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In Euclidean Space. . .

Length of a vector x : ‖x ‖ =

√∑
i

x2i

Distance between vectors x and y: ‖x −y‖ =

√∑
i

(xi − yi)2

These let us talk about lengths and distances in Rn.

Dot product between vectors x and y: x · y =
∑
i

xiyi

This lets us talk about angles and perpendicularity
(orthogonality).

3

4

len=sqrt(
3*3+4*4)=5



Properties of Euclidean Length

• Real-valued function on vectors
• “Positive definite”:

– Non-negative: ‖x ‖ ≥ 0
– Positive except for 0 vector

• Absolutely homogeneous: ‖λx ‖ = |λ | ‖x ‖
• Obeys triangle inequality: ‖x +y‖ ≤ ‖x ‖ + ‖y‖
• Induces a distance metric between vectors: d(x ,y) = ‖x −y‖

len = 5
len = 5

len = 7.1

All of these can apply to more general notions of “length.”



Properties of Dot Product

• Real-valued function on pairs of vectors
• Symmetric: x · y = y · x
• Bilinear: (λx +ψy) · z = λ(x · z) +ψ (y · z)

x · (λy +ψz) = λ(x · y) +ψ (x · z)
• Positive definite: x · x > 0 unless x = 0
• Induces a norm (in this case, standard Euclidean norm): ‖x ‖ =

√
x · x

All of these can apply to more general notions of “product.”



More Properties of Dot Product

Before we generalize, two more properties:
• Relation to matrix product: x · y = x

ᵀ
y = y

ᵀ
x ,

and so ‖x ‖ =
√
xᵀx

• Relation to angles: x · y = ‖x ‖‖y‖ cosθ
– Important special case: for nonzero x , y,

x · y = 0 i� x and y are perpendicular

θ



Generalizing Dot Product: Inner Product

Suppose you apply a linear mapping to both vectors,
then take a dot product in the new space.
• Will this be the same as the original dot product?

No.
• Will this always produce a “valid” dot product? No.

– For positive definiteness, need the linear mapping not to collapse dimensions
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Generalizing Dot Product: Inner Product

Suppose you apply an injective linear mapping to both vectors,
then take a dot product in the new space.
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Generalizing Dot Product: Inner Product

Suppose you apply a injective linear mapping to both vectors,
then take a dot product in the new space.

Let the transformation be representable by matrix M .

New inner product 〈x ,y〉 = (Mx)
ᵀ
(My) = x

ᵀ
M
ᵀ
My = x

ᵀ
Ay,

where the matrix A is square, symmetric, and positive definite.

M



Aside: Quadratic Forms

You’ll o�en see notation such as xᵀAx , with square and symmetric A.
This is a quadratic form: a second-order polynomial in the elements of x :

Let x = (x1,x2,x3, . . .). Then,

x
ᵀ
Ax = ax21 + bx1x2 + cx

2
2 + dx1x3 + ex2x3 + fx23 + . . .

Also: a bilinear form x
ᵀ
Ay is a function from two vectors to a scalar

that is linear in both x and y.



Generalizing Dot Product: Inner Product

The generalized inner product, applied to the same vector twice, gives

〈x ,x〉A = x
ᵀ
Ax

for some square, symmetric A.

• If A is diagonal, then we just have scaled versions of x21 , x22 , etc.
– Application: the “weight” or “importance” of each dimension is di�erent.

• If A is not diagonal, also have “mixed” quadratic terms: x1x2, x2x3, etc.
– Application: accounting for “correlation” between dimensions.

Example: A =
[
1 −1/2
−1/2 1

]
, so x

ᵀ
Ax = x21 + x

2
2 − x1x2.

The norm induced by this inner product downweights correlation in x1 and x2.



Generalizing Dot Product: Inner Product

The generalized inner product, applied to the same vector twice, gives

〈x ,x〉A = x
ᵀ
Ax

for some square, symmetric A.

• But we know that this has to be > 0 (unless x is the 0 vector),
because it came from a dot product in some (transformed) space.
• So we say that A is “symmetric positive definite” or SPD.
• Key duality between SPD matrices, generalized inner products, and

norms on linearly-transformed vector spaces.
– A is SPD i� it can be wri�en as A = M

ᵀ
M



Generalizing Norm: Lp Spaces

Not all norms come from inner products. We can have vector spaces with
valid norms but no well-defined inner products.

Most important example: `p norm

‖x ‖p =
(∑

i

|xi |
p
)1/p

for p ≥ 1. (For p < 1, does not satisfy triangle inequality, so not a valid norm.)



Generalizing Norm: Lp Spaces

‖x ‖p =
(∑

i

|xi |
p
)1/p

• p = 2: Good ol’ Euclidean norm.
• p = 1: Manha�an or taxicab norm.
‖x ‖1 =

∑
i |xi | = sum of North-South and East-West distances,

when restricted to city-block grid. O�en used in robust estimation.
• p = ∞: Infinity norm or max norm.
‖x ‖∞ = maxi |xi |


