued derivative d f
dx : R→ Rn

• Function of a vector, returning a scalar: Rn → R
– Example: f (x) = vᵀx → Gradient ∇f (x) : Rn → R1×n

• Function of a vector, returning a vector: Rn → Rn

– Example: f (x) = Mx → Jacobian ∇f (x) or J
(
f (x)

)
: Rn → Rn×n

• Function of a vector, returning a matrix: Rn → Rn×n

– Example: F (x) = xx
ᵀ → Generalized Jacobian ∇F (x) : Rn → Rn×n×n

Generalizing Functions. . . and Taking Their Derivatives

In general, if f is a function

f : R(input shape) → R(output shape)

then its generalized derivative will be a function

∇f : R(input shape) → R(output shape)×(input shape)

where the extra dimensions on output correspond to taking
partial derivatives with respect to all the input dimensions.

Tensors

So what if we end up with e.g. an n × n × n object?
• Tensors are multidimensional generalizations of scalars, vectors, matrices.
• For our purposes, represented as multidimensional arrays of numbers.
• The number of indices in the shape can be called the order, degree,

(confusingly) dimension, or (even more confusingly) rank of the tensor.
– Example: Take a function of a vector, returning a matrix, and di�erentiate it.

The resulting n × n × n beastie is a degree-3 or 3rd-order tensor.

Tensors in Python

• NumPy arrays can represent tensors
– A = np.zeros((5, 6, 7)) → A.shape == (5, 6, 7)

• Transpose can take a permutation of dimensions
– B = np.transpose(A, (2, 0, 1)) → B.shape == (7, 5, 6)

• Careful if using np.matmul or np.dot for tensor multiplication —
np.tensordot lets you explicitly specify axes to sum over

– C = np.tensordot(A, B, (2, 0)) → C.shape == (5, 6, 5, 6)

– D = np.tensordot(A, B, ([2,1], [0,2])) → D.shape == (5, 5)

Tensors and Di�erentiation

∇f : R(input shape) → R(output shape)×(input shape)

• If you take more advanced math, you’ll learn that the “dimensions” of
tensors behave in two di�erent ways: covariant and contravariant.
• We won’t go into that here, except to note that the dimensions arising from

di�erentiation always behave “transposed”.
– For example, the gradient of a scalar function of a vector is a row vector.
– Intimate connection to directional derivatives: multiplying a gradient by a

direction d (an object of the input shape) gives you derivative of the output in
that direction:

Dd f (x) or ∇d f (x) = ∇f (x) d

where the last dimension(s) of ∇f are do�ed against d .

Preliminaries

Before we get into specific examples of these generalized derivatives,
let’s review which rules from single-variable calculus still work:
• Derivative of a constant of any shape is 0
• Derivative of the variable with respect to which we’re di�erentiating is 1,

or the identity of the appropriate shape
• Derivative of a sum is the sum of derivatives
• Derivative of a scalar multiple is the constant times the derivative
• Chain rule works, but order might ma�er: d

dx f
(
д(x)

)
= f ′

(
д(x)

)
д′(x)

• Product rule requires care about dimensions and transposes (stay tuned!)

Function of a Scalar, Returning a Vector

Simple. . .

f (x) =

[
3x + 42
sinx

]
d f

dx
=

[
3

cosx

]
Can also consider functions wri�en as scalar/vector products:

f (x) = xv

d f

dx
=


d
dx (x v1)
d
dx (x v2)
...

 =

v1
v2
...

 = v

Function of a Vector, Returning a Scalar

This is the ordinary gradient, which is a row vector of partial derivatives:

f
©­«

x1
x2
x3

ª®¬ = x31 + x1x2 + 42x3

∇f =
[
∂ f
∂x1

∂ f
∂x2

∂ f
∂x3

]
=

[
3x21 + x2 x1 42

]

Directional Derivative

∇f =
[
3x21 + x2 x1 42

]
How does f change with an infinitesimal step in direction d =


0.6
0
0.8


?

∇d f =
[
3x21 + x2 x1 42

] 
0.6
0
0.8

 = 1.8x21 + 0.6x2 + 33.6

This is a scalar— the same shape as the output of f .

Directional Derivative

• What if we had done this in the previous case, where we had a
function of a scalar, returning a vector?

f (x) = xv

d f

dx
= v

• Multiplying by a (scalar) infinitesimal step in x in “direction” 1, we get justv .
• This is a (column) vector — the same shape as the output of f .

Function of a Vector, Returning a Scalar

Let’s try a dot product!

f (x) = v · x =
∑
i

vixi

∇f =
[
∂ f
∂x1

∂ f
∂x2
· · ·

]
=

[
v1 v2 · · ·

]
= v

ᵀ

Butv · x = vᵀx = x
ᵀ
v , so we have the following:

∇(v
ᵀ
x) = v

ᵀ and ∇(x
ᵀ
v) = v

ᵀ

Function of a Vector, Returning a Scalar

Next interesting case:

f (x) = x · x = x
ᵀ
x = ‖x ‖2 =

∑
i

x2i

∇f =
[
∂ f
∂x1

∂ f
∂x2
· · ·

]
=

[
2x1 2x2 · · ·

]
= 2xᵀ

Note the analogy to d
dxx

2 = 2x , but we need the transpose to get
the output shape right.

