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Orthogonal Projections and Overdetermined Linear Systems

The technique of linear least squares will crop up many times during this course.

Today: study it from the point of view of overdetermined linear systems.



Overdetermined Linear Systems

2x − y = −4
2x + y = 4

2y = 2

Overdetermined systems can’t be solved. So why care about them?
• Measurements are noisy (e.g., imperfect sensors)
• Measurements are fundamentally uncertain (e.g., human preferences)
• Linear model is too simple, but used anyway

Lots of data, fit to an overdetermined model, can lead to accurate predictions.



Overdetermined Linear Systems

2x − y = −4
2x + y = 4

2y = 2

This system can’t be solved.
But intuitively, there should be
a “compromise” solution that
almost satisfies the equations. . .



Overdetermined Linear Systems

Write as a matrix equation: 
2 −1
2 1
0 2


[
x
y

]
=


−4
4
2


A x = b

Now, think of the intuition behind the linear transformation A.
Its columns tell us where the x and y axes are sent.

2 −1
2 1
0 2


[
x
y

]
=


−4
4
2





Solving Overdetermined Systems


2 −1
2 1
0 2


[
x
y

]
=


−4
4
2


A x b 1

image(   )A

Ax
2a

a

• Think of A as a linear mapping from a 2-dimensional space to a
3-dimensional space.
• The set of points reachable by that mapping is a 2-D subset of the 3-D space.

(i.e., the linear mapping is not surjective)

• The columns of A, namely a1 =
[ 2
2
0

]
and a2 =

[
−1
1
2

]
, span that 2-D subspace.

(i.e., they are a basis for the image of A).



Orthogonal Projections

b

1

image(   )A

Ax
2a

a

• The point b lies in the 3-D space, but not (in general) in that 2-D subspace.
Our strategy will be to project b into the 2-D subspace.



Orthogonal Projections

Recall that the orthogonal projection of
a point b onto direction a is(

a

‖a‖
· b

)
a

‖a‖
=
a
ᵀ
b

aᵀa
a = λa

Let’s write this as a linear equation for λ:

a
ᵀ
a λ = a

ᵀ
b

b

a



Orthogonal Projections

We now want to project onto a space spanned by several directions:

b

1

image(   )A

Ax
2a

a



Orthogonal Projections

We write down the conditions for projection onto the two directions:

a
ᵀ
1 a1 λa1 = a

ᵀ
1b

a
ᵀ
2 a2 λa2 = a

ᵀ
2b

Or,

A
ᵀ
A

[
λa1
λa2

]
= A

ᵀ
b

But λa1 and λa2 are just the amounts of a1 and a2 in the projection —
i.e., our original x and y.



Solving Overconstrained Systems

So, we get what are known as the normal equations of the original
overconstrained linear system Ax = b:

A
ᵀ
Ax = A

ᵀ
b

(Notice, by the way, that AᵀA is SPD. This will be important later.)



Solving Overconstrained Systems

Alternative derivation: consider the residual r = b −Ax :

b

1

image(   )A

Ax
2a

a

r = b −Ax

r must be perpendicular to image(A), so must be perpendicular to a1 and a2:

r · a1 = 0 r · a2 = 0
a
ᵀ
1 (b −Ax) = 0 a

ᵀ
2 (b −Ax) = 0

a
ᵀ
1Ax = a

ᵀ
1b a

ᵀ
2Ax = a

ᵀ
2b



Solving Overconstrained Systems

• We get the same normal equations:

A
ᵀ
Ax = A

ᵀ
b

• In ideal-perfectly-accurate-math land, we could solve this by multiplying by
the inverse of AᵀA:

x = (A
ᵀ
A)−1A

ᵀ
b

The quantity (AᵀA)−1Aᵀ is called the pseudoinverse of A.

• But with roundo�-prone computer math, we don’t do that.
Solve the normal equations or, be�er yet, use SVD (next week!)



Solving Overconstrained Systems

Back to our original problem:

Ax = b
2 −1
2 1
0 2


[
x
y

]
=


−4
4
2


Solve via:

A
ᵀ
Ax = A

ᵀ
b[

2 2 0
−1 1 2

] 
2 −1
2 1
0 2


[
x
y

]
=

[
2 2 0
−1 1 2

] 
−4
4
2





Solving Overconstrained Systems

[
4 0
0 6

] [
x
y

]
=

[
0
12

]
[
x
y

]
=

[
0
2

]



Solving Overconstrained Systems

Note how the solution “splits the
di�erence” between the three lines.

We will make this explicit later in the
semester when we see other ways of
deriving this procedure.



Special Case: Constant

Let’s say you want to solve the overdetermined system

x = 2
x = 7
x = 1
x = 8
x = 2
x = 8

This is an overdetermined system of 6 equations in 1 variable.



Special Case: Constant

Write as matrix equation: 

1
1
1
1
1
1


[
x
]
=



2
7
1
8
2
8





Special Case: Constant

Solve normal equations:

[
1 1 1 1 1 1

]


1
1
1
1
1
1


[
x
]
=

[
1 1 1 1 1 1

]


2
7
1
8
2
8


x =

2 + 7 + 1 + 8 + 2 + 8
6

Solution is the mean of the values!



Special Case: Line

Let’s say you want to fit a line y = a + bx to a set of datapoints (xi ,yi):

Your system of equations is:

a + bx1 = y1

a + bx2 = y2
...



Special Case: Line

Write as a matrix equation: 
1 x1
1 x2
1 x3
...
...


[
a
b

]
=


y1
y2
y3
...


and solve the resulting normal equations for a and b.

(You’ll see ugly formulas out there involving lots of nasty summations,
but much simpler to remember the general principle.)



Line Fitting Caveats

• Single outlier can have large e�ect on
best-fit line

• This minimizes “vertical” distance to line:
not always what you want


