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Singular Value Decomposition



Singular Value Decomposition (SVD)

• Matrix decomposition that reveals structure

• Useful for:
– Inverses, pseudoinverses

– Stable least-squares, even for unconstrained problems

– Matrix similarity and approximation

– Dimensionality reduction and PCA

– Orthogonalization

– Constrained least squares and multidimensional scaling

Let’s look at 
motivaion for these



Condition Number

• cond(A) is function of A

• cond(A) >= 1, bigger is bad

• Measures how change in input propagates to output:

– E.g., if cond(A) = 451 then can lose log(451)= 2.65 digits of accuracy in x, 
compared to precision of A

• For matrices with real eigenvalues, cond(A) = |λmax| / |λmin| 
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Normal Equations are Bad

• Least squares using normal equations involves solving ATAx = ATb

• cond(ATA) = [cond(A)]2

• E.g., if cond(A) = 451 then can lose log(4512) = 5.3 digits of accuracy,
compared to precision of A
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Underconstrained Least Squares

• What if you have fewer data points than parameters in your function?
– Intuitively, can’t do standard least squares

– Solution takes the form ATAx = ATb

– When A has more columns than rows, ATA is singular: can’t take its inverse, etc.



Underconstrained Least Squares

• More subtle version: more data points than unknowns, but data poorly 
constrains function

• Example: fitting to y=ax2+bx+c



Underconstrained Least Squares

• Problem: if problem very close to singular, roundoff error can
have a huge effect
– Even on “well-determined” values!

• Can detect this:
– Uncertainty proportional to covariance C = (ATA)-1

– In other words, unstable if ATA has small values

– More precisely, care if xT(ATA)x is small for any x

• Idea: if part of solution unstable, set answer to 0
– Avoid corrupting good parts of answer



Singular Value Decomposition (SVD)

• Handy mathematical technique that has application to many problems

• Given any m×n matrix A, algorithm to find matrices U, V, and W with:

A = U W VT

U is m×m and orthonormal

W is m×n and zero except main diagonal

V is n×n and orthonormal

• Won’t derive algorithm – treat as black box (e.g., numpy.linalg.svd)



“Full” SVD

𝑨𝑨 = 𝑼𝑼

𝑤𝑤1 0 0
0 ⋱ 0
0 0 𝑤𝑤𝑛𝑛
0 0 0
0 0 0

𝑽𝑽

T

m×n m×m n×nm×n

u,w,vt = numpy.linalg.svd(a)



SVD

• Handwavy explanation: rotate to a basis where all the scaling and 
stretching of A is along coordinate axes
– Should remind you of eigendecomposition (which would have U = V)

• The wi are called the singular values of A

• If A is singular, some of the wi will be 0

• In general rank(A) = number of nonzero wi

• SVD is mostly unique (up to permutation of singular values,
or if some wi are equal)
– The wi are conventionally returned in sorted order, largest to smallest



Singular Value Decomposition (SVD)

• If m > n, only n nonzero rows in W, many useless columns in U

• If n > m, only m nonzero columns in W, many useless columns in V

– Define “compact” or “reduced” versions that omit all those zeroes



“Compact” SVD, if m > n

𝑨𝑨 = 𝑼𝑼
𝑤𝑤1 0 0
0 ⋱ 0
0 0 𝑤𝑤𝑛𝑛

𝑽𝑽

T

m×n m×n n×nn×n

u,w,vt = numpy.linalg.svd(a, full_matrices=False)



“Compact” SVD, if n > m

𝑨𝑨 = 𝑼𝑼
𝑤𝑤1 0 0
0 ⋱ 0
0 0 𝑤𝑤𝑚𝑚

𝑽𝑽

T

m×n m×m m×nm×m

u,w,vt = numpy.linalg.svd(a, full_matrices=False)



SVD and Inverses

• Why is SVD so useful?