Function of a Vector, Returning a Scalar

Even more interesting:

f (x) = ‖x ‖ =
√
xᵀx =

√∑
x2i

Applying the chain rule:

∇f =
1
2
(
x
ᵀ
x
)− 1

2 ∇
(
x
ᵀ
x
)

=
2xᵀ

2
√
xᵀx

=
x
ᵀ

‖x ‖

Directional Derivative

∇‖x ‖ =
x
ᵀ

‖x ‖

As x changes by an infinitesimal step in direction d ,

∇d ‖x ‖ =
x

‖x ‖
· d

Intuitive: if d is in the direction of x , change in ‖x ‖ is 1 times the step size, etc.

Function of a Vector, Returning a Vector

Let’s move on to a Jacobian:

f (x) = Mx

∇f =
[
∂ f
∂x1

∂ f
∂x2
· · ·

]
The only terms in Mx involving xi come from the ith column of M , so:

∂ f

∂x1
=


M11
M21
...

 ,
∂ f

∂x2
=


M12
M22
...

 , etc.

Function of a Vector, Returning a Vector

• Stitching everything together,

∇(Mx) =


©­­«
M11
M21
...

ª®®¬
©­­«
M12
M22
...

ª®®¬ · · ·


= M

• Special case: ∇(x) = ∇(Ix) = I

• This reinforces our intuition that di�erentiating any constant thing times x
gives just that constant, whether it’s a scalar, vector, matrix, etc.

Function of a Vector, Returning a Matrix

F (x) = xv
ᵀ
=


x1v1 x1v2 · · ·
x2v1 x2v2 · · ·
...

...
. . .


Just apply the rules, and watch the tensor appear!

∇F (x) =
[
∂F
∂x1

∂F
∂x2
· · ·

]
=



v1 v2 · · ·
0 0 · · ·
...
...
. . .



0 0 · · ·

v1 v2 · · ·
...
...
. . .

 · · ·


Function of a Vector, Returning a Matrix

∇F (x) =



1
0
0
...


v
ᵀ


0
1
0
...


v
ᵀ


0
0
1
...


v
ᵀ
· · ·


At this point, it might be tempting to factor out thevᵀ. But be careful!

This object is an n × n × n tensor, and if you factor it into an n × 1 × n tensor and
a 1 × n vector, you have to remember which dimensions should be multiplied!

Generalizing Product Rule

• As we just saw, tensor multiplication can get confusing.
This complicates cleanly stating a generalized product rule.
• But, let’s derive a rule for vector-vector (dot) products:

∇(v ·w) = ∇

(∑
i

viwi

)
wherev and w are both potentially functions of x .
• Writing out the partial derivatives,

∇(v ·w) =
[
∂(

∑
viwi)

∂x1

∂(
∑
viwi)

∂x2
· · ·

]

Generalizing Product Rule

• Because vi and wi are just scalars, the product rule works normally:

∂ (
∑
viwi)

∂x1
=

∑
i

(
vi
∂wi

∂x1
+
∂vi
∂x1

wi

)
• Applying the distributive rule, we get

∇(v ·w) = v · (∇w) + (∇v) ·w

• Or, in matrix notation,

∇(v
ᵀ
w) = v

ᵀ
∇w +w

ᵀ
∇v

Bilinear Form

Let’s apply our newly-derived knowledge!

f (x) = x
ᵀ
Mx

∇f = x
ᵀ
∇(Mx) + (Mx)

ᵀ
∇x

= x
ᵀ
M + x

ᵀ
M
ᵀ
I

= x
ᵀ
(M +M

ᵀ
)

Note the similarity to d
dx (ax

2) = 2ax .

The Grand Finale: Least Squares

• We’ve mentioned before that our methods for solving overdetermined
linear systems of the form Ax = b minimize a least-squares residual:

argmin
x
‖Ax − b‖2

• Let’s apply the methods we’ve learned to find the x that minimizes this,
by taking the derivative (gradient) and se�ing it equal to 0.

The Grand Finale: Least Squares

• Applying the chain rule:

∇‖Ax − b‖2 = 2‖Ax − b‖ ∇‖Ax − b‖

• And again (order ma�ers!):

= 2‖Ax − b‖
(Ax − b)

ᵀ

‖Ax − b‖
∇(Ax − b)

• And computing a final Jacobian:

= 2(Ax − b)ᵀA

The Grand Finale: Least Squares

• To check, let’s derive this a di�erent way:

‖Ax − b‖2 = (Ax − b)
ᵀ
(Ax − b)

= x
ᵀ
A
ᵀ
Ax − x

ᵀ
A
ᵀ
b − b

ᵀ
Ax + b

ᵀ
b

∇‖Ax − b‖2 = x
ᵀ(
A
ᵀ
A + (A

ᵀ
A)
ᵀ)
− b
ᵀ
A − b

ᵀ
A + 0

= 2xᵀAᵀA − 2bᵀA
= 2(xᵀAᵀ− bᵀ)A
= 2(Ax − b)ᵀA

The Grand Finale: Least Squares

• Se�ing the gradient equal to a row vector of zeros:

2(Ax − b)ᵀA = 0ᵀ

• Transposing and dividing by 2:

A
ᵀ
(Ax − b) = 0

• And finally, rearranging:

A
ᵀ
Ax = A

ᵀ
b