• Application #1: inverses

• A-1=(VT)-1 W-1 U-1 = V W-1 UT

– Using fact that inverse = transpose for orthogonal matrices

– Since W is diagonal, W-1 also diagonal with reciprocals of entries of W



SVD and the Pseudoinverse

• A-1=(VT)-1 W-1 U-1 = V W-1 UT

• This fails when some wi are 0
– It’s supposed to fail – singular matrix

– Happens when rectangular A is rank deficient

• Pseudoinverse A+: if wi=0, set 1/wi to 0 (!!)
– “Closest” matrix to inverse

– Defined for all (even non-square, singular, etc.) matrices

– Equal to (ATA)-1AT if ATA invertible



SVD and Least Squares

• Solving Ax=b by least squares:

• ATAx = ATb → x = (ATA)-1ATb

• Replace with A+:  x = A+b
– Compute pseudoinverse using SVD

• Lets you see if data is singular (< n nonzero singular values)

• Singular values tell you how stable the solution will be
– Condition number = ratio of largest to smallest singular values

• For better stability, set 1/wi to 0 if wi is small (even if not exactly 0)
– Accuracy / stability tradeoff?  Not if that component was underconstrained…



SVD and Matrix Similarity

• One common definition for the norm of a matrix is the Frobenius norm:

• Frobenius norm can be computed from SVD

• Euclidean (spectral) norm can also be computed:

• So changes to a matrix can be evaluated by looking at changes to singular values
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A 2 = {max λ : λ ∈σ (A)}



SVD and Matrix Similarity

• Suppose you want to find best rank-k approximation to A

• Answer: set all but the largest k singular values to zero

• Can form compact representation by eliminating columns of U and V
corresponding to zeroed wi



SVD and Orthogonalization

• U and V are orthonormal, all stretching and scaling in W

• The matrix UVT is the “closest” orthonormal matrix to A

– Yet another useful application of the matrix-approximation properties of SVD

– Much more stable numerically than Graham-Schmidt orthogonalization



Total Least Squares

• One final least squares application

• Fitting a line: vertical vs. perpendicular error



Total Least Squares

• Distance from point to line:

where n is normal vector to line, a is a constant

• Minimize:
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Total Least Squares

• First, let’s pretend we know n, solve for a

• Then
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Total Least Squares

• So, let’s define

and minimize
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Total Least Squares

• Write as linear system

• Have An=0
– Problem: lots of n are solutions, including n=0

– Standard least squares will, in fact, return n=0
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Constrained Optimization

• Solution: constrain n to be unit length

• So, try to minimize ||An||2 subject to ||n||2=1

• Expand in eigenvectors ei of ATA:

where the λi are eigenvalues of ATA
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Constrained Optimization

• To minimize                  subject to
set µmin = 1, all other µi = 0

• That is, n is eigenvector of ATA with
the smallest corresponding eigenvalue
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SVD and Eigenvectors

• Let A=UWVT, and let xi be ith column of V

• Consider ATA xi:

• So elements of W are sqrt(eigenvalues) and columns of V are 
eigenvectors of ATA
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Constrained Optimization

• To minimize                  subject to
set µmin = 1, all other µi = 0

• That is, n is eigenvector of ATA with
the smallest corresponding eigenvalue

• That is, n is column of V corresponding to smallest singular value
– Provides a solution to the total least squares problem

– Also very related to PCA – next time

2
22

2
11 µλµλ + 12

2
2
1 =+ µµ


	Singular Value Decomposition
	Singular Value Decomposition (SVD)
	Condition Number
	Normal Equations are Bad
	Underconstrained Least Squares
	Underconstrained Least Squares
	Underconstrained Least Squares
	Singular Value Decomposition (SVD)
	“Full” SVD
	SVD
	Singular Value Decomposition (SVD)
	“Compact” SVD, if m > n
	“Compact” SVD, if n > m
	SVD and Inverses
	SVD and the Pseudoinverse
	SVD and Least Squares
	SVD and Matrix Similarity
	SVD and Matrix Similarity
	SVD and Orthogonalization
	Total Least Squares
	Total Least Squares
	Total Least Squares
	Total Least Squares
	Total Least Squares
	Constrained Optimization
	Constrained Optimization
	SVD and Eigenvectors
	Constrained Optimization

